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Preface

This master thesis consists of two parts:

I. Generalized derivations on algebras;

II. Highest weight representations of the Virasoro algebra.

In the first part we investigate (æ, ø)-derivations on some classes of algebras,
for example on unique factorization domains and on the Witt algebra. This
part will be included in the joint article [HaS]. In the second part we study the
Witt and Virasoro algebras, and their representation theory. In particular
Kac determinant formula is stated and some consequences examined.

The two parts are connected in two ways. First, we find in the first part
a generalization of the Witt algebra to an algebra of æ-derivations. In the
second part we show that a supersymmetric extension of the Witt algebra
can be obtained as a super Lie algebra of superderivations, which are æ-
derivations with a special choice of æ.
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Abstract. In this paper we study (�, ⌧)-derivations on algebras from an abstract

point of view. After some definitions and examples, we derive Leibniz type formulas and

introduce a module structure on spaces of (�, ⌧)-derivations. Then we find all (�, ⌧)-

derivations on unique factorization domains when � and ⌧ are di↵erent endomorphisms.

We also prove necessary equations for �-derivations on the quantum plane. Conditions

for products and Jacobi type identities for (�, ⌧)-derivations on associative algebras are

considered. Then follows an investigation of homogenous (�, ⌧)-derivations on the Witt

algebra of degree zero. Finally we generalize the Witt algebra to a skew-symmetric algebra

of �-derivations on a commutative associative algebra.
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1 Introduction

Di↵erential and di↵erence operators of various kinds play fundamental role in many
parts of mathematics and its applications – from algebra, non-commutative geometry
and non-commutative analysis, functional analysis, classical analysis, function theory
and di↵erential equations to specific numerical and statistical methods and algorithms.
One of the key properties shared by all these di↵erential and di↵erence operators and
making them so important and useful is that they satisfy some versions of the Leibniz
rule saying how to calculate the operator on the product of functions given its action on
each function. Therefore it is desirable to have a single unifying di↵erentiation theory,
which would be concerned with operators of certain general class satisfying general
Leibniz rule and containing the well-known derivation and di↵erentiation as examples.

The main objects considered in this article are general operators satisfying Leibniz
rule of the form

D(xy) = D(x)⌧(y) + �(x)D(y).

These operators act on some algebra which in general can be non-commutative. Such
operators are called (�, ⌧)-derivations. In the special case when ⌧ is the identity map-
ping sending any x to itself, (�, ⌧)-derivations are called �-derivations. This is a very
important general class of operators containing various well-known classes of di↵erential
or di↵erence operators obtained by specifying the algebra and the mappings � and ⌧

acting on it. Some of them are usual di↵erential operators, derivations on commuta-
tive and non-commutative algebras, usual di↵erence operators associated with additive
shifts, q-di↵erence operators, superderivations on Lie superalgebras, colored (graded)
derivations on colored (graded) Lie algebras and Lie superalgebras, derivations and
super-derivations on graded associative algebras. We will provide many such examples
throughout this article.

Since 1930’s there has appeared a large number of publications specifically contain-
ing results on general (�, ⌧)-derivations or �-derivations. We have included some of the
articles and books known to us in the reference list. At the end of each reference we
indicated approximate direction of the reference in relation to (�, ⌧)-derivations. We
hope that this would be useful for the readers. These works show that (�, ⌧)-derivations
or their specific classes play important role for the theory of Ore rings and algebras,
skew polynomial algebras and skew fields, theory of Noetherian rings, di↵erential and
di↵erence algebra, homological algebra, Lie algebras and groups, Lie superalgebras, col-
ored Lie algebras, general ring theory, operator algebras, di↵erential geometry, symbolic
and algorithmic algebra, non-commutative geometry, quantum groups and quantum
algebras, q-analysis and q-special functions and numerical analysis.

In this article we begin a systematic study of (�, ⌧)-derivations on algebras. Many
results we present are very fundamental for the theory. However, most of them seems to
be not directly available in the literature on the subject known to us. Thus we included
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proofs of almost all results for completeness of exposition and convenience of the reader.
We hope that this article will be a useful contribution to the subject.

We begin by introducing some notations and definitions in Section 2 which will
be used in the article. In Section 3 we give some examples of (�, ⌧)-derivations to
motivate the theory. General formulas for (�, ⌧)-derivations on associative algebras,
which are useful for explicit calculations, are stated and proved in Section 4. Section
5 contains some general propositions on (�, ⌧)-derivations of associative algebras. The
structure of (�, ⌧)-derivations on algebras which are unique factorization domains as
rings are investigated in Section 6. In Section 7 we describe equations which must be
satisfied for a linear operator on the quantum plane to be a �-derivation. In Section
8 we state some conditions which a semigroup must satisfy if it can be the grading
semigroup of a semigroup-graded associative algebra on which there exists a homogenous
(�, ⌧)-derivation. Section 9 contains some general conditions which are necessary and
su�cient for the existence of various products for (�, ⌧)-derivations. We also consider
generalized versions of the Jacobi identity corresponding to these products. Our main
motivating example for these results is �-graded ✏-Lie algebras. In Section 10 we consider
homogenous (�, ⌧)-derivations on the Witt algebra consisting of derivations of Laurent
polynomials. Finally, Section 11 contains a generalization of the construction of the
Witt algebra to �-derivations. Using results from previous sections, we show that in
particular the space of �-derivations, (� 6= id), on a unique factorization domain can
be given the structure of a skew-symmetric algebra which satisfies a generalized Jacobi
identity.

2 Definitions and notations

In this section we introduce some notation and recall some basic definitions which will
be used throughout the paper. All algebras and linear spaces under consideration are
assumed to be defined over the field of complex numbers C. Many of the results presented
are true if C is replaced by an arbitrary field, or at least a field of characteristic zero.

Let us start by defining the concept of a derivation in an algebra.

Definition 1 (derivation). Let A be an algebra. A linear operator D : A ! A is called
a derivation in A if

D(a1a2) = D(a1)a2 + a1D(a2) (1)

for all a1, a22A.

Definition 2 (�-derivation). Let � be a linear operator on an algebra A. Then a linear
operator D on A is called a �-derivation in A if

D(a1a2) = D(a1)a2 + �(a1)D(a2) (2)
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for all a1, a2 2 A.

We shall sometimes write D

�

to denote that D is a �-derivation. When � = id
A

is
the identity operator on A, then the equality (2) coincides with (1) and thus derivations
are special cases of �-derivations with � = id

A

.

Definition 3 ((�, ⌧)-derivation). Let � and ⌧ be two linear operators on an algebra A.
Then a linear operator D on A is a (�, ⌧)-derivation on A if

D(ab) = D(a)⌧(b) + �(a)D(b) (3)

for all a, b 2 A.

Note that this generalizes �-derivations in the sence that (�, id
A

)-derivations are
precisely �-derivations, where id

A

is the identity operator on A. For an algebra A, and
linear operators �, ⌧ on A we let D(�,⌧)(A) denote the set of all (�, ⌧)-derivations on A.
Also we set D

�

(A) = D(�,idA)(A) and D(A) = DidA(A).
Let A be an associative algebra, and let � and ⌧ be endomorphisms on A. Define

for each a 2 A a map
�

a

: A ! A,

�

a

(x) = a⌧(x)� �(x)a.

Then �

a

is a (�, ⌧)-derivation on A for each a 2 A. In fact, for each x, y 2 A we have

�

a

(xy) = a⌧(xy)� �(xy)a =

= a⌧(x)⌧(y)� �(x)�(y)a =

= a⌧(x)⌧(y)� �(x)a⌧(y) + �(x)a⌧(y)� �(x)�(y)a =

= �

a

(x)⌧(y) + �(x)�
a

(y).

Definition 4 (inner (�, ⌧)-derivation). The (�, ⌧)-derivations �

a

for a 2 A are called
the inner (�, ⌧)-derivations of A.

In Section 6.4 we will consider associative algebras A which are unique factorization
domains as rings. Given two di↵erent endomorphisms � and ⌧ on A we will give a
su�cient and necessary condition (see Corollary 29) on � and ⌧ under which any (�, ⌧)-
derivation on A is inner.

For the remainder of this section we shall define graded linear spaces and algebras.
For this, let S denote an arbitrary semigroup, written multiplicatively, and let S

op

denote the opposite semigroup of S, obtained from S by reversing multiplication, i.e.
setting a ? b = b · a for all a, b 2 S, where ? denotes the multiplication in S

op and · the
multiplication in S.
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Definition 5 (S-graded linear space). A linear space V is called S-graded if we have
associated to V a family {V

s

}
s2S of subspaces V

s

✓ V satisfying

V =
M

s2S

V

s

. (4)

An element a of an S-graded linear space V is called homogenous of degree s 2 S,
if a 2 V

s

. Note that the zero element 0 2 V is homogenous of every degree, and that
if a 2 V is nonzero and homogenous there is a unique s 2 S such that a 2 V

s

. This
element s is called the degree of a, and is denoted deg a. A subspace W ✓ V of an
S-graded linear space V = �

s2SVs

is called graded if W = �
s2S(W \ V

s

).

Definition 6 (S-graded algebra). An algebra A is called S-graded if it is S-graded as
a linear space, A = �

s2SAs

, in such a way that

A

s

· A
t

✓ A

st

for all s, t 2 S (5)

From (5) follows that the product of two homogenous elements is again homogenous.
A subalgebra B ✓ A of an S-graded algebra A = �

s2SAs

is called graded if B =
�

s2S(B \ A

s

).

Definition 7 (homogenous linear operator). Let V = �
s2SVs

and W = �
s2SWs

be two
S-graded linear spaces. A linear mapping

L : V ! W

is called homogenous if for each s 2 S there is some t 2 S such that

L(V
s

) ✓ W

t

(6)

If U, V and W are S-graded linear spaces and

L : U ! V and K : V ! W

are homogenous linear mappings, then for every s 2 S there are some t, u 2 S such that

(KL)(U
s

) = K(L(U
s

)) ✓ K(V
t

) ✓ W

u

. (7)

Thus the composition KL is again a homogenous linear mapping.

Definition 8 (right and left degree). Let V = �
s2SVs

and W = �
s2SWs

be two S-
graded linear spaces. Let t 2 S. A homogenous linear operator L : V ! W is said to
be of right degree t if

L(V
s

) ✓ W

st

for all s 2 S (8)

and of left degree t if
L(V

s

) ✓ W

ts

for all s 2 S (9)

If S is commutative, we simply say that L is of degree t when (8) and (9) are true.
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For two linear spaces V and W , let L(V,W ) denote the linear space of all linear
mappings V ! W , and set L(V ) = L(V, V ). If V and W are S-graded linear spaces,
define for each s 2 S the linear subspace Lgr

`

(V,W )
s

of L(V,W ) consisting of all
homogenous linear mappings V ! W of left degree s. Form

Lgr
`

(V,W ) =
M

s2S

Lgr
`

(V,W )
s

(10)

Then Lgr
`

(V,W ) is an S-graded linear space.
Take now W = V , set Lgr

`

(V )
s

= Lgr
`

(V, V )
s

for s 2 S and Lgr
`

(V ) = Lgr
`

(V, V ).
Let K 2 Lgr

`

(V )
s

and L 2 Lgr
`

(V )
t

. Then the composition KL of the linear mappings
K and L satisfies

KL(V
u

) ✓ K(V
tu

) ✓ V

s(tu) = V(st)u (11)

for all u 2 S, since S is associative. Thus KL 2 Lgr
`

(V )
st

. Therefore we have shown
that Lgr

`

(V ) is an S-graded associative algebra.
Similarly we can construct the S

op-graded associative algebra Lgr
r

(V ) as the direct
sum of the linear spaces Lgr

r

(V )
s

of homogenous linear mappings V ! V of right
degree s for s 2 S. If S is commutative, Lgr

r

(V )
s

= Lgr
`

(V )
s

for all s 2 S so that
Lgr

r

(V ) = Lgr
`

(V ). Then we drop the indices ` and r and simply write Lgr(V )
s

and
Lgr(V ) respectively.

In many important examples of graded linear spaces and algebras, S is an abelian
group, but the definitions can be made for a general semigroup S. Associativity of S
is however a reasonable assumption, since otherwise, in general, Lgr

`

(V ) will not be an
S-graded algebra and Lgr

r

(V ) will not be an S

op-graded algebra.

