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0 Chapter Zero

0.1 Relations and Functions

Definition 0.1. Let X be a set.

• A relation from A to B is a subset R of A×B. The statement (a, b) ∈ R is denoted
aRb. If B = A we say R is a relation on A.

• A relation R on A is

– reflexive if ∀a ∈ A : aRa
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– symmetric if ∀a, b ∈ A : aRb⇒ bRa

– antisymmetric if ∀a, b ∈ A : aRb ∧ bRa⇒ a = b

– transitive if ∀a, b, c ∈ A : aRb ∧ bRc⇒ aRc.

– an equivalence relation if R is reflexive, symmetric, and transitive;

– a partial order if R is reflexive, antisymmetric, and transitive;

– a total order if R is a partial order and ∀a, b ∈ A : aRb ∨ bRa.

• A relation f from A to B is a function if for each a ∈ A there is a unique element of
B denoted f(a) such that

(
a, f(a)

)
∈ f .

Example 0.2.

(i) ⊂ is a partial order on the power set P(X) of any set X.

(ii) The set of all equivalence relations on a set A is partially ordered by inclusion, and
closed under intersections. There is a unique minimal equivalence relation, namely
equality, and a unique maximal equivalence relation where all elements are equivalent.

(iii) Let R be any relation on a set A. The equivalence relation generated by R is the
intersection of all equivalence relations contatining R.

Note that for any set A there is a unique function from ∅ to A, namely the function ∅.

Notation 0.3. N = {0, 1, 2, . . .}; n = {1, 2, . . . , n}; BA is the set of all functions from A
to B; and An = An for n ∈ N; the power set P(A) ≃ 2A is the set of all subsets of A. ⊂
will always mean not-necessarily-strict subset: A ⊂ B ⇔

(
a ∈ A⇒ a ∈ B

)
.

Thus A0 = {∅} and An for n > 0 is the set of n-tuples (a1, a2, . . . , an) of elements of A.

0.2 Equivalence Relations vs. Set Partitions; Surjections

Definition 0.4. A (set) partition P of a set X is a subset of P(X) \ {∅} such that
X =

⋃
A∈P A and A ∩B = ∅ for all A,B ∈ P , A ̸= B.

Theorem 0.5. Let X be a set.

(a) To each equivalence relation ∼ on X there is a partition X/ ∼ of X given by

X/ ∼=
{
[x]∼ | x ∈ X

}
, [x]∼ = {y ∈ X | y ∼ x}. (0.1)

(b) Conversely, to each partition P of X there is an equivalence relation ∼P on X defined
by

x ∼P y ⇔ ∃A ∈ P : x ∈ A ∧ y ∈ A.
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(c) These two constructions establish a bijective correspondence between the set of all equiv-
alence relations on X and the set of all partitions of X.

Definition 0.6. The set [x]∼ from (0.1) is the equivalence class containing x (with respect
to ∼).

Theorem 0.7. Let X be a set.

(a) To each equivalence relation ∼ on X there is a surjective map π : X → X/ ∼, x 7→ [x]∼.

(b) To each pair (B, f) where B is a set and f : X → B is a surjective map there is an
equivalence relation on X given by x ∼ y ⇔ f(x) = f(y). The corresponding partition
is {f−1({b}) | b ∈ B}.

Definition 0.8. A section of a surjective map f : X → B is a map s : B → X such that
f ◦ s = IdB.

Definition 0.9. Let ∼ be an equivalence relation on X.

• The surjective map π : X → X/ ∼, x 7→ [x]∼ is the canonical (or natural) projection.

• A set of class representatives T is the image of a section of the canonical projection.

In other words, a set of class representatives is a subset T ⊂ X such that any x ∈ X is
equivalent to exactly one element in T .

Definition 0.10. For a surjective map f : X → B and b ∈ B, the set f−1({b}) is called
the fiber above b.

0.3 Divisibility in Z

Define a relation
∣∣ (“divides”) on Z by a

∣∣ b⇔ b = da for some d ∈ Z. Then
∣∣ is a partial

order on Z. Note ∀a ∈ Z : 0
∣∣ a but ∀a ∈ Z : (a

∣∣ 0 ⇒ a = 0).

0.3.1 Division Algorithm; gcd and lcm

Theorem 0.11 (Division Algorithm). If a, b ∈ N and b ̸= 0 then there exist unique r, q ∈ N
such that

a = qb+ r and 0 ≤ r < b. (0.2)

Proof. (Existence): The set S = N ∩ {a− qb | q ∈ N} is nonempty (a ∈ S) hence contains
a least element r by the Well-Ordering Principle (Theorem A.1). Then a = qb + r, and
r < b otherwise r − b ∈ S contradicting minimality. (Uniqueness): If a = qb+ r = q′b+ r′

then b
∣∣ (r′ − r), so if 0 ≤ r, r′ < b then |r′ − r| < b, forcing r′ − r = 0.

Definition 0.12. Let a, b ∈ Z. A greatest common divisor is an integer d ∈ Z such that
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(i) d
∣∣ a and d

∣∣ b,
(ii) ∀e ∈ Z : e

∣∣ a ∧ e
∣∣ b⇒ e

∣∣ d.
Theorem 0.13. Let a, b ∈ Z. Then there exists a greatest common divisor of a and b and
it is unique up to sign.

Proof. (Existence): If a = b = 0 then d = 0 is a gcd. Otherwise, we may without loss of
generality assume a > 0 and b > 0. The set

S = Z>0 ∩ {sa+ tb | (s, t) ∈ Z2}.

is non-empty (a2 + b2 ∈ S) and hence contains a least element d by the Well-Ordering
Principle. Write

d = sa+ tb, (0.3)

where (s, t) ∈ Z2. We prove that d satisfies Properties (i) and (ii) of the theorem statement.
(i): By the Division Algorithm, there exists (q, r) ∈ N2 such that

a = qd+ r, 0 ≤ r < d. (0.4)

Substituting (0.3) into (0.4) we obtain a− q(sa+ tb) = r, or, after rearranging,

(1− qs)a+ tb = r.

If r > 0 this element belongs to S but that contradicts the minimality of d. Therefore
r = 0 which shows that d

∣∣ a. Interchanging the roles of a and b we conclude that d
∣∣ b too.

(ii): Suppose e ∈ Z with e
∣∣ a and e

∣∣ b. That is, ec = a and ec′ = b for some integers c and
c′. Substituting into (0.3) we get d = sec+ tec′ = (sc+ tc′)e which shows that e

∣∣ d.
(Uniqueness up to sign): If d and d′ are both gcds of a and b, then by (ii) we have d

∣∣ d′
and d′

∣∣ d. This means dc = d′ and d′c′ = c for some integers c and c′. Hence d = dcc′ and
d′ = d′cc′, so either d = d′ = 0, or c ∈ {1,−1}. Either way, d′ ∈ {d,−d}.

Definition 0.14. For integers a and b we let

gcd(a, b)

be the unique non-negative greatest common divisor of a and b.

Analogously a least common multiple of two integers a and b is an integer m ∈ Z such
that (i) a

∣∣m, b
∣∣m, and (ii) if n ∈ Z with a

∣∣n, a ∣∣n, then m ∣∣n. It exists and is unique up
to sign. Let lcm(a, b) denote the unique non-negative least common multiple. We have

gcd(a, b) lcm(a, b) = ab. (0.5)

The following abbreviated notation is sometimes convenient:

(a, b) = gcd(a, b), [a, b] = lcm(a, b).
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Definition 0.15. Euler’s ϕ-function is defined by

ϕ(n) = |{a ∈ n | gcd(a, n) = 1}|. (0.6)

We have the following properties:

ϕ(mn) = ϕ(m)ϕ(n) if gcd(m,n) = 1, (0.7)

ϕ(pk) = pk − pk−1 = pk−1(p− 1) if p is prime and k > 0. (0.8)

and explicit formula:

ϕ(n) = n
∏
p|n

(
1− 1

p

)
(0.9)

where the product is taken over all prime numbers which divide n.

0.3.2 Congruence

Definition 0.16. For n ∈ Z define a relation ≡n on Z called congruence mod(ulo) n by

a ≡n b⇔ n
∣∣ (a− b). (0.10)

A strange but very common notation for a ≡n b is a ≡ b (mod n).

Lemma 0.17. For any n ∈ Z, the relation ≡n is an equivalence relation on Z.

Definition 0.18. The equivalence classes, denoted

[a]n = [a]≡n = a+ nZ = {a+ nd | d ∈ Z}, a ∈ Z, (0.11)

are the congruence classes mod n. A set of class representatives with respect to ≡n is called
a set of congruence class representatives mod n (or a system of residues mod n)

Example 0.19. The most common set of congruence class representatives mod n is
{0, 1, . . . , n − 1}. Another choice is {−k,−k + 1, . . . ,−k + n − 1} where k = ⌊n−1

2 ⌋. For
n = 4 that gives {−1, 0, 1, 2}.

1 Monoids and Groups

1.1 Monoids

Definition 1.1. Let A be a set.

• A binary operation on A is a function ∗ : A×A→ A. We write a∗b instead of ∗(a, b).

• A binary operation ∗ on A is commutative if ∀(a, b) ∈ A2 : a ∗ b = b ∗ a; associative
if ∀(a, b, c) ∈ A3 : a ∗ (b ∗ c) = (a ∗ b) ∗ c.
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Definition 1.2. A monoid M is a set together with an associative binary operation ∗ on
M , and an identity element e = eM ∈ M , such that e ∗ a = a = a ∗ e for all a ∈ A. M is
furthermore commutative if ∗ is commutative.

Proposition 1.3. Let M be a monoid.

(a) Then for any a1, a2, . . . , an ∈M the value of a1 ∗ a2 ∗ · · · ∗ an is independent of how it
is parenthesized. (Generalized Associativity Law.)

(b) If e, ẽ ∈M are two identity elements then e = ẽ.

Example 1.4.

(i) N,Z,Q,R,C are monoids under both + and ·. Neither is a monoid under −, subtrac-
tion being non-associative.

(ii) If R = N,Z,Q,R,C then the set Mn(R) of n × n-matrices with entries from R is a
monoid under both matrix addition and under matrix multiplication.

(iii) Let X be a set. Then XX is a monoid under function composition.

(iv) The free monoid on a set X is

Fmon(X) =

∞⊔
n=0

Xn.

Elements of Xn are here called words, written x1x2 · · ·xn, xi ∈ X, with binary
operation given by concatenation: for w = x1 · · ·xm ∈ Xm and w′ = x′1 · · ·x′n ∈ Xn

we define ww′ ∈ Xm+n by

(x1 · · ·xm)(x′1 · · ·x′n) = x1 · · ·xmx′1 · · ·x′n.