3 Examples

In this section we consider some important examples of (�, ⌧)-derivations to motivate
the theory. Our first example is simple, but it illustrates the fact that (�, ⌧)-derivations
form a very general class of operators.

Example 1. Let A be some algebra, and � an algebra endomorphism on A. Then

�(xy) = �(x)�(y) = �(x) · 1
2
�(y) +

1

2
�(x) · �(y).

Thus � is a (12�,
1
2�)-derivation. More generally, for any two complex numbers �, µ such

that �+ µ = 1 we have that an endomorphism � is a (��, µ�)-derivation.
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3.1 Superderivations

Let A = A0 � A1 be an associative algebra which is Z2-graded, that is, such that

A

↵

A

�

✓ A

↵+�

for ↵, � 2 Z2 = {0, 1}. Define the Z2-grading operator as a linear operator ⇥ : A ! A

acting on homogenous elements by

⇥(a) =

⇢

a, when a 2 A0

�a, when a 2 A1
(12)

or equivalently, we set ⇥
�

�

A0
= id

A0 and ⇥
�

�

A1
= � id

A1 . Note also that ⇥ is a homogenous
operator of degree zero, since ⇥(A

↵

) = A

↵

for ↵ 2 Z2. We may also introduce a Z2-
grading on L(A) as follows:

L(A) = L(A)0 � L(A)1

where

L(A)0 = L(A0, A0)� L(A1, A1) = {A 2 L(A)
�

�

A⇥�⇥A = 0}
L(A)1 = L(A0, A1)� L(A1, A0) = {A 2 L(A)

�

�

A⇥+⇥A = 0}

and a corresponding Z2-grading operator e⇥ : L(A) ! L(A).
A homogenous linear operator D 2 L(A)

↵

is called a superderivation on A if it
is a ⇥↵-derivation, where ⇥0 = id

A

is the identity operator on A and ⇥1 = ⇥ is
the Z2-grading operator (12). So, if D 2 L(A)0 is a superderivation, then D(ab) =
D(a)b+aD(b) for all homogenous a, b 2 A and by bilinearity for all a, b 2 A. Thus the set
of superderivations in L(A)0 is just the set of all derivations of A which are homogenous
of degree 0. If D 2 L(A)1 is a superderivation, then D(ab) = D(a)b + ⇥(a)D(b) for all
homogenous a, b 2 A and by bilinearity for all a, b 2 A. So the set of all superderivations
in L(A)1 is the set of all ⇥-derivations of A which are homogenous of degree 1. Denote
the Z2-graded subspace of all superderivations on A by D(A) = D(A)0 � D(A)1. Let
D 2 D(A)

�

and E 2 D(A)
✏

be superderivations on A and define

hD,Ei = DE � (�1)�✏ED.

Then hD,Ei is also a superderivation of A, and hD,Ei 2 D(A)
�+✏

. This bracket h·, ·i
makes D(A) into a super Lie algebra, that is, it satisfies the following two identities:

(�1)�✏hhC,Di, Ei+ (�1)✏�hhE,Ci, Di+ (�1)��hhD,Ei, Ci = 0 (13)

hD,Ei = �(�1)�✏hE,Di (14)

where C 2 D(A)
�

, D 2 D(A)
�

and E 2 D(A)
✏

. Equation (13) is the super Jacobi
identity and property (14) is super skewsymmetry.
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3.2 ✏-Derivations

Throughout this this subsection, � will always denote an abelian group. A commutation
factor on the group � is a mapping

✏ : �⇥ � ! C (15)

such that

✏(↵, �)✏(�,↵) = 1 (16)

✏(↵, � + �) = ✏(↵, �)✏(↵, �) (17)

✏(↵ + �, �) = ✏(↵, �)✏(�, �) (18)

for all ↵, �, � 2 �.

Example 2. Let � = Z2 and define

✏Z2 : Z2 ⇥ Z2 ! C (19)

by
✏Z2(↵, �) = (�1)↵� (20)

Then the axioms (16)-(18) are easily verified when ✏ = ✏Z2 . Thus ✏Z2 is a commutation
factor on Z2.

Let ✏ be a commutation factor on an abelian group �. A �-graded algebra

A = �
�2�A�

whose product mapping is denoted by a bracket h·, ·i, is called a �-graded ✏-Lie algebra
if the following identities are satisfied:

hA,Bi = �✏(↵, �)hB,Ai (✏-skew-symmetry) (21)

✏(�,↵)hA, hB,Cii+ ✏(�, �)hC, hA,Bii+ ✏(↵, �)hB, hC,Aii = 0 (22)

(✏-Jacobi identity)

for all homogenous elements A 2 A

↵

, B 2 A

�

, and C 2 A

�

.

Remark 1. The Z2-graded ✏Z2-Lie algebras are precisely the super Lie algebras. This
can be seen by substituting the definition (19)-(20) of ✏Z2 into (21) and (22) and com-
paring with (14) and (13). Thus super Lie algebras is a special case of �-graded ✏-Lie
algebras with � = Z2 and ✏ = ✏Z2 .
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Let A be an associative �-graded algebra. On the �-graded linear space A we define
a new multiplication h·, ·i, the ✏-commutator, by setting

ha, bi = ab� ✏(↵, �)ba (23)

for all homogenous elements a 2 A

↵

and b 2 A

�

and the extending linearly. The bracket
h·, ·i turns A into a �-graded ✏-Lie algebra which is said to be associated with A and
which will be denoted by A(✏).

Let V be a �-graded linear space. We know that Lgr(V, V ) is an associative �-graded
algebra. The �-graded ✏-Lie algebra associated with Lgr(V, V ) is called the general linear
�-graded ✏-Lie algebra of V and will be denoted by gl(V, ✏).

Let A = �
�2�A�

be a �-graded algebra. For any � 2 �, let D(A, ✏)
�

denote the
subspace of gl(A, ✏)

�

consisting of all elements D such that

D(ab) = D(a)b+ ✏(�,↵)aD(b) (24)

for all homogenous elements a 2 A

↵

, b 2 A

�

. Then

D(A, ✏) =
M

�2�

D(A, ✏)
�

is a graded subalgebra of gl(A, ✏) in the sence of �-graded ✏-Lie algebras. The proof of
this simple fact is contained in Example 3, Section 9, page 58 and Example 5, Section 9.5,
page 64. The elements of D(A, ✏) are called ✏-derivations of A. Note that a homogenous
✏-derivation is a �-derivation, with a special choice of �. Namely, if D 2 D(A, ✏)

�

, that
is, D is a homogenous ✏-derivation on A of degree � 2 �, we define a linear operator
�

�

: A ! A by setting �

�

(a) = ✏(↵, �)a for homogenous a 2 A

↵

of degree ↵, and extend
linearly. Then D is an �

�

-derivation on A.
Further in Section 9, some generalizations of �-graded ✏-Lie algebras, ✏-commutators

(23), and of ✏-Jacobi identities (22) will be considered.

3.3 Ore Extensions, di↵erence and shift type operators

Many of the most important and frequently studied operators in analysis and its ap-
plications in physics, engineering, statistics, numerical analysis and other subjects are
expressed using some basic di↵erence and shift operators which satisfy Leibniz type rules,
making them into (�, ⌧)-derivations for various choices of � and ⌧ . These operators act
on functions.

Let A be an associative algebra with unit, and A[t] be the free left A-module on one
generator t consisting of all polynomials of the form

P = a

n

t

n + a

n�1t
n�1 + · · ·+ a0t

0
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Table 1: (�, ⌧)-derivations and their Leibniz rules.

Operator @ (@ · f)(x) (@ · fg)(x) (�, ⌧)
Di↵erentiation f

0(x) f(x)(@ · g)(x) + (@ · f)(x)g(x) (id, id)
Shift S f(x+ 1) f(x+ 1)(@ · g)(x) (S, 0)

Di↵erence f(x+ 1)� f(x) f(x+ 1)(@ · g)(x) + (@ · f)(x)g(x) (S, id)
q-Dilation T

x,q

f(qx) f(qx)(@ · g)(x) (T
x,q

, 0)
Continuous q-di↵erence f(qx)� f(x) f(qx)(@ · g)(x) + (@ · f)(x)g(x) (T

x,q

, id)

Jackson q-di↵erentiation D

x,q

f(qx)�f(x)
(q�1)x f(qx)(@ · g)(x) + (@ · f)(x)g(x) (T

x,q

, id)

Eulerian operator xf

0(x) f(x)(@ · g)(x) + (@ · f)(x)g(x) (id, id)
Mahlerian operator C

p

f(xp) f(xp)(@ · g)(x) (C
p

, 0)

Divided di↵erences f(x)�f(a)
x�a

f(a)(@ · g)(x) + (@ · f)(x)g(x) (id, id)

Table 2: Ore algebras and their commutation rules and representations.

Operator @ �(P )(X) �(P )(X) @P (X) @X

Di↵erentiation P (X) P

0(X) P (X)@ + P

0(X) X@ + 1
Shift P (X + 1) 0 P (X + 1)@ (X + 1)@

Di↵erence P (X + 1) (� · P )(X) P (X + 1)@ + (� · P )(X) (X + 1)@ + 1
q-Dilation P (qX) 0 P (qX)@ qX@

Cont. q-di↵erence P (qX) P (qX)� P (X) P (qX)@ + P (qX)� P (X) qX@ + (q � 1)X

Jackson q-di↵. P (qX) P (qX)�P (X)
(q�1)X P (qX)@ + P (qX)�P (X)

(q�1)X qX@ + 1

q-Shift P (qX) 0 P (qX)@ qX@

Discrete q-di↵erence P (qX) P (qX)� P (X) P (qX)@ + P (qX)� P (X) qX@ + (q � 1)X
Eulerian operator P (X) XP

0(X) P (X)@ +XP

0(X) X@ +X

e

x-Di↵erentiation P (X) XP

0(X) P (X)@ +XP

0(X) X@ +X

Mahlerian operator P (Xp) 0 P (Xp)@ X

p

@

Divided di↵erences P (a) P (X)�P (a)
X�a

P (a)@ + P (X)�P (a)
X�a

a@ + 1

Operator @ (@ · f)(x) (X · f)(x)
Di↵erentiation f

0(x) xf(x)
Shift f(x+ 1) xf(x)

Di↵erence f(x+ 1)� f(x) xf(x)
q-Dilation f(qx) xf(x)

Cont. q-di↵erence f(qx)� f(x) xf(x)

Jackson q-di↵. f(qx)�f(x)
(q�1)x xf(x)

q-Shift f(x+ 1) q

x

f(x)
Discrete q-di↵erence f(x+ 1)� f(x) q

x

f(x)
Eulerian operator xf

0(x) xf(x)
e

x-Di↵erentiation f

0(x) e

x

f(x)
Mahlerian operator f(xp) xf(x)

Divided di↵erences f(x)�f(a)
x�a

xf(x)
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with coe�cients a

i

in A. If a
n

6= 0 we say that the degree deg(P ) of P is equal to n;
by convention, we set deg(0) = �1. We state a theorem which classifies all algebra
structures on A[t] compatible with the algebra structure on A and with the degree. The
proof of the theorem can be found for example in [Ka].

Theorem 1. (a) Assume that A[t] has an algebra structure such that the natural inclu-
sion of A into A[t] is a homomorphism of algebras, and we have deg(PQ) = deg(P ) +
deg(Q) for any P,Q 2 A[t]. Then A has no zero-divizors and there exists a unique
injective algebra endomorphism � of A and a unique �-derivation D of A such that

ta = �(a)t+D(a) (25)

(b) Conversely, let A be an algebra without zero-divizors. Given an injective algebra
endomorphism � of A and an �-derivation D of A, there exists a unique algebra structure
on A[t] such that the inclusion of A into A[t] is an algebra homomorphism and relation
(25) holds for all a in A.

The algebra defined by Theorem 1 (b) is denoted by A[t, �, D], and is called the Ore
Extension attached to the data (A, �, D).

4 General Leibniz type formulas

In this section we state and prove some formulas, all of which are generalizations of the
Leibniz formula for the derivation of a product of functions. Throughout, A will denote
an algebra.

4.1 Formulas for derivations

Theorem 2 (Leibniz formula). Let D be a derivation in A and a1, a2 2 A. Then

D

n(a1a2) =
n

X

k=0

✓

n

k

◆

D

n�k(a1)D
k(a2) (26)

for all integers n � 1.

Proof. We will prove this statement by induction on n. For n = 1 the equality reduces
to the derivation property (1) of D required in Definition 1. Assume (26) holds for
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n = m � 1. Then we have

D

m+1(a1a2) = D

�

D

m(a1a2)
�

= D

✓

m

X

k=0

✓

m

k

◆

D

m�k(a1)D
k(a2)

◆

=

=
m

X

k=0

✓

m

k

◆✓

D

m�k+1(a1)D
k(a2) +D

m�k(a1)D
k+1(a2)

◆

=

=
m

X

k=0

✓

m+ 1

k

◆

m+ 1� k

m+ 1
D

(m+1)�k(a1)D
k(a2)+

+
m

X

k=0

✓

m+ 1

k + 1

◆

k + 1

m+ 1
D

(m+1)�(k+1)(a1)D
k+1(a2) =

=
m

X

k=0

✓

m+ 1

k

◆✓

1� k

m+ 1

◆

D

(m+1)�k(a1)D
k(a2)+

+
m+1
X

k=1

✓

m+ 1

k

◆

k

m+ 1
D

(m+1)�k(a1)D
k(a2) =

= D

m+1(a1)a2+

+
m

X

k=1

✓

m+ 1

k

◆✓

1� k

m+ 1
+

k

m+ 1

◆

D

(m+1)�k(a1)D
k(a2)+

+ a1D
m+1(a2)

=
m+1
X

k=0

✓

m+ 1

k

◆

D

(m+1)�k(a1)D
k(a2)

So (26) holds for n = m + 1 as well. Thus by the principle of mathematical induction
(26) holds for every integer n � 1.

Suppose now that A is associative, and replace a2 by a2a3 in (26). Then we can use
the formula once more to get

D

n(a1a2a3) =
n

X

k=0

✓

n

k

◆

D

n�k(a1)D
k(a2a3) =

=
n

X

k=0

✓

n

k

◆

D

n�k(a1)
k

X

i=0

✓

k

i

◆

D

k�i(a2)D
i(a3) =

=
n

X

k=0

k

X

i=0

n!

(n� k)! k!

k!

(k � i)! i!
D

n�k(a1)D
k�i(a2)D

i(a3) =

=
X

n�k�i�0

n! · D
n�k(a1)

(n� k)!
· D

k�i(a2)

(k � i)!
· D

i(a3)

i!
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This process can be repeated, and we come to the following generalization of the Leibniz
formula (26).

Theorem 3 (Generalized Leibniz formula). If A is associative, D is a derivation in
A, and n � 1 a positive integer. Then for every integer m � 1 and every m-tuple
(a1, . . . , am) 2 A

m,

D

n(a1a2 . . . am) =
X

n=k0�k1�···
···�kj�kj+1�···
···�km�1�km=0

n! · D
n�k1(a1)

(n� k1)!
· · · D

kj�1�kj(a
j

)

(k
j�1 � k

j

)!
· · · D

km�1(a
m

)

k

m�1!
(27)

Proof. To prove this we use induction over m. For m = 1, the formula (27) reduces to

D

n(a1) = n!
D

n(a1)

n!

which is true for all a1 2 A. Also we know that (27) holds for m = 2 and every
(a1, a2) 2 A

2 as it becomes (26). Assume (27) it holds for m = p, where p � 1 is a
positive integer, and every (a1, . . . , ap) 2 A

p. Then for any (a1, . . . , ap+1) 2 A

p+1,

D

n(a1a2 . . . ap+1) =

=
X

n=k0�k1�···
···�kj�kj+1�···
···�kp�1�kp=0

n! · D
n�k1(a1)

(n� k1)!
· · · D

kj�1�kj(a
j

)

(k
j�1 � k

j

)!
· · · D

kp�1(a
p

a

p+1)

k

p�1!
=

=
X

n=k0�k1�···
···�kj�kj+1�···

···�kp�1�0

 

n! · D
n�k1(a1)

(n� k1)!
· · · D

kj�1�kj(a
j

)

(k
j�1 � k

j

)!
· · ·

· · ·
kp�1
X

kp=0

�

kp�1

kp

�

k

p�1!
D

kp�1�kp(a
p

)Dkp(a
p+1)

!

=

=
X

n=k0�k1�···
···�kj�kj+1�···
···�kp�kp+1=0

n! · D

n�k1(a1)

(n� k1)!
· · · D

kj�1�kj(a
j

)

(k
j�1 � k

j

)!
· · · D

kp�1�kp(a
p

)

(k
p�1 � k

p

)!

D

kp(a
p+1)

k

p

!

where we used (26) in the second equality. This calculation shows that (27) holds for
m = p + 1 and every (a1, . . . , ap+1) 2 A

p+1. Thus, by the principle of mathematical
induction, (27) holds for any integer m � 1 and any m-tuple (a1, . . . , am) 2 A

m.



4.2 Formulas for �-derivations 15

If we rewrite the coe�cient in each term of the sum in (27) as follows:

n!

(n� k1)! ·. . .· (kj � k

j+1)!· . . .· km�1!
=

m�1
Y

j=0

k

j

!

(k
j

� k

j+1)! · kj+1!
=

m�1
Y

j=0

✓

k

j

k

j+1

◆

,

where k0 = n and k

m

= 0, we see that the formula (27) also can be written

D

n(a1a2 . . . am) =
X

n=k0�k1�···
···�kj�kj+1�···
···�km�1�km=0

 

m�1
Y

l=0

✓

k

l

k

l+1

◆

·Dkl�kl+1(a
l+1)

!

4.2 Formulas for �-derivations

In this subsection, A will be an algebra,and � will be a linear operator A ! A. The
Leibniz formula (26) for derivations can be generalized to �-derivations as follows.

Theorem 4 (Leibniz formula for �-derivations). Let D
�

be a �-derivation in A. Then

D

n

�

(a1a2) =
n

X

k=0

 

{�:{1,...,n}!{�,D�}|#�

�1(�)=k}

X

�(1) . . . �(n)(a1) ·Dk

�

(a2)

!

(28)

for all a1, a2 2 A, and all integers n � 1.

Remark 2. In (28) and throughout this paper #A will denote the number of elements
or cardinality of the set A.

Remark 3. The formula (28) becomes a1a2 = a1a2 and thus is valid for n = 0, provided
the following usual conventions are used: the set of functions with empty domain of
definition is the set {;} of the empty set; the notation {1, ..., n} = {j 2 Z|1  j  n}
is used for any n 2 Z, and in particular {1, ..., n} is the empty set if n  0; the product
�(1) · . . . ·�(n) is defined to be the identity transformation id

A

for n  0 as product over
the empty set. These conventions and also the convention that sums over the empty set
is zero will be used in formulas throughout the paper.

Proof. We use induction over n. For n = 1 we get (2) which is true, since D

�

is a
�-derivation. Now assume (28) holds for n = p, where p � 1 is some positive integer.
Then

D

p+1
�

(a1a2) = D

�

 

p

X

k=0

 

{�:{1,...,p}!{�,D�}|#�

�1(�)=k}

X

�(1) . . . �(p)(a1) ·Dk

�

(a2)

!!

=

=
p

X

k=0

 

{�:{1,...,p}!{�,D�}|#�

�1(�)=k}

X

⇣

D

�

�(1) . . . �(p)(a1) ·Dk

�

(a2) + ��(1) . . . �(p)(a1) ·Dk+1
�

(a2)
⌘

!

=
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=
p

X

k=0

 

{�:{1,...,p}!{�,D�}|#�

�1(�)=k}

X

��(1) . . . �(p)(a1) ·Dk+1
�

(a2)

!

+

+
p

X

k=0

 

{�:{1,...,p}!{�,D�}|#�

�1(�)=k}

X

D

�

�(1) . . . �(p)(a1) ·Dk

�

(a2)

!

=

=
p+1
X

k=1

 

{�:{2,...,p+1}!{�,D�}|#�

�1(�)=k�1}

X

��(1) . . . �(p)(a1) ·Dk

�

(a2)

!

+

+
p

X

k=0

 

{�:{2,...,p+1}!{�,D�}|#�

�1(�)=k}

X

D

�

�(2) . . . �(p+ 1)(a1) ·Dk

�

(a2)

!

(⇤)
=

(⇤)
=

p+1
X

k=0

 

{�:{1,...,p+1}!{�,D�}|#�

�1(�)=k}

X

�(1) . . . �(p+ 1)(a1) ·Dk

�

(a2)

!

where the last equality (⇤) is obtained by replacing the set {2, ..., p + 1} of p elements
by the set {1, ..., p} in the index of both sums, and then changing the summation index
k to k + 1 in the first sum. Thus (28) holds for n = p + 1 also. By the principle of
mathematical induction, (28) holds for every integer n � 1.

Suppose A is associative, and D

�

a �-derivation on A. Then we want to find a
formula for Dn

�

(a1, . . . , am), generalizing (28). For m = 3 we can use theorem 4 twice to
get the following:

D

n

�

(a1a2a3) =
n

X

k1=0

 

{�1:{1,...,n}!{�,D�}|#�

�1
1 (�)=k1}

X

�1(1) . . . �1(n)(a1) ·Dk1
�

(a2a3)

!

=

=
n

X

k1=0

 

{�1:{1,...,n}!{�,D�}|#�

�1
1 (�)=k1}

X

�1(1) . . . �1(n)(a1)·

·
k1
X

k2=0

 

{�2:{1,...,k1}!{�,D�}|#�

�1
2 (�)=k2}

X

�2(1) . . . �2(k1)(a2)D
k2
�

(a3)

!!

=

=
X

n�k1�k2�0

 

{�1:{1,...,n}!{�,D�}|#�

�1
1 (�)=k1}⇥

⇥{�2:{1,...,k1}!{�,D�}|#�

�1
2 (�)=k2}

X

�1(1) . . . �1(n)(a1)�2(1) . . . �2(k1)(a2)D
k2
�

(a3)

!

Noting the pattern we state and prove the general formula.
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Theorem 5 (Generalized Leibniz formula for �-derivations). Suppose A is associative,
and let D

�

be a �-derivation in A. Then for all integers n � 1 and m � 1, and for all
m-tuples (a1, . . . , am) 2 A

m we have

D

n

�

(a1a2 . . . am) =

=
X

n = k0 � k1 � · · ·
· · · � kj � kj+1 � · · ·
· · · � km�1 � km = 0

 

X

{�1 : {1, . . . , n} ! {�, D�}|#�

�1
1 (�) = k1}⇥ . . .

. . .⇥ {�m : {1, . . . , km�1} ! {�, D�}|#�

�1
m (�) = km}

�1(1) . . . �1(n)(a1) . . . �j(1) . . . �j(kj�1)(aj) . . .

. . . �

m�1(1) . . . �m�1(km�2)(am�1) · �m(1) . . . �m(km�1)(am)

!

(29)

Remark 4. The last factor �
m

(1) . . . �
m

(k
m�1)(am) in the sum is equal to D

km�1
�

(a
m

),
since k

m

= 0.

Proof. We prove (29) by induction on m. For m = 1 the right hand side of (29) becomes

X

n=k0�k1=0

 

X

{�1 : {1, . . . , n} ! {�, D�}|#�

�1
1 (�) = k1}

�1(1) . . . �1(n)(a1)

!

= D

�

. . . D

�

(a1) = D

n

�

(a1)

Thus (29) holds for all integers n � 1 when m = 1. It also holds for all n � 1 and m = 2
since it becomes (28). Now suppose it holds for m = p, where p � 1 is some integer.
Then

D

n

�

(a1a2 . . . am+1) =

=
X

n = k0 � k1 � · · ·
· · · � kj � kj+1 � · · ·
· · · � km�1 � km = 0

 

X

{�1 : {1, . . . , n} ! {�, D�}|#�

�1
1 (�) = k1}⇥ . . .

. . .⇥ {�m : {1, . . . , km�1} ! {�, D�}|#�

�1
m (�) = km}

�1(1) . . . �1(n)(a1) . . . �j(1) . . . �j(kj�1)(aj) . . .

. . . �

m�1(1) . . . �m�1(km�2)(am�1) · �m(1) . . . �m(km�1)(amam+1)

!