Then Fmon(X) is a monoid with identity element e = ∅ ∈ X0. (Recall that X0 = {∅}
for any set X.)

(v) If V is a vector space then the set End(V ) of linear operators on V is a monoid under
composition.

(vi) If {Mi}i∈I is a family of monoids, the direct product
∏

i∈I Mi consisting of sequences
(xi)i∈I , xi ∈Mi, is a monoid under pointwise operations: (xi)i∈I∗(yi)i∈I = (xi∗yi)i∈I .
In particular, if M and N are monoids then M × N = {(x, y) | x ∈ M,y ∈ N} is a
monoid.
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1.2 Groups

Definition 1.5. Let M be a monoid.

• x ∈ M is invertible if there exists x′ ∈ M , called an inverse of x, such that x ∗ x′ =
eM = x′ ∗ x.

• M is a group if every element is invertible.

• M is an abelian group if it is a commutative group.

Notation 1.6. If M is a monoid we let

M× = {m ∈M | m is invertible}.

Proposition 1.7. If M is a monoid, then M× is a group with the same operation as in
M .

Notation 1.8. Let G be a group with operation ∗, identity eG.

Multiplicative notation: gh = g ∗ h, 1 = eG, g
−1 = g′, gn =


gg · · · g, n > 0,

1, n = 0,

g−1g−1 · · · g−1, n < 0.

Additive notation: g+h = g∗h, 0 = eG, −g = g′, ng =


g + g + · · ·+ g, n > 0,

0, n = 0,

(−g) + (−g) + · · ·+ (−g), n < 0.

We will usually use multiplicative notation. Additive notation is only used when G is
known to be abelian.

Proposition 1.9. Let G be a group and let a, x, y ∈ G.

(a) If a′ and a′′ are inverses of a ∈ G then a′ = a′′. (Uniqueness of Inverse)

(b) xy = a⇔ y = x−1a⇔ x = ay−1. (Unique Solvability of Equations)

(c) If xa = ya or ax = ay then x = y. (Left and Right Cancellation Laws)

Definition 1.10. Let G be a group. The order of G is the cardinality of the underlying
set G. If G has finite order then G is finite. Otherwise G is infinite.

Example 1.11.

(i) Under addition, the monoids Z,Q,R,C are groups, while N× = {0}. Let M be
N,Z,Q,R, or C under multiplication. Then M× = {1}, {1,−1},Q \ {0},R \ {0}, and
C \ {0}, respectively.
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(ii) For R = N,Z,Q,R,C, the general linear group is GLn(R) =
(
Mn(R)

)×
.

(iii) Let X be a set. The group SX = (XX)× of invertible functions from X to X is called
the symmetric group on X.

(iv) Let X be a set. The free group on X, denoted F (X), is constructed as follows. Let
X−1 be a set with a bijection X → X−1 denoted x 7→ x−1. Let F̃ be the free monoid
on the set X ⊔X−1. Let ∼ be the equivalence on F̃ generated by (Recall Example
0.2(iii)))

wxx−1w′ ∼ ww′ ∼ wx−1xw′

for all words w,w′ ∈ F̃ . Define

F (X) = F̃ / ∼

with binary operation [w1]∼[w2]∼ = [w1w2]∼. One checks this is well-defined (w1 ∼
w′
1, w2 ∼ w′

2 ⇒ w1w2 ∼ w′
1w

′
2) and makes F (X) into a group.

(v) If {Gi}i∈I is a family of groups then
∏

i∈I Gi is also a group.

1.3 Homomorphisms

Definition 1.12. Let M and N be monoids, and let φ :M → N be a map. We say that

• φ is a homomorphism if

∀(a, b, c) ∈M3 : ab = c =⇒ φ(a)φ(b) = φ(c) and f(eM ) = eN .

• φ is an isomorphism if it is a homomorphism and there exists a homomorphism
ψ : N →M such that φ ◦ ψ = IdN and ψ ◦ φ = IdM .

• M is isomorphic to N , written M ∼= N , if there exists an isomorphism from M to N .

• N is a homomorphic image of M if there is a surjective homomorphism from M to
N .

Note that ∼= is an equivalence relation on the class of all monoids.

Proposition 1.13.

(a) Let M and N be monoids and φ : M → N be a map. Then φ is an isomorphism if
and only if it is a bijective homomorphism.

(b) Let G and H be groups and φ : G → H be a map. Then φ is a homomorphism if and
only if φ(g1g2) = φ(g1)φ(g2) for all g1, g2 ∈ G.

Proposition 1.14. Let M,N be monoids and let φ :M → N be a homomorphism. Then
φ(M×) ⊂ N×, hence φ restricts to a homomorphism of groups M× → N×.
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1.4 Subgroups

1.4.1 Definition and Criterion

Definition 1.15. Let G be a group and H a subset of G. We say that H is a subgroup of
G, written H ≤ G, if H is a group and the inclusion map i : H → G is a homomorphism.

Proposition 1.16 (Subgroup Criterion). Let G be a group and H be a subset of G equipped
with the same operation as G. The following are equivalent:

(i) h, h′ ∈ H ⇒ hh′ ∈ H, h ∈ H ⇒ h−1 ∈ H, 1G ∈ H;

(ii) h, h′ ∈ H ⇒ h−1h′ ∈ H;

(iii) H ≤ G.

1.4.2 Image and Kernel of a Homomorphism

Definition 1.17. Let φ : G→ H be a homomorphism between groups. The kernel of φ

ker(φ) = {g ∈ G | φ(g) = 1H}

and the image of φ is
φ(G) = {φ(g) | g ∈ G}.

Proposition 1.18. Let φ : G → H be a homomorphism of groups. Then kerφ ≤ G and
φ(G) ≤ H.

Example 1.19.

(i) Let U(1) = {z ∈ C× : |z| = 1}. Then U(1) is a subgroup of C×.

(ii) Let R be a commutative ring. Then det :Mn(R) → R is a homomorphism of monoids,
where Mn(R) and R are considered monoids under multiplication. By Proposition
1.14, this gives a group homomorphism det : GLn(R) → R×. The kernel of this map
is the special linear group:

SLn(R) = ker(det) = {A ∈ GLn(R) | det(A) = 1}.

1.4.3 Intersections and Generation of Subgroups

Proposition 1.20. If {Hi}i∈I is a family of subgroups of a group G, then
⋂

i∈I Hi is a
subgroup of G.

Definition 1.21. Let G be a group.
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• Let S ⊂ G. The subgroup of G generated by S, denoted ⟨S⟩, is the intersection of
all subgroups of G containing S. If G = ⟨S⟩ we say G is generated by S. We write
⟨g1, g2, . . . , gn⟩ = ⟨{g1, g2, . . . , gn}⟩.

• G is finitely generated if G = ⟨S⟩ for some finite subset S ⊂ G.

• G is cyclic if G = ⟨g⟩ for some g ∈ G.

• The join of two subgroups H,K ≤ G is defined to be H ∨K = ⟨H ∪K⟩.

Here is a more concrete description of the subgroup ⟨S⟩:

Proposition 1.22. Let G be a group and S ⊂ G. Then ⟨S⟩ consists of all finite products
s1s2 · · · sk where si ∈ S ∪ S−1 where S−1 = {s−1 | s ∈ S}.

1.4.4 Order of Elements and the Torsion Subgroup of an Abelian Group

Definition 1.23. The order of an element g ∈ G, written |g| is defined to be |⟨g⟩|, the
order of the cyclic subgroup of G generated by g.

Proposition 1.24. Let A be an abelian group. The set of elements of A of finite order is
a subgroup of A.

Definition 1.25. The subgroup of finite order elements in an an abelian group A is called
the torsion subgroup of A, denoted t(A).

Example 1.26. t(C×) ≤ U(1).

1.5 Group-theoretic Properties

Consider a statement S(G) about groups G, such as “G is abelian”. We say that S(G) is
a group-theoretic property if G ∼= H implies that S(G) ⇔ S(H).

Notation 1.27. For a cardinal k, let

Ek(G) = {g ∈ G : |g| = k}

be the set of order k elements in G and

Subk(G) = {H ∈ P(G) : H ≤ G and |H| = k}

be the set of order k subgroups of G.

Proposition 1.28. Let k,m be cardinal numbers. The following statements are group-
theoretic properties:

(a) “G has order k”

12



(b) “G is abelian”

(c) “|Em(G)| = k”

(d) “|Subm(G)| = k”

Example 1.29. The group of quaternionic units, Q8 = {±1,±i,±j,±k}, is not isomorphic
to the dihedral group D8 of order 8. Indeed, although they are both non-abelian and have
order 8, they have different number of order 2 elements:

E2(Q8) = {−1}, {s, r2} ⊆ E2(D8).

We do not need to determine the exact number of order 2 elements in D8, only that there
are more than one.

2 Examples of Groups

2.1 Symmetric Groups

Definition 2.1. Let X be a set. The symmetric group on X, denoted SX , is defined to
be (XX)×, the group of invertible functions from X to X under composition. We also put
Sn = Sn. In this context, elements of SX are called permutations of X. A permutation
group is a subgroup of SX for some X. A permutation representation of a group G is a
homomorphism from G to SX for some X.

Definition 2.2. Let X be a set. A cycle

σ = (a1 a2 · · · aℓ)

where a1, a2, . . . , aℓ are ℓ distinct elements of X, is the permutation of X defined by

σ(x) =


ai+1, x = ai, 1 ≤ i ≤ ℓ− 1,

a1, x = aℓ,

x, x /∈ {a1, a2, . . . , aℓ}.

The positive number ℓ is the length of σ. An ℓ-cycle is a cycle of length ℓ. A transposition
is a 2-cycle. Two cycles (a1 a2 · · · aℓ) and (b1 b2 · · · bk) are disjoint if {a1, a2, . . . , aℓ} ∩
{b1, b2, . . . , bk} = ∅.

Remark 2.3. We have the following redundancies in the cycle notation: Any cycle of
length one, (a1), coincides with the identity element 1 = IdX in SX . We call such cycles
trivial. Also, a cycle σ of length ℓ can be written in exactly ℓ ways:

(a1 a2 · · · aℓ−1 aℓ) = (a2 a3 · · · aℓ a1) = · · · = (aℓ a1 · · · aℓ−2 aℓ−1).

13



Theorem 2.4 (Cycle Decomposition). Let X be a finite set. Any nontrivial element π of
SX is a product of pairwise disjoint nontrivial cycles. Furthermore if π = σ1σ2 · · ·σr =
τ1τ2 · · · τs are two decompositions of π into products of disjoint nontrivial cycles, then r = s
and after reindexing if necessary, σi = τi for all i.

Lemma 2.5 (Conjugation of Cycles). Let π ∈ SX and let σ = (a1 a2 · · · aℓ) be a cycle in
SX . Then

πσπ−1 =
(
π(a1) π(a2) · · · π(aℓ)

)
. (2.1)

Lemma 2.6. An ℓ-cycle is a product of ℓ− 1 transpositions:

(a1 a2 · · · aℓ) = (a1 a2)(a2 a3) · · · (aℓ−2 aℓ−1)(aℓ−1 aℓ)

Theorem 2.7. The symmetric group Sn has the following presentation:

Sn ∼= ⟨s1, s2, . . . sn−1 | s2i = 1∀i; sisj = sjsi if |i− j| > 1; sisjsi = sjsisj if |i− j| = 1⟩
(2.2)

where si corresponds to the adjacent transposition (i i+ 1).

2.2 Free Groups

The free group on a set X is denoted F (X) can be thought of as the ”most general group
containing X”. Thus, in F (X) we can multiply and take inverses of elements of X, but
there are no relations other than those required in order for F (X) to be a group in the
first place. There has to be an identity 1 ∈ F (X), 1x = x = x1 and inverses x−1 ∈ F (X),
xx−1 = 1 = x−1x for all x ∈ X, and we have associativixty but that is all. Since we have
no unnecessary relations, 1 will not be an element of X and neither will the inverse x−1 of
any element x ∈ X.

In terms of presentations, one can say that F (X) = ⟨X | no relations⟩.

Example 2.8.

(i) If X = ∅ then F (X) = 1, the trivial group.

(ii) If X = {x} then F (X) ≃ Z. Indeed, n 7→ xn provides an isomorphism Z → F (X).

(iii) If X = {x, y} then F (X) consists of all “words” in {1, x, y, x−1, y−1} where the only
simplifications are the obvious ones such as xx−1 = 1 and 1x = x. Thus a typical
element of F (X) is

xy−5x2y−1xyx−4y−1.

This word cannot be simplified any further. A general element can be written
xa1yb1 · · ·xanybn where n ∈ N and ai, bi ∈ N for all i ∈ n. Multiplication is just
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concatenation (write one word next to the other) followed by simplification. For
example,

x3yx−2 · x5y−7xy = x3yx−2x5y−7xy = x3yx3y−7xy

and that is as far as we can simplify. In particular xy ̸= yx so F (X) is certainly not
abelian.

The following theorem states that any function j : X → G, where G is a group, extends
to a group homomorphism j̃ : F (X) → G.

Theorem 2.9 (Universal property of the free group F (X)). Let G be any group and
j : X → G any function. Then there exists a homomorphism j̃ : F (X) → G such that
j̃(x) = j(x) for all x ∈ X.

Corollary 2.10. Any group is isomorphic to a quotient of a free group.

Proof. Take X = G and define j : G → G by j(g) = g. By the universal property of free
groups, j extends to a group homomorphism j̃ : F (G) → G where F (G) is the free group
on G. Since j̃(g) = j(g) = g for all g ∈ G, j̃ is surjective so by the first isomorphism
theorem F (G)/ ker j̃ ≃ G.

2.3 Matrix Groups

2.3.1 Rings

Definition 2.11.

• A ring is a set R with two binary operations called addition, denoted +, and multi-
plication, denoted by juxtaposition, such that

(i) R is an abelian group under +,

(ii) R \ {0} is a monoid under multiplication,

(iii) The following distributive laws hold: For all x, y, z ∈ R,

x(y + z) = xy + xz and (x+ y)z = xz + yz. (2.3)

• A commutative ring is a ring R such that xy = yx for all x, y ∈ R.

• A division ring is a ring such that R \ {0} is a group under multiplication.

• A field is a commutative division ring.

Notation 2.12. For a ring R, we denote by R× the group of invertible elements of the
multiplicative monoid R \ {0}. This is also called the group of units of R.

Example 2.13.
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(i) Q,R,C are fields under usual operations.

(ii) Z/nZ (under addition and multiplication of congruence classes ā+ b̄ = a+ b, ā · b̄ =
a · b) is a commutative ring for any n ∈ Z. The group of units of Z/nZ is

(Z/nZ)× = {ā ∈ Z/nZ | gcd(a, n) = 1}. (2.4)

In particular |(Z/nZ)×| = ϕ(n), where ϕ is Euler’s ϕ-function. It also follows that
Z/nZ is a field if and only if n is a prime number.

(iii) If R is a commutative ring, then Mn(R) is a monoid under matrix multiplication
and GL(n,R) = Mn(R)

× is the general linear group over R. By Cramer’s Rule
for matrix inverse it follows that GL(n,R) = {A ∈ Mn(R) | det(A) ∈ R×}. Here
det : Mn(R) → R is a monoid homomorphism, which gives a group homomorphism
det : GLn(R) → R×. The kernel of det is the special linear group over R: SLn(R) =
{A ∈ GLn(R) | det(A) = 1}.

(iv) The ring of real quaternions H is a 4-dimensional real vector space with basis {1, i, j, k}:

H = {a1 + bi+ cj + dk | a, b, c, d ∈ R}

(hence an abelian group under vector addition) with multiplication determined by
the rules

1) (λ1)x = λx = x(λ1) for all λ ∈ R, x ∈ H,

2) (λx+ µy)z = λ(xz) + µ(yz) and z(λx+ µy) = λ(zx) + µ(zy) for all x, y, z ∈ H,

3) i2 = j2 = k2 = ijk = −1 (Hamilton 1843).

One checks that in H we have

ij = k, jk = i, ki = j, ji = −k, ik = −j, kj = −i. (2.5)

Theorem 2.14. H is a noncommutative division ring.

(v) The ring of integer quaternions is

HZ = {a1 + bi+ cj + dk | a, b, c, d ∈ Z}.

HZ is a noncommutative ring (a subring of H). The quaternion group is Q8 = (HZ)
×.

It is an exercise to show that

Q8 = {±1,±i,±j,±k}.

Consequently, Q8 is a nonabelian group of order 8.
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2.3.2 The Orthogonal Groups

Equip Rn with the standard inner product (dot product):

⟨u, v⟩ = u1v1 + u2v2 + · · ·unvn = uT · v

for any two column vectors u = [u1 u2 · · · un]T and v = [v1 v2 · · · vn]T in Rn.

Definition 2.15. The orthogonal group is the following subgroup of GLn(R):

O(n) = {A ∈ GLn(R) | ⟨Au,Av⟩ = ⟨u, v⟩ for all u, v ∈ Rn}
= {A ∈ GLn(R) | ATA = I}.

(To see the last equality, note that ⟨Au,Av⟩ = ⟨u, v⟩ if and only if uT (ATA)v = uT v
and then choose u and v to be arbitrary standard basis vectors for Rn.)

Definition 2.16. An isometry of Rn is a bijective map f : Rn → Rn such that

d(f(x), f(y)) = d(x, y),

where the Euclidean metric (distance) is given by

d(x, y) = ∥x− y∥ =
√

⟨x− y, x− y⟩. (2.6)

Proposition 2.17. O(n) is the group of all isometries of Rn.

Proof. If A ∈ O(n) then the formula (2.6) shows that the map f(x) = Ax is a linear
isometry. Conversely, if f is an isometry then the polarization identity

⟨x, y⟩ = 1

4
(∥x+ y∥2 − ∥x− y∥2) = 1

4

(
d(x,−y)2 − d(x, y)2

)
(2.7)

shows that ⟨f(x), f(y)⟩ = ⟨x, y⟩ for all x, y ∈ Rn. Now we have ⟨f(λx + µy) − λf(x) −
µf(y), z⟩ = ⟨f(λx + µy), z⟩ − λ⟨f(x), z⟩ − µ⟨f(y), z⟩ = ⟨λx + µy, f−1(z)⟩ − λ⟨x, f−1(z⟩ −
µ⟨y, f−1(z)⟩ = 0 for all x, y, z ∈ Rn. Since f is surjective and ⟨·, ·⟩ is non-degenerate, f is
a linear map, hence given by a matrix A ∈ O(n).

Definition 2.18. The special orthogonal group is defined as

SO(n) = O(n) ∩ SLn(R).

Geometrically SO(n) consists of the orientation-preserving linear isometries.
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2.4 Dihedral groups

Let Vn be the set of vertices of the regular n-gon (n-sided polygon) in R2, with all vertices
on the unit circle and one of vertex at (1, 0). Thus

Vn = {P0, P1, . . . , Pn−1}, Pk = (cos kθn, sin kθn), θn = 2π/n.

The dihedral group of order 2n is defined as the subgroup of O(2) consisting of all trans-
formations that preserve the set Vn:

D2n = {A ∈ O(2) | Ax ∈ Vn for all x ∈ Vn}.

D2n also called the group of symmetries of the regular n-gon. Let

r =

[
cos 2π/n − sin 2π/n
sin 2π/n cos 2π/n

]
and s =

[
1 0
0 −1

]
The linear transformation r is rotation counter-clockwise by 2π/n radians, while s is the
reflection in the x-axis.

Theorem 2.19. D2n = ⟨r, s⟩ and we have

rn = 1, s2 = 1, sr = r−1s.

Any element of D2n can be uniquely written risj where i ∈ {0, 1, . . . , n− 1} and j ∈ {0, 1}.
In particular D2n has order 2n.

3 Quotient Groups and Isomorphism Theorems

3.1 Normal Subgroups; Quotient Groups

Definition 3.1. A subgroup N of a group G is normal (in G) if gNg−1 ⊂ N for all g ∈ G.
We denote this property by N ⊴ G.

Lemma 3.2. Let N be a subgroup of a group G. The following are equivalent:

(i) N ⊴ G,

(ii) gNg−1 = N for all g ∈ G,

(iii) gN = Ng for all g ∈ G.

Remark 3.3. There is one subtlety here: It is not true that for every g ∈ G the implication
gNg−1 ⊂ N ⇒ gNg−1 = N holds. However, if gNg−1 ⊂ N for all g ∈ G, then gNg−1 = N
for all g ∈ G.
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For a subgroup N of a group G, let

G/N = {gN | g ∈ G}. (3.1)

The definition of multiplication in G/N is often done by choosing representatives. We
follow an alternative route here.

Definition 3.4. For X,Y ∈ G/N define XY = {xy | x ∈ X, y ∈ Y }.