(30)

We use (28) on the last factor

�

m

(1) . . . �
m

(k
m�1)(amam+1) = D

km�1
�

(a
m

a

m+1)



18 4 GENERAL LEIBNIZ TYPE FORMULAS

of the sum (30). Thus (30) equals

X

n = k0 � k1 � · · ·
· · · � kj � kj+1 � · · ·
· · · � km�1 � km = 0

 

X

{�1 : {1, . . . , n} ! {�, D�}|#�

�1
1 (�) = k1}⇥ . . .

. . .⇥ {�m�1 : {1, . . . , km�2} ! {�, D�}|#�

�1
m�1(�) = km�1}

�1(1) . . . �1(n)(a1) . . . �j(1) . . . �j(kj�1)(aj) . . .

. . . �

m�1(1) . . . �m�1(km�2)(am�1)·

·
km�1
X

km=0

✓

X

{�m : {1, . . . , km�1} ! {�, D�}|#�

�1
m (�) = km}

�

m

(1) . . . �
m

(k
m�1)(am)D

km
�

(a
m+1)

◆

!

=

=
X

n = k0 � k1 � · · ·
· · · � kj � kj+1 � · · ·
· · · � km � km+1 = 0

 

X

{�1 : {1, . . . , n} ! {�, D�}|#�

�1
1 (�) = k1}⇥ . . .

. . .⇥ {�m : {1, . . . , km�1} ! {�, D�}|#�

�1
m (�) = km}

�1(1) . . . �1(n)(a1) . . . �j(1) . . . �j(kj�1)(aj) . . .

. . . �

m

(1) . . . �
m

(k
m�1)(am) ·Dkm

�

(a
m+1)

!

=

=
X

n = k0 � k1 � · · ·
· · · � kj � kj+1 � · · ·
· · · � km � km+1 = 0

 

X

{�1 : {1, . . . , n} ! {�, D�}|#�

�1
1 (�) = k1}⇥ . . .

. . .⇥ {�m+1 : {1, . . . , km} ! {�, D�}|#�

�1
m+1(�) = km+1}

�1(1) . . . �1(n)(a1) . . . �j(1) . . . �j(kj�1)(aj) . . .

. . . �

m

(1) . . . �
m

(k
m�1)(am) · �m+1(1) . . . �m+1(km)(am+1)

!

Hence by the principle of mathematical induction the formula (29) holds for all integers
n � 1 and m � 1.

The following corollary is obtained by taking n = 1 in the formula (29).

Corollary 6. If A is associative, and D

�

a �-derivation. Then

D

�

(a1a2 . . . am) = D

�

(a1)a2 . . . am+

+
m�1
X

j=2

�(a1) . . . �(aj�1)D�

(a
j

)a
j+1 . . . am

+ �(a1)�(a2) . . . �(am�1)D�

(a
m

) (31)

for all a1, . . . , am 2 A.

Remark 5. Corollary 6 has an important consequence; if A is generated by some set
X, then any �-derivation D

�

in A is uniquely determined by the elements D

�

(x) and
�(x) for x 2 X. Note that it is not required that � is a homomorphism for this to be
true.
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4.3 Formulas for (�, ⌧)-derivations

In this final subsection we find generalizations of the previously proved formulas to
(�, ⌧)-derivations. In the following propositions it will be assumed that A is an algebra,
and that � and ⌧ are linear mappings A ! A. We also find it convenient to introduce
a ”flipping” function

✓ : {D, �} ! {D, ⌧}

defined by
✓(D) = ⌧ ✓(�) = D.

Proposition 7 (Leibniz formula for (�, ⌧)-derivations). Let D be a (�, ⌧)-derivation on
A and a, b 2 A. Then for integers n � 1,

D

n(ab) =
X

{�:{1,...,n}!{D,�}}

⇣

�(1)...�(n)
⌘

(a) ·
⇣

(✓�)(1)...(✓�)(n)
⌘

(b), (32)

where (✓�)(k) = ✓

�

�(k)
�

.

Proof. We use induction on n. For n = 1, we have

X

{�:{1}!{D,�}}

�(1)(a) · (✓�)(1)(b) = D(a)⌧(b) + �(a)D(b) = D

1(ab)

Assume the formula (32) holds for n = k, where k � 1. Then

D

k+1(ab) = D(Dk(ab)) =

= D

 

X

{�:{1,...,k}!{D,�}}

⇣

�(1)...�(k)
⌘

(a) ·
⇣

(✓�)(1)...(✓�)(k)
⌘

(b)

!

=

=
X

{�:{1,...,k}!{D,�}}

"

⇣

� · �(1)...�(k)
⌘

(a) ·
⇣

D · (✓�)(1)...(✓�)(k)
⌘

(b)+

+
⇣

D · �(1)...�(k)
⌘

(a) ·
⇣

⌧ · (✓�)(1)...(✓�)(k)
⌘

(b)

#

=

=
X

{�:{0,...,k}!{D,�}}

⇣

�(0)...�(k)
⌘

(a) ·
⇣

(✓�)(0)...(✓�)(k)
⌘

(b) =

=
X

{�:{1,...,k+1}!{D,�}}

⇣

�(1)...�(k + 1)
⌘

(a) ·
⇣

(✓�)(1)...(✓�)(k + 1)
⌘

(b)

This shows that (32) holds for n = k + 1. Thus by the principle of mathematical
induction, the formula (32) holds for every integer n � 1, which was to be proved.
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Lemma 8. Let D be a (�, ⌧)-derivation on A. Then for integers n � 1 and elements
a, b 2 A,

D

n(ab) =
n

X

i=0

X

Gi

�

�(1)...�(n)
�

(a) ·
�

(✓�)(1)...(✓�)(n)
�

(b) (33)

where

G

i

= {� : {1, ..., n} ! {D, �}
�

�

�

�(j) = � if j > n� i, and �(n� i) = D if i 6= n}.

Proof. It is enough to show that the sets G

i

, i = 0, ..., n form a partition of the set
G = {� : {1, 2, ..., n} ! {D, �}} of all functions {1, 2, ..., n} ! {D, �} because then the
result will follow from Proposition 7. Since each G

i

✓ G, clearly [n

i=0Gi

✓ G. Also, we
claim that G

p

\ G

q

= ; when p 6= q. Otherwise, let � 2 G

p

\ G

q

for p 6= q and choose
notation so that q > p. Then p 6= n so �(n� p) = D since � 2 G

p

, but n� p > n� q so
that �(n� p) = �, since � 2 G

q

. This contradiction shows that G
p

\G

q

= ;. It remains
to show that G ✓ [n

i=0Gi

. Let � 2 G. If �(j) 6= D for j = 1, ..., n then � 2 G

n

✓ [n

i=0Gi

.
Otherwise, there exists a smallest integer p such that �(n�p) = D. Then 0  p  n�1
and we claim that � 2 G

p

. This is true, since �(n�p) = D and if there were a j > n�p

such that �(j) = D, the integer n� j would satisfy �(n� (n� j)) = D and n� j < p

which would contradict the minimality of p. Hence we have shown that G is the disjoint
union of G

i

, i = 0, ..., n.

We introduce some notation which will be used in the general formula below. Fix
two integers n � 1 and m � 2, and let there be given a nonincreasing finite sequence of
nonnegative integers

n = k0 � k1 � ... � k

m�1 � k

m

= 0 (34)

and associate to this sequence the following collection of sets:

�
i

= {�
i+1 : {1, ..., ki} ! {D, �}

�

�

�

�

i+1(j) = � if j > k

i

� k

i+1,

and �

i+1(ki � k

i+1) = D if k
i+1 6= k

i

}

for 0  i  m� 1.

Remark 6. For each i, the set �
i

depends only on k

i

and k

i+1 from the sequence.

Remark 7. The sets �
i

are connected to the sets G

i

from Lemma 8 in the following
sence. If we take m = 2, then a sequence (34) reduces to n = k0 � k1 � k2 = 0, in other
words a single integer k1 between 0 and n. Then �0 = G

k1 .
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Proposition 9 (Generalized Leibniz formula for (�, ⌧)-derivations). Suppose A is as-
sociative, and let D be a (�, ⌧)-derivation on A. Then for integers n � 1, m � 2, and
elements a1, a2, ..., am 2 A the following formula holds:

D

n(a1a2...am) =
X

n=k0�k1�...

�km�1�km=0

X

�0⇥�1⇥...⇥�m�2

�

�1(1)...�1(k0)
�

(a1)

 

k0�k1
Y

j1=1

(✓�1)(j1)

!

✓

1

�

�2(1)...�2(k1)
�

(a2)

 

k1�k2
Y

j2=1

(✓�2)(j2)

!

✓

2

. . .

. . .

�

�

m�1(1)...�m�1(km�2)
�

(a
m�1)

 

km�2�km�1
Y

jm�1=1

(✓�
m�1)(jm�1)

!

✓

m�1

D

km�1(a
m

)

◆

m�1

◆

m�2

. . .

◆

1

where the parenthesis are indexed so that (
i

and )
i

is a matching pair. Put more con-
cisely,

D

n(a1a2...am) =
X

n=k0�k1�...

�km�1�km=0

X

�0⇥�1⇥...⇥�m�2

L1D1L2D2...Lm�1Dm�1D
km�1(a

m

) (35)

where L

j

2 L(A) is the operator of left multiplication by
�

�

j

(1)...�
j

(k
j�1)

�

(a
j

) and

D

j

=
Q

kj�1�kj

i=1 (✓�
j

)(i) 2 L(A).

Remark 8. Note that since ⌧ only is an arbitrary linear operator, we cannot simplify
expressions of the form ⌧(ab). Thus the formula is the best we can do, in the sence that
each product of operators

D

j

=

kj�1�kj
Y

i=1

(✓�
j

)(i)

is either the identity operator (when k

j�1 = k

j

) or ends with ⌧ . This can be seen by
considering the definition of the set �

j�1, which contains the element �

j

. Namely, �
j

must satisfy

�

j

(k
j�1 � k

j

) = D,

when k

j�1 6= k

j

, which become ⌧ after application of ✓.
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Proof. We use induction over m. For m=2, the formula (35) becomes

D

n(a1a2) =
X

n=k0�k1�k2=0

X

�0

L1D1D
k1(a2)

where L1 2 L(A) is the operator of left multiplication by
�

�1(1)...�1(k0)
�

(a1) and D1 =
Q

k0�k1

i=1 (✓�1)(i). Substituting this we get

D

n(a1a2) =
n

X

k1=0

X

�0

�

�1(1)...�1(n)
�

(a1)

✓

n�k1
Y

i=1

(✓�1)(i)

◆

D

k1(a2) (36)

Now the functions �1 satisfy �1(j) = � if j > k0�k1 = n�k1, and therefore ✓�1(j) = D

�

if j > n� k1. Thus we can rewrite (36) to

D

n(a1a2) =
n

X

k1=0

X

�0

�

�1(1)...�1(n)
�

(a1)
�

(✓�1)(1)...(✓�1)(n)
�

(a2)

Recalling the equality of sets �0 and G

k1 , and using Lemma 8, we conclude that the
formula (35) is valid for m = 2 and every integer n � 1. Suppose now that (35) holds
for every integer n � 1, and m  p, where p � 2. Let a1, a2, ..., ap+1 2 A. Then, using
(35) for m = p we have

D

n(a1a2...apap+1) = D

n(a1a2...ap�1(apap+1)) =

=
X

n=k0�k1�...

�kp�1�kp=0

X

�0⇥�1⇥...⇥�p�2

L1D1L2D2...Lp�1Dp�1D
kp�1(a

p

a

p+1)

(37)

Now, using (35) for m = 2 we know that

D

kp�1(a
p

a

p+1) =

kp�1
X

kp=0

X

�p�1

L

p

D

p

D

kp(a
p+1) (38)

If we substitute (38) into (37) we get

D

n(a1a2...apap+1) =
X

n=k0�k1�...

�kp�kp+1=0

X

�0⇥�1⇥...⇥�p�1

L1D1L2D2...Lp

D

p

D

kp(a
p+1)

This proves the induction step and thus by the principle of mathematical induction,
(35) holds for every integers n � 1 and m � 2 which was to be proved.
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The next proposition could be obtained as a corollary of Proposition 9 but we provide
an alternative proof.