The product XY is a subset of G and may or may not be anoter element of G/N .

Proposition 3.5. Let G be a group and N ≤ G. The following are equivalent:

(i) For all X,Y ∈ G/N , XY ∈ G/N ;

(ii) N ⊴ G.

If these conditions hold then G/N is a group under the operation defined.

Proof. (i)⇒(ii): Choose X = gN and Y = g−1N . By (i) there exists g′ ∈ G such that
gNg−1N = g′N . This implies that gNg−1 ⊂ g′N . In particular 1 = g1g−1 ∈ g′N , hence
g′ ∈ N so that g′N = N . Thus gNg−1 ⊂ N . Since g was arbitrary, N is normal in G.

(ii)⇒(i): Let gN, g′N ∈ G/N . By Lemma 3.2, Ng′ = g′N hence gNg′N = gg′NN =
gg′N ∈ G/N .

Lasly, assuming the conditions (i) and (ii) hold, we show G/N is a group. Let X,Y, Z ∈
G/N . Then (XY )Z = X(Y Z) by associativity in G. For any gN ∈ G/N we have gN =
gNN = NgN hence N is the identity element of G/N . Lastly, gNg−1N = Ngg−1N =
NN = N so (gN)−1 = g−1N . This shows that G/N is a group.

Definition 3.6. Let N be a normal subgroup of a group G. The group G/N just defined
is the quotient (or factor) group of G by N .

3.2 Isomorphism Theorem

Proposition 3.7. Let φ : G → H be a homomorphism of groups, and let N be a normal
subgroup of G contained in kerφ. Then there is a homomorphism φ̄ : G/N → H such that
φ̄(gN) = φ(g) for all g ∈ G.

Theorem 3.8 (First Isomorphism Theorem). Let φ : G → H be a group homomorphis
with kernel K. Then there is an isomorphism φ̄ : G/K ∼= φ(G) satisfying φ̄(gK) = φ(g)
for all g ∈ G.

Theorem 3.9 (Second Isomorphism Theorem). Let G be a group and H,N ≤ G such that
hNh−1 = N for all h ∈ H. Then NH = HN ≤ G and N ⊴ NH and H ∩N ⊴ H and

NH/N ∼= H/(H ∩N). (3.2)
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In particular,

|NH| = |N ||H|
|H ∩N |

. (3.3)

Theorem 3.10 (Subgroup Lattice Isomorphism Theorem). Let G be a group and N ⊴ G,
and put Ḡ = G/N . Let Sub(G;N) be the set of subgroups of G containing N , and Sub(Ḡ) be
the set of all subgroups of Ḡ. For each H ∈ Sub(G;N), let H̄ = H/N . Then the assigment
H 7→ H̄ is a bijection from Sub(G;N) to Sub(Ḡ). Furthermore, for any H,K ∈ Sub(G;N)
the following statements hold:

(a) H ∩K = H̄ ∩ K̄;

(b) H ∨K = H̄ ∨ K̄;

(c) H ≤ K iff H̄ ≤ K̄, in which case |K : H| = |K̄ : H̄|;

(d) H ⊴ K iff H̄ ⊴ K̄, in which case K/H ∼= K̄/H̄ (Third Isomorphism Theorem).

3.3 Presentations of Groups

Definition 3.11 (Group Presentation). Let X be a set and R a subset F (X). The group
presented by generators X and relations R, denoted by

⟨X | r = 1 ∀r ∈ R⟩

is defined to be the group
F (X)/N(R)

where N(R) is normal subgroup of F (X) generated by R. A group is said to be finitely
presented if X and R can be chosen finite. In this case we write

⟨x1, x2, . . . , xm | r1 = 1, r2 = 1, . . . , rn = 1⟩.

Another way to define N(R) is to say it is the intersection of all normal subgroups of
F (X) which contain R. It is thus the smallest normal subgroup of F (X) containing R.
Concretely, N(R) consists of all products of F (X)-conjugates of elements of R ∪R−1.

Example 3.12. (1) The following is a finitely presented group:

G = ⟨x, y | xy2x−1y−1 = 1, x3 = 1⟩

By definition, G = F ({x, y})/N whereN the normal subgroup generated by {xy2x−1y−1, x3}.
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(2) We say that the relations R ⊆ F (X) are contradictory if N(R) = F (X). For example,
if

G = ⟨x, y | xy = 1, xyx = 1⟩

then using that N(R) is a (normal) subgroup of F (X) containing xy and xyx it is easy
to see that N(R) has to contain both x and y. Since those generate all of F (X), we
have N(R) = F (X) which means that G is the trivial group.

Determining when a presented group is non-trivial is very difficult. Similarly, deter-
mining whether two groups with given presentations are isomorphic is also difficult. One
can actually prove that there is no algorithm that always works.

Example 3.13. The dihedral group has a presentation

D2n
∼= ⟨r, s | rn = s2 = srsr = 1⟩.

4 G-Sets

4.1 Definition and Examples

Definition 4.1. A (left) G-set is a set X together with a map G×X → X, (g, x) 7→ g.x,
called the action of G on X satisfying

(i) g.(h.x) = (gh).x for all g, h ∈ G, x ∈ X;

(ii) 1G.x = x for all x ∈ X.

Example 4.2.

(i) If X is a G-set, H is a group and φ : H → G is a group homomorphism, then X
becomes an H-set by defining

h.x = φ(h).x, ∀h ∈ H,x ∈ X.

In particular if H ≤ G then the inclusion H → G turns any G-set into an H-set by
restricting the action.

(ii) Let X be a set. Then the symmetric group SX acts on X by σ.x = σ(x).

(iii) If φ : G → SX is any group homomorphism then the previous two examples show
that G acts on X.

(iv) Conversely if G acts on a set X then we can define φ : G→ SX by φ(g)(x) = g.x. We
say that φ is afforded by the action. (This gives a bijective correspondence between
the set of actions of G on X and the set of group homomorphisms from G to SX .)
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(v) G acts on itself in three important ways:

g.x = gx, left regular action

g.x = xg−1, right regular action

g.x = gxg−1, conjugation action

Restricting these actions to a subgroup H ≤ G gives three actions (left/right regular
and conjugation actions) of H on G.

(vi) If Y is a subset of a G-set X such that g.y ∈ Y for all y ∈ Y , then Y becomes a G-set
by restricing the action to G× Y .

4.2 Decomposition into Orbits; Transitive and Free Actions

Lemma 4.3. Let X be a G-set. The relation ∼G on X defined by by x ∼G y ⇔ ∃g ∈ G :
y = g.x is an equivalence relation.

Definition 4.4. The equivalence classes [x]∼G are called the (G-)orbits in X and are
denoted G.x or OrbG(x):

OrbG(x) = G.x = {g.x | g ∈ G}. (4.1)

The set X/ ∼G of all G-orbits in X is denoted X/G.

By Theorem 0.5, and G-set X is partitioned into orbits:

Theorem 4.5 (Orbit Decomposition Theorem). Let X be a G-set. Then

X =
⊔

O∈X/G

O. (4.2)

In particular,

|X| =
∑

O∈X/G

|O|. (4.3)

Definition 4.6. Let X be a G-set and x ∈ X. The (G-)stabilizer of x is

StabG(x) = Gx = {g ∈ G | g.x = x} (4.4)

Proposition 4.7. Let X be a G-set. Then StabG(x) ≤ G for any x ∈ X.

Definition 4.8. Let X be a G-set. We say that the action of G on X is

• transitive if |X/G| = 1,

• free if StabG(x) = 1 for all x ∈ X.

22



Corollary 4.9. Let G be a finite group and X be a finite G-set. If G is acting freely on
X, then |G| divides |X|.

Proof. Since G is acting freely, the map G→ OrbG(x), g 7→ g.x is bijective for every x ∈ X.
Consequently all orbits have size |G|. The result now follows from the Orbit Decomposition
Theorem.

Proposition 4.10. Let G be a group, H ≤ G and let X be a G-set. Regard X as an H-set
via the restricted action.

(a) If the action of H on X is transitive, then the action of G on X is transitive.

(b) If the action of G on X is free, then the action of H on X is free.

5 Structure Theory of Groups

5.1 Regular Action of H ≤ G on G; Lagrange’s Theorem

If H ≤ G then the right and left regular actions of H on G are free. The orbits are,
respectively

gH = {gh | h ∈ H} Hg = {hg | h ∈ H}

and are called left (respectively right) cosets of H in G. The set of left cosets of H in G is
denoted G/H.

Theorem 5.1 (Langrange’s Theorem). Let G be a finite group and H ≤ G. Then |H|
divides |G|.

Proof. Since the left regular action of H on G is free, the conclusion follows from Corollary
4.9.

Definition 5.2. If G is a group and H ≤ G, the index of H in G, denoted |G : H| is the
number of left cosets of H in G:

|G : H| = |G/H|. (5.1)

When G is finite this number equals |G|/|H|.

Example 5.3. Let G be a group of order p, where p is a prime number. We show that G
is cyclic. Let g ∈ G be a nontrivial element. Then |g| > 1. By Lagrange’s Theorem, |g|
divides p. Since p is prime, |g| = p. Thus ⟨g⟩ = G.
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5.2 Left Regular Action of G on G/H; Cayley’s Theorem

G acts on G/H by g.(g1H) = (gg1)H. We refer to this as the left regular action as well.

Theorem 5.4. The left regular action of G on G/H is transitive. The kernel K of the
afforded permutation representation φ : G → SG/H is K =

⋂
x∈G xHx

−1. By the First
Isomorphism Theorem, ϕ induces an injective group homomorphism

φ̄ : G/K → SG/H . (5.2)

In particular, G/K is isomorphic to a subgroup of SG/H .

Taking H = 1 in this theorem we obtain Cayley’s Theorem:

Corollary 5.5 (Cayley’s Theorem). Any group is G isomorphic to a subgroup of the
symmetric group Sn, where n = |G|.

5.3 Orbit-Stabilizer Theorem

Definition 5.6. If X and Y are G-sets, a map of G-sets φ : X → Y is a function such
that

φ(g.x) = g.φ(x), for all g ∈ G, x ∈ X.

Two G-setsX and Y are isomorphic, writtenX ∼= Y , if there are maps of G-sets φ : X → Y
and ψ : Y → X such that φ ◦ ψ = IdY and ψ ◦ φ = IdX .

Due to the decomposition (4.2), to describe all G-sets up to isomorphism it suffices to
describe the transitive G-sets.

Lemma 5.7. Let X be a G-set, g ∈ G and x ∈ X. Then:

g StabG(x)g
−1 = StabG(g.x) (5.3)

Theorem 5.8 (Orbit-Stabilizer Theorem). Let G be a group.