Proposition 10. Suppose A is associative, and let D be a (�, ⌧)-derivation on A. Then
for integers m � 2,

D(a1a2...am) = D(a1)⌧(a2a3...am)

+
m�1
X

j=2

�(a1)�(a2)...�(aj�1)D(a
j

)⌧(a
j+1aj+2...am)

+ �(a1)�(a2)...�(am�1)D(a
m

) (39)

and also

D(a1a2...am) = D(a1)⌧(a2)⌧(a3)...⌧(am)

+
m�1
X

j=2

�(a1a2...aj�1)D(a
j

)⌧(a
j+1)⌧(aj+2)...⌧(am)

+ �(a1a2...am�1)D(a
m

) (40)

where a

i

2 A.

Proof. We use induction on m. For m = 2 the identities hold, since they are reduced
to the formula (3) which is true by definition of a (�, ⌧)-derivation. Assume that (39)
holds for m = k, where k � 2. Then

D(a1a2...ak+1) = D(a1)⌧(a2...ak+1) + �(a1)D(a2...ak+1) =

= D(a1)⌧(a2a3...ak+1) + �(a1)
⇣

D(a2)⌧(a3a4...ak+1)

+
k

X

j=3

�(a2)�(a3)...�(aj�1)D(a
j

)⌧(a
j+1aj+2...ak+1)

+ �(a2)�(a3)...�(ak)D(a
k+1)

⌘

=

= D(a1)⌧(a2a3...ak+1)

+
k

X

j=2

�(a1)�(a2)�(a3)...�(aj�1)D(a
j

)⌧(a
j+1aj+2...ak+1)

+ �(a1)�(a2)�(a3)...�(ak)D(a
k+1)

This shows that (39) holds for m = k + 1. By induction it holds for all integers m � 2.
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Now assume that (40) holds for m = k, where k � 2. Then

D(a1a2...ak+1) = D(a1a2...ak)⌧(ak+1) + �(a1a2...ak)D(a
k+1) =

=
⇣

D(a1)⌧(a2)⌧(a3)...⌧(ak)

+
k�1
X

j=2

�(a1a2...aj�1)D(a
j

)⌧(a
j+1)⌧(aj+2)...⌧(ak)

+ �(a1a2...ak�1)D(a
k

)
⌘

⌧(a
k+1) + �(a1a2...ak)D(a

k+1) =

= D(a1)⌧(a2)⌧(a3)...⌧(ak)⌧(ak+1)

+
k

X

j=2

�(a1a2...aj�1)D(a
j

)⌧(a
j+1)⌧(aj+2)...⌧(ak)⌧(ak+1)

+ �(a1a2...ak)D(a
k+1)

This shows that (40) holds for m = k + 1. By induction it holds for all integers m � 2.
The proof is finished.

5 The general structure of D(�,⌧)(A)

5.1 Associativity conditions

We describe a necessary condition for (�, ⌧)-derivations on associative algebras.

Proposition 11. If A is an associative algebra and D is a (�, ⌧)-derivation in A, then
�

�(ab)� �(a)�(b)
�

D(c) = D(a)
�

⌧(bc)� ⌧(b)⌧(c)
�

, (41)

or equivalently

�(ab)D(c) +D(a)⌧(b)⌧(c) = �(a)�(b)D(c) +D(a)⌧(bc). (42)

Proof. Since A is associative, we have

0 = D(a(bc)� (ab)c) = D(a(bc))�D((ab)c) =

= D(a)⌧(bc) + �(a)D(bc)�
�

D(ab)⌧(c) + �(ab)D(c)
�

=

= D(a)⌧(bc) + �(a)
�

D(b)⌧(c) + �(b)D(c)
�

�
�

D(a)⌧(b) + �(a)D(b)
�

⌧(c)� �(ab)D(c) =

= D(a)
�

⌧(bc)� ⌧(b)⌧(c)
�

+
�

�(a)�(b)� �(ab)
�

D(c)

Thus equation (41) holds. Equation (42) is obtained from (41) by expanding the paren-
thesis and adding the expression �(a)�(b)D(c) +D(a)⌧(b)⌧(c) to both sides.
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Corollary 12. If A is an associative algebra with no zero divizors, and D is a nonzero
(�, ⌧)-derivation on A, then � is an algebra endomorphism if and only if ⌧ is an algebra
endomorphism.

Corollary 13. If A is an associative algebra and D 2 D
�

(A), then

�

�(ab)� �(a)�(b)
�

D(c) = 0 (43)

for all a, b, c 2 A.

Proof. Take ⌧ = id
A

in (41).

The following corollary is important, and follows directly from Corollary 13.

Corollary 14. Let A be an associative algebra with no zero divizors, and let � be a
linear operator on A. If � is not an algebra endomorphism on A, then D

�

(A)={ 0 },
that is, the only possible �-derivation on A is the zero operator.

Corollary 15. If A is an associative algebra, D 2 D
�

(A) and the set

D(A) = {D(c)|c 2 A}

contains at least one element which is nonzero and not a zero-divizor in A, then

�(ab) = �(a)�(b)

for all a, b 2 A, i.e. � is a homomorphism.

5.2 Necessary conditions for � to be a �-derivation

Proposition 16. If A is an associative algebra and � 2 D
�

(A), then

�(a1)a2�(a3) = 0 (44)

for all a1, a2, a3 2 A, and in particular

�(a)3 = 0 (45)

for all a 2 A.

Proof. Using that � is a �-derivation we get

�(a1a2) = �(a1)a2 + �(a1)�(a2), (46)

which implies
�(a1a2)� �(a1)�(a2) = �(a1)a2. (47)
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By Corollary 13,
(�(a1a2)� �(a1)�(a2))�(a3) = 0. (48)

Substituting (47) in (48) we deduce

�(a1)a2�(a3) = 0, (49)

which was to be proved. The equation (45) is obtained by taking a1 = a, a2 = �(a),
and a3 = a.

Corollary 17. If A is an associative algebra with unit e and � 2 D
�

(A), then

�(a1)�(a2) = 0 (50)

for all a1, a2 2 A, and in particular

�(a)2 = 0 (51)

�(a)�(e) = 0 (52)

for all a 2 A.

Proof. Set a2 = e in (44) to get (50). The equality (51) is obtained from (50) when
a1 = a2 = a, and (52) is obtained when a1 = a and a2 = e.

5.3 D(�,⌧)(A) as a bimodule over subalgebras of A.

In this section, A is assumed to be an associative algebra. (The construction also works
for Lie algebras, but we shall not consider this case here.) By definition that D(�,⌧)(A)
is a subset of L(A). Now, if D and E are two (�, ⌧)-derivations on A then

(�D + µE)(a1a2) = �D(a1a2) + µE(a1a2) = (53)

= �

�

D(a1)⌧(a2) + �(a1)D(a2)
�

+ (54)

+ µ

�

E(a1)⌧(a2) + �(a1)E(a2)
�

= (55)

= (�D + µE)(a1)⌧(a2) + �(a1)(�D + µE)(a2) (56)

for all �, µ 2 C and a1, a2 2 A. So for every pair of linear operators �, ⌧ 2 L(A),
D(�,⌧)(A) is a linear subspace of L(A).

Remark 9. In general, these subspaces can have nonzero intersection. In other words
there can exist linear operators �1, �2, ⌧1, ⌧2 on A such that �1 6= �2 or ⌧1 6= ⌧2 and still
D

�1,⌧1(A) \ D
�2,⌧2(A) 6= 0. Let for instance � be a nonzero homomorphism on some

algebra A, as in Example 1, page 7. Then � 2 D 1
2�,

1
2�
(A) \D 1

3�,
2
3�
(A), but 1

2� 6= 1
3�.
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Consider the algebra L(A) of linear transformations of the associative algebra A.
This algebra L(A) is in particular a complex linear space and it is possible to define on
this linear space the structure of a (A,A)-bimodule in the following natural way. Define
maps

� : A⇥ L(A) ! L(A) (57)

⇢ : L(A)⇥ A ! L(A) (58)

by
�(x, F ) = L

x

· F (59)

and
⇢(F, y) = R

y

· F, (60)

where R
a

and L
a

denote the operators of multiplication by an element a 2 A on the right
and left, respectively. The functions � and ⇢ are bilinear and

�(x1x2, D) = L
x1x2D = L

x1Lx2D = �(x1,�(x2, D)) (61)

⇢(D, y1y2) = R
y1y2D = R

y2Ry1D = ⇢(⇢(D, y1), y2) (62)

�(x1, ⇢(D, y1)) = �(x1, Ry1D) = L
x1Ry1D =

= R
y1Lx1D = ⇢(L

x1D, y1) = ⇢(�(x1, D), y1) (63)

In equation (63) we used that A is associative, that is, left and right multiplication
operators commute. The identities (61)-(63) together with bilinearity show that � and
⇢ are (A,A)-bimodule multiplication maps on L(A).

Given linear operators � and ⌧ on A, form the following two subsets of A:

X(�,⌧) = {c 2 A

�

�

�(c,D) 2 D(�,⌧)(A) for all D 2 D(�,⌧)(A)} (64)

Y(�,⌧) = {c 2 A

�

�

⇢(D, c) 2 D(�,⌧)(A) for all D 2 D(�,⌧)(A)} (65)

Lemma 18. Let � and ⌧ be linear operators on A. Then

X(�,⌧) = {c 2 A

�

� [c, �(a)]D(b) = 0 for all a, b 2 A,D 2 D(�,⌧)(A)} (66)

Y(�,⌧) = {c 2 A

�

�

D(b)[c, ⌧(a)] = 0 for all a, b 2 A,D 2 D(�,⌧)(A)} (67)

Proof. Let D 2 D(�,⌧)(A). By Definition 3 of (�, ⌧)-derivations, �(c,D) = L
c

D is a
(�, ⌧)-derivation if and only if

0 = L
c

D(ab)�
�

(L
c

D(a))⌧(b) + �(a)L
c

D(b)
�

= cD(a)⌧(b) + c�(a)D(b)� cD(a)⌧(b)� �(a)cD(b)

= (c�(a)� �(a)c)D(b) = [c, �(a)]D(b) (68)
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for all a, b 2 A. Since D 2 D(�,⌧)(A) was arbitrary, we have proved (66). Similarly, if
D 2 D(�,⌧)(A), then ⇢(D, c) = R

c

D is a (�, ⌧)-derivation if and only if

0 = R
c

D(ab)�
�

(R
c

D(a))⌧(b) + �(a)R
c

D(b)
�

= D(a)⌧(b)c+ �(a)D(b)c�D(a)c⌧(b)� �(a)D(b)c

= D(a)(⌧(b)c� c⌧(b)) = D(a)[⌧(b), c] (69)

for all a, b 2 A, which proves (67).

Theorem 19. X(�,⌧) and Y(�,⌧) are subalgebras of A.

Proof. We will use the equalities (66) and (67) to prove the statement. First we show
thatX(�,⌧) and Y(�,⌧) are linear subspaces of A. Let �, µ 2 C, a, b 2 A andD 2 D(�,⌧)(A).
Then for c, d 2 X(�,⌧),

[�c+ µd, �(a)]D(b) = �[c, �(a)]D(b) + µ[d, �(a)]D(b) = 0

and for c, d 2 Y(�,⌧),

D(b)[�c+ µd, ⌧(a)] = �D(b)[c, ⌧(a)] + µD(b)[d, ⌧(a)] = 0

This shows that X(�,⌧) and Y(�,⌧) are linear subspaces of A. Next, we show that X(�,⌧)

and Y(�,⌧) are closed under the product in A. Let c, d 2 X(�,⌧). Then for any a, b 2 A

and D 2 D(�,⌧)(A), we have

[cd, �(a)]D(b) =
�

cd�(a)� �(a)cd
�

D(b) =

=
�

cd�(a)� c�(a)d+ c�(a)d� �(a)cd
�

D(b) =

=c[d, �(a)]D(b) + [c, �(a)]dD(b) =

=c · 0 + [c, �(a)] · (L
d

D)(b) = 0.