(i) Every transitive G-set X is isomorphic to G/H for some subgroup H. More precisely,
for any x ∈ X the map G/Gx → X given by gGx 7→ g.x is a well-defined isomorphism
of G-sets.

(ii) If H,K ≤ G then the G-sets G/H and G/K are isomorphic if and only if H = gKg−1

for some g ∈ G.

Corollary 5.9. The cardinality of an orbit equals the index of the corresponding stabilizer.
More precisely, if X is a G-set, then for any x ∈ X,

|OrbG(x)| = |G : StabG(x)|
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Definition 5.10. A subset T of a G-set X is a set of orbit representatives for X/G if the
map T → X/G, t 7→ OrbG(t) is a bijection.

Combining Corollary 5.9 with the Orbit Decomposition Theorem we get:

Corollary 5.11. For any G-set X we have

|X| =
∑
t∈T

|G : StabG(t)|

where T is a set of orbit representatives for X/G.

It is useful to extract the singleton orbits from the sum. Each singleton orbit consists
of a so called fixed point :

|OrbG(x)| = 1 ⇔ OrbG(x) = {x} ⇔ g.x = x for all g ∈ G.

We denote the set of fixed points by XG:

XG = {x ∈ X | g.x = x for all g ∈ G}.

By Corollary 5.11 we get:

Corollary 5.12. For any G-set X we have

|X| = |XG|+
∑

t∈T\XG

|G : StabG(t)|

where T is a set of representatives for X/G.

5.4 Counting the Number of Orbits; Applications to Combinatorics

Theorem 5.13. Let G be a group and X be a G-set. Then

|X/G| = 1

|G|
∑
g∈G

|Xg| (5.4)

where Xg = {x ∈ X | g.x = x}.

Proof. Let
X̃ = {(g, x) ∈ G×X | g.x = x}. (5.5)

On the one hand,

|X̃| =
∑
g∈G

|Xg|. (5.6)
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On the other hand
|X̃| =

∑
x∈X

|StabG(x)| (5.7)

Since StabG(g.x) = g StabG(x)g
−1, and conjugate subgroups have the same order, it suffices

to sum over a set of representatives T for the orbits. Thus (5.7) equals

|X̃| =
∑
x∈T

|OrbG(x)||StabG(x)|

By the Orbit-Stablizer Theorem, |OrbG(x)| = |G : StabG(x)| hence we get

|X̃| =
∑
x∈T

|OrbG(x)||StabG(x)| =
∑
x∈T

|G| = |T ||G| = |X/G||G|

Combining this with (5.6), the desired conclusion follows.

5.5 Conjugation Action of G on itself; The Class Equation

When G act on itself by conjugation, we have:

OrbG(x) = {gxg−1 | g ∈ G} = ClG(x) the G-conjugacy class containing x,

StabG(x) = {g ∈ G | gxg−1 = x} = CG(x) the centralizer of x in G,

XG = {x ∈ G | gxg−1 = x ∀g ∈ G} = Z(G) the center of G.

Call a conjugacy class singleton if it has only one element. Corollary 5.12 and Corollary
5.9 imply

Corollary 5.14 (The Class Equation). Let G be any group. Then:

|G| = |Z(G)|+
∑
t

|G : CG(t)| (5.8)

where we sum over all noncentral conjugacy class representatives t.

Example 5.15. Let G be a group of order pn, where p is prime. We prove that Z(G) ̸= 1.
If x ∈ G, x /∈ Z(G), then CG(x) is a proper subgroup of G, hence p divides |G : CG(x)|
by Lagrange’s Theorem. The class equation implies that p divides |Z(G)|. Therefore
Z(G) ̸= 1.

5.5.1 Integer Partitions and Conjugacy Classes of Symmetric Groups

Let n ∈ N. An (integer) partition of n is a weakly decreasing sequence (λ1, λ2, . . .) of
natural numbers such that

∑∞
i=1 λi = n. Let Pn denote the set of partitions of n. We omit

the infinitely many trailing zeros from the notation. For example,

P5 = {(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)}.

26



The nonzero λi are the parts of λ and the number of parts is the length of λ. The number
of times a positive integer k occurs as a part in λ is the multiplicity of k in λ and is denoted
mk(λ) = |{i ∈ Z>0 | λi = k}|.

For a permutation σ ∈ Sn, we let p(σ) be the partition of n whose parts are the cycle
lengths in a cycle decomposition of σ, ordered in a weakly decreasing fashion. For example
if σ = (1 2)(3 4)(5 6)(7)(8) ∈ S8 then p(σ) = (2, 2, 2, 1, 1). Note that here we do include the
1-cycles.

Theorem 5.16. The map p : Sn → Pn is surjective and the fibers p−1(λ) are the conjugacy
classes of Sn. In other words, we have a bijection

p̄ : {conjugacy classes of Sn} → Pn [σ] 7→ p(σ). (5.9)

Theorem 5.17. Let σ ∈ Sn and λ = p(σ). Let σ = σ1σ2 · · ·σℓ be a cycle decomposition
of σ in which |σi| = λi. For each k ∈ Z>0 let Smk

be the subgroup of Sn permuting the mk

factors of σi with λi = k. Then |CSn(σ)| = |⟨σ1, σ2, . . . , σℓ⟩||Sm1 × Sm2 × · · · |.

Proof. Let xi be the smallest number appearing in σi and let X = {x1, x2, . . . , xℓ}. Define
an action of CSn(σ) on SX as follows. For τ ∈ CSn(σ) and x ∈ X, let τ.x = xi if τ(x)
occurs in the cycle σi. The permutation representation afforded by this action is a group
homomorphism ψ : CSn(σ) → SX . The image is SX1 × · · · × SXd

where Xj is the set of
xi occuring in a cycle of length λj and d is the number of distinct parts. The kernel is
⟨σ1, . . . , σℓ⟩. The conclusion now follows from the First Isomorphism Theorem.

Corollary 5.18. If σ ∈ Sn then

|ClSn(σ)| =
n!

λm1
1 · · ·λmd

d m1!m2! · · ·md!
(5.10)

where λ1, . . . , λd are the distinct cycle lengths and mi is the number of cycles of lengths λi
in a cycle decomposition of σ.

5.6 Automorphism Groups

For each g ∈ G there is an isomorphism φg : G→ G given by φg(h) = ghg−1.

Definition 5.19. An automorphism of a group G is a isomorphism from G to itself. The
set of all automorphisms of G is denoted Aut(G). The subset of inner automorphisms is

Inn(G) = {φg | g ∈ G}.

Theorem 5.20. G/Z(G) ≃ Inn(G) ⊴ Aut(G) ≤ SG.

Theorem 5.21. Let H ≤ G. There is an injective group homomorphism

NG(H)/CG(H) → Aut(H). (5.11)

In particular, the order of NG(H)/CG(H) divides the order of Aut(H).
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5.7 Sylow’s Theorem

Definition 5.22. Let p be a prime number.

• A p-group is a group whose order is a power of p.

• A p-subgroup of a group is a subgroup which is a p-group.

• A Sylow p-subgroup P of a finite group G is a p-subgroup such that p ∤ |G : P |.

The set of Sylow p-subgroups of a finite group G is denoted by Sylp(G). Let np = np(G) =
| Sylp(G)|.

Theorem 5.23. Let G be a finite group and let p be any prime number.

(i) Sylp(G) ̸= ∅.

(ii) Let P be a Sylow p-subgroup of G and Q be any p-subgroup of G. Then Q ≤ gPg−1

for some g ∈ G. In particular, any two Sylow p-subgroups of G are conjugate, so
nP (G) = |G : NG(P )| for any P ∈ Sylp(G).

(iii) np(G) is congruent to 1 modulo p and divides m, where |G| = pαm, p ∤ m.

6 Finitely-Generated Abelian Groups

Definition 6.1. Zr = Z×Z× · · · ×Z (r factors) is called the free abelian group of rank r.
Any group isomorphic to Zr is a free abelian group (of rank r).

We allow r = 0, in which case Z0 is the trivial group.

Lemma 6.2 (Universal property of Zr). Let G be any abelian group and {x1, x2, . . . , xr}
a subset of G. Then there exists a homomorphism φ : Zr → G uniquely determined by
φ(ei) = xi.

Proof. (Uniqueness): Writing G additively, if such φ exists then necessarily

φ(a1, a2, . . . , ar) =

r∑
i=1

aiφ(ei) =

r∑
i=1

aixi (6.1)

for every (a1, a2, . . . , ar) ∈ Zr.
(Existence): Check that the formula (6.1) defines a homomorphism taking ei to xi.
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Lemma 6.3 (Smith’s Normal Form). Let m,n ∈ N. If A is an integer m×n matrix, then
there exist an invertible m×m integer matrix P and an invertible n× n integer matrix Q
such that the only nonzero entries of the m× n-matrix PAQ are on the diagonal:

PAQ =


n1

n2
. . .

 (6.2)

and where furthermore ni are non-negative integers with n1
∣∣n2 ∣∣ · · · . In fact, if n = ∞ the

same conclusion holds (PAQ will then have infinitely many zero columns to the right).

Proof. Using elementary integer row and column operations (permutations, multiplying by
−1 (the only nontrivial invertible integer), and adding an integer multiple of one to an-
other), which correspond to multiplication from the left and right by elementary matrices,
one can transform A into a matrix having the gcd of all its entries in the upper left corner.
Using more row and column operations one can clear out the elements to the right and
below this entry and proceed by induction along the main diagonal.

Proposition 6.4. Let K be a subgroup of the free abelian group of rank k. Then there
exists an automorphism σ of Zk such that

σ(K) = n1Z× n2Z× · · · × nkZ (6.3)

for some non-negative integers nj with n1
∣∣n2 ∣∣ · · · ∣∣nk. Moreover, (n1, n2, . . . , nk) is uniquely

determined by K. In particular, every subgroup of a free abelian group is a free abelian
group.

Proof. Let {ai}ni=1 be a generating set for K, where n ∈ N ∪ {∞}. By adding zero vectors
to the generating set if necessary, we may without loss of generality assume that n ≥ k.
Let A be the k × n-matrix whose i:th column equals ai. Multiplication by A gives a
group homomorphism Zn → Zk and the image of A is equal to K. By Lemma 6.3,
there are invertible integer matrices P and Q of appropriate sizes such that PAQ has the
form (6.2). Define σ : Zk → Zk by σ(x) = Px. Then σ(K) = σ(AZn) = PAQZn =
n1Z× n2Z× · · · × nkZ. For the last part, note that nZ ∼= Z for any nonzero integer n. So
K ≃ σ(K) = n1Z× n2Z× · · · × nkZ ≃ Zr where r is the number of nonzero nj .