The last equality follows from that c 2 X(�,⌧) and that L
d

D 2 D(�,⌧)(A) since d 2 X(�,⌧)

and D 2 D(�,⌧)(A). Hence we have shown that X(�,⌧) is closed under multiplication in
A. Similarly for Y(�,⌧), when c, d 2 Y(�,⌧), we have for any a, b 2 A and D 2 D(�,⌧)(A),

D(b)[cd, ⌧(a)] =D(b)
�

cd⌧(a)� ⌧(a)cd
�

=

=D(b)
�

cd⌧(a)� c⌧(a)d+ c⌧(a)d� ⌧(a)cd
�

=

=D(b)c[d, ⌧(a)] +D(b)[c, ⌧(a)]d =

=(R
c

D)(b)[d, ⌧(a)] + 0 · d = 0.

Therefore Y(�,⌧) is closed under multiplication inA. ThusX(�,⌧) and Y(�,⌧) are subalgebras
of A.



29

Corollary 20. D(�,⌧)(A) is an (X(�,⌧), Y(�,⌧))-bimodule under the restriction of the maps
� and ⇢ to X(�,⌧) ⇥D(�,⌧)(A) and D(�,⌧)(A)⇥ Y(�,⌧) respectively.

For a subset S ✓ A of an algebra A, the centralizer of S in A is the subalgebra
Cen

A

(S) ✓ A of A defined by

Cen
A

(S) = {c 2 A

�

�

cx = xc 8 x 2 S}

Proposition 21. Let A be an associative algebra, and let � and ⌧ be linear operators
on A. Then

Cen
A

(�(A)) ✓ X(�,⌧) (70)

and
Cen

A

(⌧(A)) ✓ Y(�,⌧) (71)

Furthermore, if there is some D 2 D(�,⌧)(A) such that its image contains some right
cancellable element, then equality holds in (70). Similarly, if there is some D 2 D(�,⌧)(A)
such that its image contains some left cancellable element, then equality holds in (71). In
particular, equality holds in both (70) and (71) if A has no zero-divizors and D(�,⌧)(A) 6=
0.

Proof. If c 2 Cen
A

(�(A)), then [c, �(a)] = 0 for any a 2 A. Thus, using (66), we have
c 2 X(�,⌧) so (70) holds. The proof of (71) is similar. Suppose now that the image of
some D 2 D(�,⌧)(A) contains a right cancellable element D(b). Let c 2 X(�,⌧). Then,
using (66), we have in particular that [c, �(a)]D(b) = 0 for any a 2 A, which imply
c 2 Cen

A

(�(A)), since D(b) was right canellable. Analogously, if D(b) is left cancellable
for some D 2 D(�,⌧)(A), b 2 A, then any c 2 Y(�,⌧) satisfies D(b)[c, ⌧(a)] = 0 for all
a 2 A, which shows c 2 Cen

A

(⌧(A)).

Remark 10. It would be interesting to find an example where at least one of the
inclusions (70),(71) is strict.

6 Generalized derivations on unique factorization
domains

In Section 6.1 we consider the algebra C[x] of complex polynomials in one variable and
describe for any linear operator � on C[x] all possible �-derivations in C[x]. In Section
6.2 we determine which of these �-derivations that are homogenous as linear operators
C[x] ! C[x] with respect to the natural grading (76). In Section 6.3 we state and prove
a formula for calculating with �-derivations on C[x1, . . . , xn

]. Finally, in Section 6.4
we study (�, ⌧)-derivations on algebras which, viewed as rings, are unique factorization
domains. In particular we obtain a classification of (�, ⌧)-derivations on C[x1, . . . , xn

]
when � and ⌧ are algebra endomorphisms.
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6.1 �-Derivations on C[x]
The algebra C[x] has no zero-divizors, so it follows from Corollary 14 that if � is a linear
operator on C[x] such that there exists some nonzero �-derivation D

�

, then � must be
a homomorphism. Therefore either �(1) = 0 or �(1) = 1. If �(1) = 0 then � = 0 and
the �-derivations are precisely the left multiplication operators. If �(1) = 1 then � is
uniquely defined by the value on the generator x and we have the following result.

Proposition 22. Let � 6= 0 be a nonzero algebra endomorphism of C[x]. Then a linear
operator D

�

in C[x] is a �-derivation if and only if the following two conditions are
satisfied:

i. D

�

(1) = 0, and

ii. For every integer k � 1, the following equation holds:

D

�

(xk) =
�

x

k�1 + x

k�2
�(x) + . . .+ x�(x)k�2 + �(x)k�1

�

D

�

(x). (72)

If � = 0, then D

�

(p) = D

�

(1)p for all p 2 C[x], where D

�

(1) can be any element
of C[x].

Proof. Suppose first that D
�

is a �-derivation. Then

D

�

(1) = D

�

(1 · 1) = D

�

(1) · 1 + �(1)D
�

(1) = 2D
�

(1)

so that D

�

(1) = 0. For the second property, we use the formula in Corollary 6 with
m = k and a1 = a2 = . . . a

k

= x and get

D

�

(xk) = D

�

(x) · xk�1 +
k�1
X

j=2

�

�(x)j�1 ·D
�

(x) · xk�j

�

+ �(x)k�1 ·D
�

(x) =

=
�

x

k�1 + x

k�2
�(x) + . . .+ x�(x)k�2 + �(x)k�1

�

D

�

(x). (73)

Conversely, suppose we are given a linear operator D

�

on C[x] satisfying D

�

(1) = 0
and formula (72). We must prove that D

�

is a �-derivation. By linearity it su�ces to
check that D

�

(xk

x

l) = D

�

(xk)xl + �(xk)D
�

(xl) for all non-negative integers k and l. If
at least one of k and l is zero, say k, then we have

D

�

(x0
x

l) = D

�

(xl) = 0 · xl + 1 ·D
�

(xl) = D

�

(x0)xl + �(x0)D
�

(xl),

which is the required equality for a �-derivation. If both k and l are positive integers,
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consider the following calculation:

D

�

(xk · xl) = D

�

(xk+l) =

=
�

x

k+l�1 + x

k+l�2
�(x) + . . .+ x

l

�(x)k�1+

+ x

l�1
�(x)k + x

l�2
�(x)k+1 + . . .+ x�(x)k+l�2 + �(x)k+l�1

�

D

�

(x) =

=
�

x

k�1 + x

k�2
�(x) + . . .+ x�(x)k�2 + �(x)k�1

�

D

�

(x)xl+

+ �(x)k
�

x

l�1 + x

l�2
�(x) + . . .+ x�(x)l�2 + �(x)l�1

�

D

�

(x) =

= D

�

(xk)xl + �(xk)D
�

(xl)

We have shown that D
�

(xk

x

l) = D

�

(xk)xl + �(xk)D
�

(xl) for all non-negative integers k
and l. This concludes the proof.

Remark 11. If D

�

is a �-derivation in C[x], then D

�

(x) is a polynomial 2 C[x].
Conversely, by Proposition 22, given any polynomial p(x) 2 C[x], there is a unique
�-derivation such that D

�

(x) = p(x). Thus, for fixed �, there is a bijective corre-
spondance D

�

(C[x]) ! C[x] defined by D

�

7! D

�

(x). Also, this correspondance takes
linear combinations into linear combinations, so there is a isomorphism of linear spaces
D

�

(C[x]) ' C[x]. This isomorphism induces a direct sum decomposition of D
�

(C[x])
from the natural Z�0-grading on C[x]:

D
�

(C[x]) =
M

k2Z�0

D
�,k

(74)

where D
�,k

= {D
�

2 D
�

(C[x]) | 9� 2 C such that D
�

(x) = �x

k}. As we shall soon see,
when � is operator of multiplication by scalar, the homogenous elements in the direct
sum (74) is precisely the homogenous �-derivations, in the sence of Definition 7.

We can use Proposition 22 and linearity to derive a formula which describes the
action of an arbitrary �-derivation on an arbitrary polynomial in C[x].

Corollary 23. Let � 6= 0 be a nonzero algebra endomorphism of C[x], p(x) =
P

n

i=0 cix
i 2

C[x] a polynomial, and D

�

a �-derivation in C[x]. Then

D

�

(p(x)) =
n�1
X

j=0

d

j

x

j

D

�

(x)

where

d

j

=
n�1
X

i=j

c

i+1�(x)
i�j
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Proof. Consider the following computations:

D

�

(p(x)) = D

�

(
n

X

i=0

c

i

x

i) =
n

X

i=0

c

i

D

�

(xi)

=
n

X

i=1

c

i

�

x

i�1 + x

i�2
�(x) + . . .+ x�(x)i�2 + �(x)i�1

�

D

�

(x)

=
n

X

i=1

i�1
X

j=0

⇣

c

i

x

j

�(x)i�1�j

⌘

D

�

(x)

=
n�1
X

j=0

n

X

i=j+1

⇣

c

i

x

j

�(x)i�1�j

⌘

D

�

(x)

=
n�1
X

j=0

⇣

n

X

i=j+1

c

i

�(x)i�1�j

⌘

x

j

D

�

(x)

=
n�1
X

j=0

⇣

n�1
X

i=j

c

i+1�(x)
i�j

⌘

x

j

D

�

(x) (75)

The proof is finished.

6.2 Homogenous �-derivations on C[x]
The algebra C[x] has a natural Z�0-grading:

C[x] =
M

k2Z�0

Cxk (76)

We state and prove a proposition which describes all �-derivations in C[x] which are ho-
mogenous as linear operators with respect to the grading (76), in the sence of Definition
7.

Proposition 24. Let � 6= 0 be a nonzero algebra endomorphism of C[x] and D

�

be a
�-derivation in C[x]. Then D

�

is homogenous if and only if the following two conditions
are satisfied:

1. D

�

(x) is a homogenous element of C[x], that is, D
�

(x) = µx

r for some complex
number µ 2 C and some non-negative integer r 2 Z�0.

2. �(x) = �x for some complex number �.

In this case,

D

�

(xk) =

⇢

�

k�1
��1 x

k�1
D

�

(x), if � 6= 1
kx

k�1
D

�

(x), if � = 1
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Proof. Suppose first that D
�

is a homogenous �-derivation. Then the first condition is
obviously satisfied. Using formula (72) we have for all integers k � 2,

D

�

(xk) =
�

x

k�1 + x

k�2
�(x) + . . .+ x�(x)k�2 + �(x)k�1

�

D

�

(x). (77)

By assumption D

�

(x) and D

�

(xk) are homogenous elements of C[x] since x and x

k

are homogenous. Furthermore, whenever q(x) and p(x)q(x) are homogenous poly-
nomials, p(x) must also be homogenous. Using this we deduce that the left factor
�

x

k�1 + x

k�2
�(x) + . . . + x�(x)k�2 + �(x)k�1

�

of the right hand side of (77) must also
be homogenous for all integers k � 2. In other words we have

x

k�1 + x

k�2
�(x) + . . .+ x�(x)k�2 + �(x)k�1 = c

k

x

pk (78)

for all integers k � 2 and some c

k

2 C and p

k

2 Z�0. Multiply both sides of (78) by
x� �(x) to get

x

k � �(x)k = c

k

x

pk+1 � c

k

x

pk
�(x). (79)

If �(x) = 0 then � = 0 satisfies the required condition 2. If �(x) 6= 0, let m denote
the degree deg �(x) of the polynomial �(x). Since D

�

is homogenous, it follows from
(72) that �(x) cannot be a constant. Hence m � 1 so that deg(�(x)k) � mk � k and
deg(�c

k

x

pk
�(x)) = p

k

+m � p

k

+1. Equating highest degree on both sides of equation
(79) gives us

mk = p

k

+m =) p

k

= m(k � 1) (80)

For k = 2 we have p2 = m · (2� 1) = m and equation (78) becomes

x+ �(x) = c2x
m =) �(x) = c2x

m � x (81)

For k = 3 we have p3 = m · (3� 1) = 2m and equation (78) becomes

x

2 + �(x)x+ �(x)2 = c3x
2m (82)

Substitute the expression for �(x) obtained in (81) into equation (82):

x

2 + c2x
m+1 � x

2 + c

2
2x

2m � 2c2x
m+1 + x

2 = c3x
2m

,

or, after simplification,
x

2 = (c3 � c

2
2)x

2m + c2x
m+1 (83)

From (83) it is clear that at least one of 2m and m + 1 has to be equal to 2. In any
case, m = 1, and substituting this into (81) we have �(x) = c2x � x = (c2 � 1)x, so if
we take � = c2 � 1, the second condition is satisfied.

Conversely, if D
�

(x) is homogenous and �(x) = �x, where � 2 C, equation (72)
yields

D

�

(xk) =
�

x

k�1 + x

k�2
�x+ . . .+ x(�x)k�2 + (�x)k�1

�

D

�

(x) =

=
�

k�1
X

j=0

�

j

�

x

k�1
D

�

(x) =

⇢

�

k�1
��1 x

k�1
D

�

(x), if � 6= 1
kx

k�1
D

�

(x), if � = 1

It follows that indeed D

�

is a homogenous linear operator, which was to be proved.
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6.3 A formula for �-derivations on C[x1, . . . , xn]
For notational purposes, we denote the algebra by C[X], where X is some finite set.
C[X] can be thought of as a free commutative algebra with unit on the finite set X.

Proposition 25. Let � 6= 0 be a nonzero algebra endomorphism of C[X]. Then a linear
operator D

�

on C[X] is a �-derivation if and only if

i. D

�

(1) = 0, and

ii. for all 2n-tuples, (k1, k2, ..., kn, x1, x2, ..., xn

), n � 1 of positive integers k

i

2 Z
>0

and generators x

i

2 X, the following equation holds:

D

�

(xk1
1 x

k2
2 . . . x

kn
n

) =

=
n

X

j=1

 

⇣

j�1
Y

i=1

�(x
i

)ki
⌘⇣

s

kj�1(x
j

, �(x
j

))D
�

(x
j

)
⌘⇣

n

Y

i=j+1

x

ki
i

⌘

!

(84)

where we denote by s

k(x, �(x)) =
P

k

i=0 x
i

�(x)k�i, when k 2 Z�0.

Proof. Suppose that D
�

is a �-derivation. Then

D

�

(1) = D

�

(1 · 1) = D

�

(1) · 1 + �(1)D
�

(1) = 2D
�

(1),

so that D
�

(1) = 0. For the second property, use Corollary 6 to deduce

D

�

(xk1
1 · . . . · xkn

n

) = D

�

(xk1
1 )xk2

2 · . . . · xkn
n

+ �(x1)
k1
D

�

(xk2
2 )xk3

3 · . . . · xkn
n

+ . . .+ �(x1)
k1
�(x2)

k2 · . . . · �(x
n

)kn (85)

For each i we can use the same calculation as in (73) and obtain

D

�

(xki
i

) = s

ki�1(x
i

, �(x
i

))D
�

(x
i

)

Substituting this into (85) we get the desired formula.
Conversely, suppose the two conditions are satisfied, then we must check that D

�

is
indeed a �-derivation. Since D

�

is linear, it su�ces to check that

D

�

(xk1
1 . . . x

kn
n

· yl11 . . . y

ln
m

) =

= D

�

(xk1
1 . . . x

kn
n

)yl11 . . . y

ln
m

+ �(xk1
1 . . . x

kn
n

)D
�

(yl11 . . . y

ln
m

) (86)

holds for any set of n+m generators x1, . . . , xn

, y1, . . . ym, and any non-negative integers
k

i

, l

j

, for i = 1, . . . , n and j = 1, . . .m, where n and m are positive integers. We proceed
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by induction on n +m. Suppose first that n +m = 2, that is, n = m = 1. If at least
one of k1 and l1, say k1, is equal to zero, we have

D

�

(x0
1y

l1
1 ) = 0 · yl11 + 1 ·D

�

(yl11 ) = D

�

(x0
1)y

l1
1 + �(x0

1)D�

(yl11 )

where we used the first condition that D

�

(x0
1) = D

�

(1) = 0. Now if both k1 � 1 and
l1 � 1 then using (84) on the 2 · 2-tuple (k1, k2, x1, x2) where we have set k2 = l1 and
x2 = y1 for notational purposes, we have

D

�

(xk1
1 y

l1
1 ) = D

�

(xk1
1 x

k2
2 ) =

=
2
X

j=1

 

⇣

j�1
Y

i=1

�(x
i

)ki
⌘⇣

s

kj�1(x
j

, �(x
j

))D
�

(x
j

)
⌘⇣

2
Y

i=j+1

x

ki
i

⌘

!

=

=

 

⇣

1�1
Y

i=1

�(x
i

)ki
⌘⇣

s

k1�1(x1, �(x1))D�

(x1)
⌘⇣

2
Y

i=1+1

x

ki
i

⌘

!

+

+

 

⇣

2�1
Y

i=1

�(x
i

)ki
⌘⇣

s

k2�1(x2, �(x2))D�

(x2)
⌘⇣

2
Y

i=2+1

x

ki
i

⌘

!

=

=
⇣

D

�

(xk1
1 )
⌘

x

k2
2 +

⇣

�(x1)
k1

⌘⇣

D

�

(xk2
2 )
⌘

=

= D

�

(xk1
1 )yl11 + �(xk1

1 )D
�

(yl11 )

Thus (86) holds for n + m = 2 generators x1, y1 and any non-negative integers k1, l1.
Suppose now that (86) holds for any set of p + q generators, with corresponding non-
negative exponents, whenever p + q < n +m. Let x1, . . . , xn

, y1, . . . , ym be any n +m

generators and let k1, . . . , kn, l1, . . . , lm be n+m non-negative integers. We wish to prove
(86). If there is some integer i such that 1  i  n and k

i

= 0, we have

D

�

(xk1
1 . . . x

kn
n

· yl11 . . . y

lm
m

) = D

�

(xk1
1 . . . x

ki�1

i�1 x
ki+1

i+1 . . . x

kn
n

· yl11 . . . y

lm
m

) =

D

�

(xk1
1 . . . x

ki�1

i�1 x
ki+1

i+1 . . . x

kn
n

)yl11 . . . y

ln
m

+

+ �(xk1
1 . . . x

ki�1

i�1 x
ki+1

i+1 . . . x

kn
n

)D
�

(yl11 . . . y

ln
m

) =

= D

�

(xk1
1 . . . x

kn
n

)yl11 . . . y

ln
m

+ �(xk1
1 . . . x

kn
n

)D
�

(yl11 . . . y

ln
m

)

where we used the induction hypothesis in the second equality. Therefore, we can
assume that k

i

6= 0 for i = 1, . . . , n, and similarly we can assume l
j

6= 0 for j = 1, . . . ,m.
Now set x

n+1 = y1, . . . , xn+m

= y

m

and k

n+1 = l1, . . . , kn+m

= l

m

and use (84) on the
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2(n+m)-tuple (k1, . . . , kn+m

, x1, . . . , xn+m

):

D

�

(xk1
1 . . . x

kn
n

· yl11 . . . y

lm
m

) = D

�

(xk1
1 x

k2
2 . . . x

kn+m
n+m

) =
n+m

X

j=1

 

⇣

j�1
Y

i=1

�(x
i

)ki
⌘⇣

s

kj�1(x
j

, �(x
j

))D
�

(x
j

)
⌘⇣

n+m

Y

i=j+1

x

ki
i

⌘

!

=

=
n

X

j=1

 

⇣

j�1
Y

i=1

�(x
i

)ki
⌘⇣

s

kj�1(x
j

, �(x
j

))D
�

(x
j

)
⌘⇣

n+m

Y

i=j+1

x

ki
i

⌘

!

+

+
n+m

X

j=n+1

 

⇣

j�1
Y

i=1

�(x
i

)ki
⌘⇣

s

kj�1(x
j

, �(x
j

))D
�

(x
j

)
⌘⇣

n+m

Y

i=j+1

x

ki
i

⌘

!

=

=
n

X

j=1

 

⇣

j�1
Y

i=1

�(x
i

)ki
⌘⇣

s

kj�1(x
j

, �(x
j

))D
�

(x
j

)
⌘⇣

n

Y

i=j+1

x

ki
i

⌘

!

n+m

Y

i=n+1

x

ki
i

+

+
⇣

n

Y

i=1

�(x
i

)ki
⌘

n+m

X

j=n+1

 

⇣

j�1
Y

i=n+1

�(x
i

)ki
⌘⇣

s

kj�1(x
j

, �(x
j

))D
�

(x
j

)
⌘⇣

n+m

Y

i=j+1

x

ki
i

⌘

!

=

= D

�

(xk1
1 . . . x

kn
n

)xkn+1
n+1 . . . x

kn+m
n+m

+ �(xk1
1 . . . x

kn
n

)D
�

(xkn+1
n+1 . . . x

kn+m
n+m

) =

= D

�

(xk1
1 . . . x

kn
n

)yl11 . . . y

lm
m

+ �(xk1
1 . . . x

kn
n

)D
�

(yl11 . . . y

lm
m

)

Thus (86) holds for n+m generators, with non-negative exponents. By the principle of
mathematical induction, (86) holds for any set of n + m generators, where n � 1 and
m � 1 are two positive integers, and all non-negative integers k1, . . . , kn, l1, . . . , lm. This
completes the proof.

6.4 (�, ⌧)-Derivations on UFD:s and on C[x1, . . . , xn]
When we speak of unique factorization domains we shall always mean a commutative
associative algebra over C with unity 1 and with no zero-divizors, such that any element
can be written in a unique way (up to a multiple of an invertible element) as a product
of irreducible elements (i.e. elements which cannot be written as a product of two non-
invertible elements). Examples of unique factorization domains include C[x1, . . . , xn

],
and the algebra C[t, t�1] of Laurent polynomials.

If A is a unique factorization domain, it is in particular commutative, and therefore
D(�,⌧)(A) carries a natural A-module structure by pointwise multiplication, as defined
in Section 5.3. If a, b 2 A we shall write a

�

�

b if there is an element c 2 A such that
ac = b. If S ✓ A is a subset of A, the greatest common divizor GCD(S) of S is defined
as an element of A satisfying

GCD(S)
�

�

a for a 2 S, (87)
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and
b

�

�

a for a 2 S =) b

�

�

GCD(S). (88)

Using that A is a unique factorization domain one can show that GCD(S) exists for
any nonempty subset S of A and is unique up to a multiple of an invertible element in
A. It follows directly from the definition of GCD that

S ✓ T ✓ A =) GCD(T )
�

�

GCD(S). (89)

Remark 12. When we have A = C[x1, . . . , xn

], we will order the set of monomials
lexicographically, and always choose the unique GCD having leading coe�cient 1 with
respect to this order.

Lemma 26. Let A be a commutative algebra with no zero-divizors. Let � and ⌧ be
di↵erent algebra endomorphisms on A, and let D be a (�, ⌧)-derivation on A. Then

ker(⌧ � �) ✓ kerD. (90)

Remark 13. Under some extra conditions we have equality in (90) for any nonzero D

(see Corollary 28).

Proof. Let y 2 A be such that ⌧(y) 6= �(y), and let x 2 ker(⌧ � �). Then

0 = D(xy � yx) = D(x)⌧(y) + �(x)D(y)�D(y)⌧(x)� �(y)D(x) =

= D(x)(⌧(y)� �(y))�D(y)(⌧(x)� �(x)) = D(x)(⌧(y)� �(y))

which imply D(x) = 0, since we assumed A had no zero-divizors.

We now prove the main result in this section.

Theorem 27. Let � and ⌧ be di↵erent algebra endomorphisms on a unique factorization
domain A (for example C[x1, . . . , xn

]). Then D(�,⌧)(A) is free of rank one as an A-module
with generator

⌧ � �

g

: x 7! (⌧ � �)(x)

g

, (91)

where g = GCD

�

(⌧ � �)(A)
�

.

Proof. We note first that (⌧ � �)/g is a (�, ⌧)-derivation on A:

(⌧ � �)(xy)

g

=
⌧(x)⌧(y)� �(x)�(y)

g

=

=

�

⌧(x)� �(x)
�

⌧(y) + �(x)
�

⌧(y)� �(y)
�

g

=

=
(⌧ � �)(x)

g

· ⌧(y) + �(x) · (⌧ � �)(y)

g

,
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for x, y 2 A. Next we show that (⌧ � �)/g generates a free A-module of rank one. So
suppose that

x · ⌧ � �

g

= 0, (92)

for some x 2 A. Since ⌧ 6= �, there is an y 2 A such that (⌧ � �)(y) 6= 0. Application
of both sides in (92) to this y yields

x · (⌧ � �)(y)

g

= 0.