Remark 6.5. If ni = 1 for some i then n1 = n2 = · · · = ni = 1, since
(
n
∣∣ 1 ∧ n ≥ 0

)
⇒

n = 1. If nj = 0 for some j then nj = nt+1 = · · · = nk = 0, since 0
∣∣n ⇒ n = 0. Let t

(respectively r) be the number of nj that equal 1 (respectively 0). Then the RHS of (6.3)
becomes

Zt × (m1Z×m2Z× · · · ×mk−(t+r)Z)× {0}r (6.4)

where now mj are integers ≥ 2 with m1

∣∣m2

∣∣ · · · ∣∣mk−(t+r).
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Definition 6.6. The torsion subgroup t(G) of an abelian group G is the set of finite order
elements of G. It is a subgroup since G is abelian. The exponent of a group G is the
smallest positive integer d such that gd = 1 for all g ∈ G, or d = ∞ if no such integer
exists.

Theorem 6.7 (Fundamental Theorem of Finitely Generated Abelian Groups). Any finitely
generated abelian group G is isomorphic to

Zn1 × Zn2 × · · · × Zns × Zr

for unique integers r, s ≥ 0 and nj ≥ 2 with n1
∣∣n2 ∣∣ · · · ∣∣ns.

Proof. LetG be a finitely generated abelian group, sayG = ⟨X⟩ whereX = {x1, x2, . . . , xk} ⊆
G and k is minimal. By Lemma 6.2 there exists a homomorphism φ : Zk → G, φ(ei) = xi.
Since G = ⟨X⟩, φ is surjective. Now apply Proposition 6.4 to K = kerφ to find an au-
tomorphism σ of Zk such that σ(K) is isomorphic to (6.4). By the First Isomorphism
Theorem applied to φ ◦ σ−1, which has kernel σ(K), we get

G ∼= Zk/σ(K) ∼= Zm1 × Zm2 × · · · × Zmk−(t+r)
× Zr.

For the uniqueness, note that G/t(G) ∼= Zr hence r is uniquely determined by G. Suppose
G = Zn1 × · · · × Zns where ni

∣∣ni+1 for all i. Then ns is the exponent of G, ns−1 is the
exponent of G/({0}s−1 × Zns) and so on. Thus the numbers ni are uniquely determined
by G.

Definition 6.8. In Theorem 6.7, the number r is the free rank or Betti number of G, and
the integers nj are the invariant factors of G.

Definition 6.9. An elementary p-group is an abelian group of the form Zpa1 ×Zpa2 ×· · ·×
Zpak , where we may assume ai form a weakly monotone sequence of positive integers.

Using that Zm ×Zn
∼= Zmn if and only if gcd(m,n) = 1, any finitely generated abelian

group G is isomorphic to Zr times a product of elementary p-groups for p ranging over a
finite set of prime numbers. The numbers pai appearing are the elementary divisors of G.

One can translate between invariant factors and elementary divisors.

7 Semidirect Products

Let K and H be any two groups. Then the set G = K × H = {(k, h) | k ∈ K,h ∈ H}
becomes a group with pointwise operations:

(k, h)(k′, h′) = (kk′, hh′).

Notice that G contains two subgroups K̃ = K×1 and H̃ = 1×H. We wish to characterize
the direct product G = K ×H in terms of the two subgroups G̃ and H̃. We observe the
following properties:
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(i) G = K̃H̃ (since (k, h) = (k, 1)(1, h))

(ii) K̃ ∩ H̃ = 1 (since if g ∈ K̃ ∩ H̃ then g = (k, 1) = (1, h) for some k, h, hence
g = (1, 1) = 1G)

(iii) K̃ ⊴ G and H̃ ⊴ (indeed, (h, k)(h′, 1)(h, k)−1 = (hh′h−1, 1) and similarly for K̃)

It turns out that these properties suffice to characterize G in terms of the two subgroups.
More precisely, we have

Theorem 7.1. Let G be a group and K,H ≤ G be two subgroups satisfying the following
properties:

(i) G = KH

(ii) K ∩H = 1

(iii) K ⊴ G and H ⊴ G

Then the map ϕ : K ×H → G, ϕ(k, h) = kh is an isomorphism.

Proof. (i) evidently shows that ϕ is surjective. (ii) implies that ϕ is injective: Suppose
ϕ(k, h) = ϕ(k′, h′). That is, kh = k′h′. Then (k′)−1k = h′h−1 ∈ K ∩ H = 1, hence
k′ = k and h′ = h. It remains to show that ϕ is a homomorphism. One checks that this
is equivalent to that kh = hk for all k ∈ K,h ∈ H. For any k ∈ K,h ∈ H we have
khk−1h−1 = k(hk−1h−1) = (khk−1)h−1 ∈ K ∩H since K and H are normal in G. By (ii),
H ∩K = 1 hence khk−1h−1 = 1, i.e. kh = hk.

Definition 7.2. Let G be a group and K,H ≤ G. We say that G is the (internal) direct
product of K and H if conditions (i)–(iii) of Theorem 7.1 are satisfied.

To get the definition of internal semidirect product, we simply drop the condition of
normality for one of the two subgroups:

Definition 7.3. Let G be a group and N,H ≤ G. We say that G is the (internal)
semidirect product of N by H if

(i) G = NH

(ii) N ∩H = 1

(iii) N ⊴ G.

Since the first two conditions are unchanged, the map ϕ : N ×H → G, ϕ(x, h) = xh,
is still bijective. The question arises what the multiplication ∗ on the set N × H should
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be, in order for ϕ to be a homomorphism (hence an isomorphism). The answer is that we
must have

(x, h) ∗ (x′, h′) = ϕ−1
(
ϕ(x, h)ϕ(x′, h′)

)
but we want to make this more explicit. For any x, x′ ∈ N,h, h′ ∈ H we have:

ϕ(x, h)ϕ(x′, h′) = xhx′h′ = (xhx′h−1)(hh′)

In the right hand side x and hx′h−1 are elements ofN (sinceN ⊴ G). Therefore ϕ−1 applied
to (xhx′h−1)(hh′) equals (xhx′h−1, hh′). To summarize, defining a binary operation ∗ on
N ×H by

(x, h) ∗ (x′, h′) = (xhx′h−1, hh′), (7.1)

the map ϕ : N × H → G will be an isomorphism. What we learn from this is that in
order to perform computations G, in addition to the structure of H and N , we need to
know what hx′h−1 is. That is, we need to know how to conjugate an element of N by
and element of H. Define α : H → Aut(N) by h 7→ αh, where αh(x) = hxh−1 for all
x ∈ N,h ∈ H. With this notation we can write the multiplication rule obtained in N ×H
as follows:

(x, h) ∗ (x′, h′) = (xαh(x
′), hh′). (7.2)

This suggests the following definition.

Definition 7.4. Let N and H be any two groups, and let α : H → Aut(N), h 7→ αh, be a
homomorphism. The (external) semidirect product of N by H (with respect to α), denoted
N ⋊α H, is the set N ×H equipped with the multiplication ∗α defined by

(x, h) ∗α (x′, h′) = (xαh(x
′), hh′), ∀x ∈ N,h ∈ H. (7.3)

Proposition 7.5. For any two groups N,H and homomorphism α : H → Aut(N), the
semidirect product N ⋊α H is a group.

Proof. The element (1N , 1H) will be an identity element of N ⋊α H. The inverse of (x, h)
is (αh−1(x−1), h). Associativity consists in checking that the two expressions

(
(x, h) ∗α

(x′, h′)
)
∗α (x′′, h′′) and (x, h) ∗α

(
(x′, h′) ∗α (x′′, h′′)

)
equal

(xαh(x
′)αhh′(x′′), hh′h′′).

Example 7.6. Construct two non-abelian groups of order 42. Clearly S3×Z7 is nonabelian
of order 42. Consider Aut(Z7) ∼= Z×

7 . One checks that 3̄ = 3+7Z has order 6 in Z×
7 , hence

we have a homomorphism (in fact, isomorphism) α : Z6 → Aut(Z7), given by αn̄(ā) = 3̄nā,
n̄ ∈ Z6, ā ∈ Z7. Let G = Z7 ⋊α Z6. Then G contains an element of order 6 (namely (0̄, 1̄))
while S3 × Z7 does not (using |(g, h)| = lcm(|g|, |h|)). So G is not isomorphic to S3 × Z7.
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The reason G in the above example is nonabelian is due to the following result, the
proof of which is left as an exercise to the reader:

Proposition 7.7. Let N,H be groups and α : H → Aut(N) be a homomorphism. Then
N ⋊α H is abelian if and only if N and H are abelian and αh = IdN for all h ∈ H.

8 Ring Theory

8.1 Definition of Rings, Homomorphisms, and Subrings

8.1.1 Rings

Definition 8.1.

• A ring is a set R with two binary operations called addition, denoted +, and multi-
plication, denoted by juxtaposition, such that

(i) R is an abelian group under +,

(ii) R \ {0} is a monoid under multiplication,

(iii) The following distributive laws hold: For all x, y, z ∈ R,

x(y + z) = xy + xz and (x+ y)z = xz + yz. (8.1)

• A ring homomorphism f : R → S is a function such that f is a both a group
homomorphism (with respect to +) and a monoid homomorphism (with respect to
multiplication). That is, for all r, r′ ∈ R:

f(r + r′) = f(r) + f(r′), f(rr′) = f(r)f(r′), f(1R) = 1S .

• A subring S of a ring R is a ring which is also a subset of R such that the inclusion
map S → R is a ring homomorphism.

8.2 Examples

1. Z,Q,R,C,HZ,HR are rings.

2. If D is a square-free integer (i.e. D is not divisible by the square of any integer) the
ring of integers in K = Q(

√
D) is defined by

OK =

{
Z[
√
D] = {a+ b

√
D | a, b ∈ Z}, D ≡ 2, 3 (mod 4)

Z[1+
√
D

2 ] = {a+ b1+
√
D

2 | a, b ∈ Z}, D ≡ 1 (mod 4)
(8.2)

The slighly nontrivial fact one has to check here is that OK is closed under multipli-
cation in the case D ≡ 1 (mod 4). Besides that it is straightforward to check OK is
a subring of C. (If D = k2D′ then Q(

√
D) = Q(

√
D′).)
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3. Zn = Z/nZ is a ring and the canonical projection Z → Zn is a ring homomorphism.

4. If R is a ring then so is Mn(R) with usual operations.

5. If R is a ring then so is R[x] with usual operations. Here x is a variable that is
assumed to commute with every element of R. Iterating this we recursively define
R[x1, x2, . . . , xn] = R[x1, x2, . . . , xn−1][xn] for n > 1.

6. Let V be a vector space over a field F. The set of linear maps from V to V is
denoted EndF(V ) or End(V ) when F is understood. It is a ring under composition
and pointwise addition.

7. Let M be a monoid and R be a ring. We define a ring structure on the set RM of
formal finite sums

∑
m∈M rmm where rm ∈ R (at most finitely many nonzero) by∑
m∈M

rmm+
∑
m∈M

smm =
∑
m∈M

(rm + sm)m

(∑
m∈M

rmm

)(∑
m∈M

smm

)
=
∑
m∈M

 ∑
x,y∈M :xy=m

rxsy

m.

For example, the monoid ring is RN which is isomorphic to R[x] by identifying N
with {xn | n ∈ N}.

8.3 Intersections and generation of subrings

Intersection of a family of subrings is a subring. This allows us to define the subring
generated by a subset as the intersection of all subrings containing the subset.

8.4 Definition of Algebras

8.4.1 The Weyl Algebra

Definition 8.2. Let F be a field. An F-algebra A is a ring with a ring homomorphism
iA from F to the center of A. A homomorphism of F-algebras is a ring homomorphism
φ : A→ B such that φ◦iA = iB.

(In fact the same definition works, and is used, when F is just a commutative ring.)
Examples of F-algebras includeMn(F), EndF(V ) and F[x1, x2, . . . , xn] with natural ring

homomorphisms from F in each case.
Note that any A algebra becomes a vector space over F if we define λa = iA(λ)a for

each λ ∈ F and a ∈ A.
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Definition 8.3. TheWeyl algebra over a field F, denotedA1(F) is the subring of EndF
(
F[x])

)
generated by the set F Id∪{D,X} where

D
(
p(x)

)
= p′(x), X

(
p(x)

)
= xp(x), ∀p(x) ∈ F[x].

Since the scalars commute with X and D, any element of A1(F) is a linear combination
of products of X and D. By Leibniz’ Rule, in the ring A1(F) we have

DX −XD = 1. (8.3)

As a consequence of this, A1(F) is spanned by {XiDj | i, j ∈ N}. In fact, that set is a basis
for A1(F) (Exercise).

8.5 Ideals and Quotient Rings

8.5.1 Left, Right, and Two-Sided Ideals

8.5.2 Quotient Rings

8.5.3 The Isomorphism Theorems for Rings

8.5.4 Prime Ideals and Maximal Ideals

Definition 8.4. Let R be a ring and I be an ideal of R.

(i) I is maximal if for any ideal J of R with I ⊂ J ⊂ R we have I = J or J = R.

(ii) I is prime if for any ideals J,K of R with I ⊃ JK we have I ⊃ J or I ⊃ K.

In a commutative ring R, an ideal P is prime iff for any a, b ∈ P with ab ∈ P we have
a ∈ P or b ∈ P .

Example 8.5. An ideal (p) = pZ of Z is prime if and only if p is prime or zero.

Theorem 8.6. Let R be a commutative ring and I be an ideal of R.

(i) I is a maximal ideal of R iff R/I is a field.

(ii) I is a prime ideal of R iff R/I is an integral domain.

8.6 Integral Domains and Rings of Fractions

8.7 The Remainder Theorem

8.8 Every ED is a PID

Definition 8.7. A Euclidean domain (ED) R is an integral domain for which there is a
function N : R → N such that N(0) = 0 and for every a ∈ R and b ∈ R \ {0} there are
q, r ∈ R such that

a = qb+ r, N(r) < N(b) or r = 0.
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Theorem 8.8. Every ED is a PID.

Theorem 8.9. Every nonzero prime ideal of a PID is maximal.

8.9 Every PID is a UFD

Definition 8.10. Let R be an integral domain.

(i) A nonzero nonunit r ∈ R is irreducible if whenever r = ab for some a, b ∈ R then a
or b is a unit.

(ii) A nonzero nonunit r ∈ R is prime if (p) is a prime ideal.

Definition 8.11. A commutative ring R is noetherian if every ascending chain of ideals

I1 ⊆ I2 ⊆ · · ·

eventually stabilizes: there exists an n > 0 such that In = In+1 = In+2 = · · · .

Lemma 8.12. Every PID is noetherian.

Proof. Let I1 ⊆ I2 ⊆ · · · be an ascending chain of ideals. Then I = ∪iIi is an ideal of R.
Since R is a PID, I = (a) for some a ∈ R. Since I is the union of the ideals Ij , there exists
an n > 0 such that a ∈ In. Then for every k ≥ 0 we have In+k ⊆ I = (a) ⊆ In ⊆ In+k

proving that In+k = In for all k ≥ 0.

Theorem 8.13. Every PID is a UFD.

8.10 Irreducible Elements

8.11 Gauss’ Lemma. R is a UFD iff R[x] is a UFD

Theorem 8.14 (Gauss’ Lemma). Let R be a UFD and F = Frac(R) and p(x) ∈ R[x]. If
p(x) is reducible in F [x] then p(x) is reducible in R[x].

Theorem 8.15. Let R be a ring. Then R is a UFD iff R[x] is a UFD.

8.12 Eisenstein’s Irreducibility Criterion

Theorem 8.16. Let R be an integral domain and f(x) = a0 + a1x+ · · ·+ an−1x
n−1 + xn

be a monic polynomial in R[x] of degree n ≥ 1. Suppose there exists a prime ideal P of R
such that a0, a1, . . . , an−1 ∈ P , but a0 /∈ P 2. Then f(x) is irreducible in R[x].
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Proof. Suppose f(x) is reducible in R[x]. Then

f(x) = g(x)h(x) (8.4)

for some non-units g(x), h(x) in R[x]. Note that if g(x) is constant then it divides the
leading coefficient 1 of f(x) hence is a unit in R, therefore a unit in R[x], which is a
contradiction. So both g(x) and h(x) have degree at least one. Write

g(x) =
k∑

i=0

bix
i, h(x) =

ℓ∑
i=0

cix
i.

Then k, ℓ > 0 and

bkcℓ = 1, (8.5)

b0c0 = a0. (8.6)

Reducing coefficients mod P in (8.4) we obtain the identity

xn = g(x) · h(x)

in the ring (R/P )[x]. Here g(x) =
∑k

i=0(bi + P )xi is a nonconstant polynomial since

bk /∈ P by (8.5) and similarly h(x) is nonconstant. Since P is prime, R/P is an integral
domain and we can consider its fraction field F = Frac(R/P ). Since F [x] is a UFD and x
is irreducible hence prime, either x divides both g(x) and h(x) or one of the two is a unit
in F [x], contradicting that they are nonconstant. Therefore x

∣∣ g(x) and x ∣∣h(x). That is,
b0 ∈ P and c0 ∈ P . Then, by (8.6), a0 = b0c0 ∈ P 2 which is a contradiction.

9 Category Theory

9.1 Classes

A class is like a set but can be bigger. Every set is a class but not all classes are sets.
A class which is not a set is a proper class. Just like with sets we can form the cartesian
product of classes, consider functions between classes and so on.

The main reason that we need classes is so that we can talk about things like the class
of all sets because there is no set that contains all sets. (Likewise there is no class that
contains all classes, but usually we don’t need to really worry about that.)

9.2 Partial binary operations

A partial binary operation ∗ on a class X is a function from some subclass of X ×X to X.
We write ∗ : X ×X 99K X to indicate that the domain of ∗ may not be all of X ×X.
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9.3 Definition of category

Definition 9.1. A category C is a quintuple C = (C0,C1, s, t, ◦) where

• C0 is a class whose elements are called the objects of C,

• C1 is a class whose elements are called the morphisms of C,

• s : C1 → C0 is a map called the source map,

• t : C1 → C0 is a map called the target map,

• ◦ : C1 × C1 99K C1 is a partial binary operation called composition (of morphisms) so
that α ◦ β is defined for any morphisms α, β ∈ C1 with t(β) = s(α),

subject to the following two axioms:

(i) (identity) for every object x ∈ C0 there exists a morphism 1x ∈ C1 with

s(1x) = t(1x) = x

α ◦ 1x = α for all morphisms α ∈ C1 with s(α) = x

1x ◦ β = β for all morphisms β ∈ C1 with t(β) = x

(ii) (associativity) we have
(α ◦ β) ◦ γ = α ◦ (β ◦ γ)

for any morphisms α, β, γ ∈ C1 with t(γ) = s(β) and t(β) = s(α).

Notation 9.2. C0 and C1 are sometimes denoted ObC and MorC respectively. You should
think of the source and target maps as giving the domain and codomain of a morphism.
In this spirit, if α ∈ C1 is a morphism with s(α) = x and t(α) = y we write α : x→ y.

9.4 Examples

To specify a category we have to say what the objects and morphisms are. If the objects
are sets (with extra structure), the source, target and ◦ are almost always the domain,
codomain and usual composition.

Example 9.3. 1) The category of sets and functions Set. This means that by definition
Set0 is the class of all sets, and Set1 is the class of all functions between sets.

2) The category of abelian groups and group homomorphisms Ab.

3) For any ring R the category of left R-modules and R-module homomorphisms R-Mod.
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4) If L and R are rings the category of (L,R)-bimodules and (L,R)-bimodule homomor-
phisms is denoted by L-Mod-R.

5) The category of topological spaces and continuous functions: Top.

6) The category of smooth manifolds and smooth maps: Mfd.

7) The opposite category, Cop, of a category C = (C0,C1, s, t, ◦) is defined as Cop =
(C0,C1, t, s, ◦op) where α ◦op β = β ◦ α. Simply put, in Cop all the arrows are just
drawn the opposite way, otherwise everything is the same as in C.

10 Functors

10.1 Definition

Just like a group homomorphism is a structure preserving map between groups, a functor
is a structure preserving map between categories. Since a category has two underlying
classes, a functor actually needs to be a pair of functions.

Definition 10.1. Let C and D be categories. A (covariant) functor F from C to D is a
pair of maps F = (F0, F1) where Fi : Ci → Di for i = 0, 1 such that

(i) F1(1x) = 1F0(x) for all x ∈ C0

(ii) if α : x→ y then F1(α) : F0(x) → F0(y)

(iii) F1(α ◦ β) = F1(α) ◦ F1(β) for all morphisms α, β ∈ C1 with t(β) = s(α).

A contravariant functor F from C to D is the same things as a covariant functor except it
reverses the direction of morphisms in the sense that (ii) and (iii) are replaced by

(ii’) if α : x→ y then F1(α) : F0(y) → F0(x)

(iii’) F1(α ◦ β) = F1(β) ◦ F1(α) for all morphisms α, β ∈ C1 with t(β) = s(α).

A contravariant functor C → D is thus the same thing as a covariant functor from Cop → D.

Notation 10.2. Usually we write Fx for F0(x) and Fα for F1(α) if no confusion can arise.

10.2 Examples

Unless otherwise emphasized, all functors will be covariant. The following examples are
related to the universal property of free R-modules (see next section).

Example 10.3. 1) The forgetful functor OR : R-Mod → Set (where O stands for oblivion)
sends any left R-moduleM to the underlying setM , and any R-module homomorphism
to itself (now regarded as just a function).
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2) The free functor FR : Set → R-Mod sends any set X to the free left R-module on the
set X, denoted FRX. And if α : X → Y then FRα : FRX → FRY is the morphism
induced by the composition X → Y → FRY .

The next two examples are important in the context of tensor products (see next section
on adjoint functors). Let L, S,R be rings with 1 and fix an (S,R)-bimodule B.

Example 10.4. 1)
−⊗S B : L-Mod-S → L-Mod-R

is the functor that sends an (L, S)-bimodule A to the (L,R)-bimodule A ⊗S B, and
sends an (L, S)-bimodule morphism α : A → A′ to the (L,R)-bimodule morphism
α⊗ 1B : A⊗S B → A′ ⊗S B.

2) In the opposite direction we have the following functor:

HomR(B,−) : L-Mod-R→ L-Mod-S

which sends an (L,R)-bimodule A to HomR(B,A), the set of right R-module maps
B → A. HomR(B,A) is an (L, S)-bimodule through

(ℓ · φ)(b) = ℓ · (φ(b)) ℓ ∈ L, b ∈ B,φ ∈ HomR(B,A)

(φ · s)(b) = φ(s · b) ∀s ∈ S, b ∈ B,φ ∈ HomR(B,A)

On morphisms the functor HomR(B,−) takes α : A→ A′ to the map α̃ : HomR(B,A) →
HomR(B,A

′) given by post-composition (push forward): α̃(φ) = α ◦ φ.

11 Pairs of adjoint functors

11.1 Definition

Definition 11.1. Given categories C and D, and covariant functors F : C → D and
G : D → C we say that F is left adjoint to G and G is right adjoint to F if there is a
natural bijection

HomC(x,Gy) HomD(Fx, y)
ηx,y

for all x ∈ C0 and y ∈ D0. Here HomC(a, b) denotes the class of morphisms in C from an
object a to an object b. That the family (ηx,y)x∈C0,y∈D0 is “natural” means that whenever
α : x→ x′ and β : y → y′ are morphisms in C1 and D1 respectively the following diagram

40



commutes:

HomC

(
x′, Gy

)
HomD

(
Fx′, y

)
HomC

(
x,Gy

)
HomD

(
Fx, y

)
HomC

(
x,Gy′

)
HomD

(
Fx, y′

)

ηx′,y

−◦α −◦Fα

ηx,y

F(β)◦− β◦−
ηx,y′

The commutativity of this diagram makes mathematically precise the vague statement
that ηx,y should be defined “the same way” regardless of the objects x and y. There is an
analogous definition for contravariant functors.

11.2 Examples

Many universal properties can be expressed in terms of adjoint functors.

Example 11.2. 1) In example 10.3, the free functor FR : Set → R-Mod is left adjoint to
the forgetful functor OR : R-Mod → Set because

HomSet(X,ORM) ∼= HomR(FRX,M)

for any set X and R-module M . In words, any set map X → M extends uniquely to
an R-module morphism FRX → M . The naturality is a tedious but straightforward
exercise.

2) In Example 10.4, the functor −⊗S B is left adjoint to HomR(B,−). Let LHomR(X,Y )
denote the set of (L,R)-bimodule homomorphisms between (L,R)-bimodules X and Y .
Then what we are saying is that there is a natural bijection

LHomS

(
A,HomR(B,C)

) ∼= LHomR(A⊗S B,C).

Taking L = R = Z the left hand side can be identified with the set of S-balanced maps
A×B → C, so this expresses precisely the universal property of the tensor product.

A Set Theory and Foundations

Most of mathematics can be formulated in Zermelo-Fraenkel Set Theory with the Axiom of
Choice (ZFC). To briefly explain what that is, we need to visit the domain of formal logic.
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A.1 First-Order Theories

In logic, a formal system consists of

• An alphabet, for ex.: (, ),∀,∃,→, . . . , P,Q, . . . , x, y, . . . , a, b, . . .

• Rules which determine which strings of symbols from the alphabet form well-formed
formulas (wffs). For ex., in Predicate Calculus ∀x : P (x) → Q(x) and P (c) ∨ Q(c)
are wffs, while ) → (P ∧ Q(∃( and P (x) ∨ Q(y) are not (x and y are meant to be
variables, they need quantifiers, while a, b, c, ... are constants which shouldn’t have
quantifiers).

• A list of wffs called axioms, declared as True.

• Deduction rules which tell you how to deduce new True wffs from one or more wffs
already known to be True. For ex.: Modus Ponens (in Propositional Calculus): From
P → Q and P we can conclude Q. Another is Specialization (in Predicate Calculus):
From ∃x : P (x) we can conclude P (c) for some constant c.)

Examples of formal systems include

• Propositional Calculus (0th order logic) where a typical wff is P ∧Q→ P .

• Predicate Calculus (1st order logic) where we have quantifiers and variables as in
∀x¬P (x).

A first-order theory is a formal system that “contains 1st order logic as a subsystem”.
Hilbert’s axiomatization of Euclidean geometry is an example of a first-order theory. ZFC
is another example of a first-order theory. Many theories, such as Hilbert’s geometry, can
be realized within ZFC Set Theory. In such a realization a line (which is an atomic concept
in Hilbert’s geometry) becomes an actual subset of the plane R2. It is for this reason that
mathematicians like set theory so much; most things we want to do can be formulated
using sets.

A.2 Zermelo-Fraenkel Set Theory and Induction

In ZF Set Theory (without the Axiom of Choice) there are approximately 8 axioms. We
will not list them here, but one of them is the Axiom of Infinity. It implies that the natural
numbers N with the usual total order ≤ exists and is well-ordered:

Theorem A.1 (Well-Ordering Principle). The natural numbers N (equipped with the usual
total order ≤) is well-ordered. That is, every non-empty subset of N contains a least
element.
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This in turn is equivalent to the Principle of Mathematical Induction. This means that
even though ZF and ZFC are just first-order theories (rather than second-order theories
in which one can quantify over predicates), we do have induction at our disposal. The
reason is basically that a predicate P (x) can be encoded as a set XP = {x | P (x)}, and
quantifying over sets is fine (everything is a set in ZF/ZFC).

A.3 Axiom of Choice

To reach ZFC from ZF one adds one axiom, the Axiom of Choice. This is a non-constructive
axiom which asserts the existence of something without providing an algorithm for finding
it. Most mathematicians accept and make use of this axiom, but some prefer to work
without it and doing so can lead to a better understanding in some situations.

If X = {Ai}i∈I is a family of nonempty sets (I is some index set), we denote by
∪X = ∪i∈IAi the union of all the sets in X.

Axiom A.2 (Axiom of Choice). If X is any family of sets, then there exists a function
f : X → ∪X such that f(A) ∈ A for all sets A ∈ X.

Such a function f is called a choice function. We mention two immediate applications.
First, the image of a choice function is a set B containing one element from each of the sets
in X. Whenever we implicitly assume the existence of such a set B we are using the Axiom
of Choice. Second, the Axiom of Choice implies that the product set

∏
X =

∏
i∈I Ai,

consisting of all sequences (ai)i∈I with ai ∈ Ai, is a non-empty set for any family of
nonempty sets X.

Exercise A.1. Prove the converse to the previous sentence: If the product set
∏
X is

non-empty for every family of nonempty sets X, then the Axiom of Choice holds.

Without the Axiom of Choice, the existence of a choice function is not guaranteed even
for a countable family of sets. (For finite families X the existence of a choice function is
ensured by the plain ZF axioms.)

A.4 Zorn’s Lemma

The Axiom of Choice is equivalent to Zorn’s Lemma, which we now state. Recall that a
partially ordered set (poset) (X,≤) is a set with a partial order ≤ on X. A chain in (X,≤)
is a totally ordered subset: C ⊂ X, ∀c, c′ ∈ C : c ≤ c′∨ c′ ≤ c. An upper bound for a subset
A ⊆ X is an element x ∈ X such that ∀a ∈ A : a ≤ x. An element x0 ∈ X is maximal if
∀x ∈ X : (x0 ≤ x⇒ x = x0).

Theorem A.3 (Zorn’s Lemma). If (X,≤) is a poset such that every chain has an upper
bound, then X contains a maximal element.

43



A common application of Zorn’s Lemma is that every vector space has a basis: Let X
be the family of all linearly independent sets in a vector space V , ordered by inclusion.
The union of all sets in a totally ordered subset of X is also a linearly independent set,
hence Zorn’s Lemma applies to conclude that X contains a maximal element B. Then
B must span V otherwise we could enlarge B by adjoining a linearly independent vector,
contradicting maximality.

As another application, we show that every ring R with identity 1 contains a maximal
ideal: Let X be the family of proper ideals of R, ordered by inclusion. If {Ji}i∈I is a totally
ordered subset of X we show that J = ∪i∈IJi is an upper bound in X. Clearly Ji ⊆ J for
all i so we must show that J ∈ X i.e. that J is a proper ideal of R. That J is an ideal
is easy to check using that {Ji}i∈I is totally ordered. It is a proper subset of R because
none of the proper ideals Ji contains the identity 1, and consequently 1 /∈ J . Thus Zorn’s
Lemma applies and X contains a maximal element.

A.5 The Well-Ordering Theorem

A set X is well-orderable if there exists a total order ≤ on X such that every non-empty
subset of X contains a least element (relative to ≤). A third statement equivalent to the
Axiom of Choice is the following.

Theorem A.4 (Well-Ordering Theorem). Every set is well-orderable.

A.6 Beyond ZFC

In category theory it is convenient to work in an extended theory, such as Grothendieck-
Tarski Set Theory, in which one can talk about the class of all sets, for example. (The
collection of all sets can not itself be a set; it leads to contradictions.)
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