Since A has no zero-divizors, it then follows that x = 0. Thus

A · ⌧ � �

g

is a free A-module of rank one.
It remains to show that D(�,⌧)(A) ✓ A · ⌧��

g

. Let D be a (�, ⌧)-derivation on A. We
want to find a

D

2 A such that

D(x) = a

D

· (⌧ � �)(x)

g

(93)

for x 2 A. We will define

a

D

=
D(x) · g

(⌧ � �)(x)
(94)

for some x such that (⌧ � �)(x) 6= 0. For this to be possible, we must show two things.
First of all, that

(⌧ � �)(x)
�

�

D(x) · g for any x with (⌧ � �)(x) 6= 0 (95)

and secondly, that

D(x) · g
(⌧ � �)(x)

=
D(y) · g

(⌧ � �)(y)
for any two x, y with (⌧ � �)(x) 6= 0 6= (⌧ � �)(y). (96)

Suppose for a moment that (95) and (96) were true. Then it is clear that if we define a
D

by (94), the formula (93) holds for any x 2 A satisfying (⌧ � �)(x) 6= 0. But (93) also
holds when x 2 A is such that (⌧ � �)(x) = 0, because then D(x) = 0 also, by Lemma
26.

We first prove (95). Let x, y 2 A be such that (⌧ � �)(x) 6= 0 6= (⌧ � �)(y). Then
we have

0 = D(xy � yx) = D(x)⌧(y) + �(x)D(y)�D(y)⌧(x)� �(y)D(x) =

= D(x)(⌧(y)� �(y))�D(y)(⌧(x)� �(x)),
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so that
D(x)(⌧(y)� �(y)) = D(y)(⌧(x)� �(x)). (97)

Now define a function h : A⇥ A ! A by setting

h(z, w) = GCD(⌧(z)� �(z), ⌧(w)� �(w)) for z, w 2 A.

By the choice of x and y, we have h(x, y) 6= 0. Divide both sides of (97) by h(x, y):

D(x)
⌧(y)� �(y)

h(x, y)
= D(y)

⌧(x)� �(x)

h(x, y)
. (98)

Then it is true that

GCD(
⌧(y)� �(y)

h(x, y)
,

⌧(x)� �(x)

h(x, y)
) = 1.

Therefore we deduce from (98) that

⌧(x)� �(x)

h(x, y)

�

�

D(x),

i.e. that
(⌧ � �)(x)

�

�

D(x) · h(x, y) (99)

for any x, y 2 A with (⌧ � �)(x) 6= 0 6= (⌧ � �)(y). Let S = A\ ker(⌧ � �). Then from
(99) and property (88) of the GCD we get

(⌧ � �)(x)
�

�

D(x) ·GCD(h(x, S)) (100)

for all x 2 A with (⌧ � �)(x) 6= 0. But

GCD(h(x, S)) = GCD

⇣

�

GCD

�

(⌧ � �)(x), (⌧ � �)(s)
�

: s 2 S

 

⌘

=

= GCD

�

(⌧ � �)(S) [ {(⌧ � �)(x)}
�

=

= GCD

�

(⌧ � �)(A) [ {(⌧ � �)(x)}
�

=

= g.

Thus (100) is equivalent to (95) which was to be proved.
Finally, we prove (96). Let x, y 2 A be such that (⌧ � �)(x) 6= 0 6= (⌧ � �)(y). Then

0 = D(xy � yx) = D(x)⌧(y) + �(x)D(y)�D(y)⌧(x)� �(y)D(x) =

= D(x)(⌧(y)� �(y))�D(y)(⌧(x)� �(x)),

which, after multiplication by g and division by (⌧ ��)(x) · (⌧ ��)(y) proves (96). This
finishes the proof of the existence of a

D

, and the proof of the theorem is complete.
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Corollary 28. Let � and ⌧ be di↵erent algebra endomorphisms on a unique factorization
domain A (for example C[x1, . . . , xn

]). Then

ker(⌧ � �) = kerD

for any nonzero (�, ⌧)-derivation D on A.

Proof. Let D be a nonzero (�, ⌧)-derivation. By uniqueness of a
D

in Theorem 27, we
must have a

D

6= 0. Using and the absence of zero-divizors, we see that a
D

· (⌧��)(x)
g

= 0
if and only if (⌧ � �)(x) = 0.

Corollary 29. Let � and ⌧ be di↵erent algebra endomorphisms on a unique factorization
domain (for example C[x1, . . . , xn

]). Then the following two statements are equivalent.

1. Any (�, ⌧)-derivation of A is inner,

2. g = GCD

�

(⌧ � �)(A)
�

is an invertible element of A.

Proof. Suppose any (�, ⌧)-derivation is inner. By Theorem 27, the map

⌧ � �

g

is a (�, ⌧)-derivation. Since this is inner by assumption, there is some element r 2 A

such that for all x 2 A,

(⌧ � �)(x)

g

= r⌧(x)� �(x)r = r(⌧(x)� �(x)) = rg

(⌧ � �)(x)

g

.

From the uniqueness of a
D

, we must have rg = 1, so g is invertible.
Conversely, if g is invertible, then by Theorem 27 we have for any (�, ⌧)-derivation

D,

D(x) = a

D

· (⌧ � �)(x)

g

= a

D

g

�1 · ⌧(x)� �(x) · a
D

g

�1

so D = �

aDg

�1 , with the notation from Definition 4. Thus any (�, ⌧)-derivation is inner
and the proof is finished.

The following proposition is useful for explicit calculations.

Proposition 30. Let � and ⌧ be di↵erent nonzero algebra endomorphism on a unique
factorization domain A. Let X ✓ A be a set of generators of A. Then

GCD

�

(⌧ � �)(A)
�

= GCD

�

(⌧ � �)(X)
�

. (101)
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Proof. We show that each side of (101) divides the other. Using (89) it follows that the
left hand side divides the right hand side. We will now show that

GCD

�

(⌧ � �)(X)
�

�

�

�

(⌧ � �)(a) for any a 2 A, (102)

from which the conclusion will follow, by the property (88) of the greatest common
divizor. Since ⌧ � � is a linear operator, it is enough to prove that (102) holds for any
element a of the form

a = x1 · . . . · xn

(103)

where x

i

2 X for i = 1, . . . , n. We will use induction over n. When n = 0, we have
a = 1 as a product over an empty set, and (102) holds, since �(1) = 1 = ⌧(1) for nonzero
endomorphisms � and ⌧ . When n = 1, we have a 2 X, and (102) holds by definition.
Assume now that (102) holds for any a of the form (103) with n  k, where k � 1.
Then, if a is a product of k + 1 generators, we can factorize it into two elements b and
c, both of which are of the form (103) with 1  n  k. Then we get, since ⌧ � � is a
(�, ⌧)-derivation on A,

(⌧ � �)(a) = (⌧ � �)(bc) = (⌧ � �)(b)�(c) + ⌧(b)(⌧ � �)(c),

which is divisible by GCD

�

(⌧��)(X)
�

by the induction hypothesis. Consequently (102)
holds for any a which is a product of k+1 generators. This which finishes the induction
step and the proof of the proposition.

Remark 14. Note that the Jackson q-di↵erentiation D

x,q

, q 2 C, considered in Section
3.3 acting on C[x] is precisely the (�, ⌧)-derivation (⌧ � �)/g from Theorem 27, with
�(p(x)) = p(qx) and ⌧ = id, because by Proposition 30, g = (id��)(x) = x� qx.

Proposition 31. Let � be a nonzero algebra endomorphism on C[x1, . . . , xn

]. Then
there are unique (�, �)-derivations @�

@xi
, i = 1, . . . , n, satisfying

@

�

@x

i

(x
j

) = �

i,j

for all i, j = 1, . . . , n. (104)

Furthermore, D(�,�)(C[x1, . . . , xn

]) is a free C[x1, . . . , xn

]-module of rank n, and the
(�, �)-derivations (104) form a basis.

Proof. Uniqueness of the operators @�
@xi

is clear, because they are uniquely determined

by the value on the generators x
i

of the algebra. To show existence, let @�
@xi

be the unique
linear operator on C[x1, . . . , xn

] satisfying

@

�

@x

i

(xk1
1 . . . x

kn
n

) = k

i

�(xk1
1 . . . x

ki�1

i�1 x
ki�1
i

x

ki+1

i+1 . . . x

kn
n

) (105)
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for all integers k

j

� 0, j = 1, . . . , n, where we interpret the right hand side as zero, if
k

i

= 0. Then it is easy to see that (104) is satisfied. We must show that (105) indeed
defines (�, �)-derivations. It is enough to show that @�

@xi
(ab) = @�

@xi
(a)�(b) + �(a) @�

@xi
(b)

for monomials a and b, because then the identity will hold for arbitrary polynomials as
well, by bilinearity.

@

�

@x

i

(xk1
1 . . . x

kn
n

· xl1
1 . . . x

ln
n

) =
@

�

@x

i

(xk1+l1
1 . . . x

kn+ln
n

) =

= (k
i

+ l

i

)�(xk1+l1
1 . . . x

ki�1+li�1

i�1 x

ki+li�1
i

x

ki+1+li+1

i+1 . . . x

kn+ln
n

) =

= k

i

�(xk1
1 . . . x

ki�1

i�1 x
ki�1
i

x

ki+1

i+1 . . . x

kn
n

) · �(xl1
1 . . . x

ln
n

)+

+ �(xk1
1 . . . x

kn
n

) · l
i

�(xl1
1 . . . x

li�1

i�1x
li�1
i

x

li+1

i+1 . . . x
ln
n

) =

=
@

�

@x

i

(xk1
1 . . . x

kn
n

) · �(xl1
1 . . . x

ln
n

)+

+ �(xk1
1 . . . x

kn
n

) · @

�

@x

i

(xl1
1 . . . x

ln
n

)

We now show that X = { @�
@x1

, . . . ,

@�
@xn

} form a basis for D(�,�)(C[x1, . . . , xn

]). X is a
linearly independent set, because if

n

X

i=1

p

i

(x1, . . . , xn

)
@

�

@x

i

= 0

for some polynomials p

i

2 C[x1, . . . , xn

], we apply both sides to x

j

to obtain p

j

= 0
for j = 1, . . . , n. Also, D(�,�)(C[x1, . . . , xn

]) is generated by X, since if D is any (�, �)-
derivation on C[x1, . . . , xn

], the (�, �)-derivation
n

X

i=1

D(x
i

)
@

�

@x

i

andD coincide on every generator x
j

and hence must be equal. The proof is finished.

Theorem 27 and Proposition 31, together with the trivial fact that the zero map 0 is
the only (0, 0)-derivation (this holds in any algebra A such that A = A ·A, in particular
when A has a unit), gives a complete classification of all possible (�, ⌧)-derivations on
the algebra of complex polynomials in n indeterminates, in the case when � and ⌧ are
algebra endomorphisms.

7 Equations for �-derivations on the quantum plane

In this section we shall consider �-derivations on the quantum plane A which is the
algebra with unit I and generators A,B satisfying the defining commutation relation

AB � qBA = 0,
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where q 2 C. In Section 7.2 we will assume that � is a�ne, and we find matrix
equations which must be satisfied for a�ne �-derivations. We begin however with a
general theorem.

7.1 The general case

Proposition 32. Let � be a linear operator on the quantum plane, and let D

�

be a
�-derivation. Write

D

�

(A) =
X

0  i, j  n

i+ j  n

↵

ij

B

i

A

j

, D

�

(B) =
X

0  i, j  n

i+ j  n

�

ij

B

i

A

j

,

�(A) =
X

0  i, j  n

i+ j  n

�

ij

B

i

A

j

, �(B) =
X

0  i, j  n

i+ j  n

�

ij

B

i

A

j

,

where n � 0 is an integer and ↵

ij

, �

ij

, �

ij

, �

ij

are complex numbers. Then the following
five equations are true.

�00�00 � �00↵00q = 0, (106)

↵

��1,0 +
X

0  i, k  n

i+ k  �

(�
i0�k0 � �

i0↵k0q) = 0 when 1  �  n, (107)

�0,µ�1q +
X

0  j, l  n

j + l  µ

(�0j�0l � �0j↵0lq) = 0 when 1  µ  n, (108)

↵

��1,µq
µ � �

�,µ�1q +
X

0  i, j, k, l  n

i+ j, k + l  n

i+ k = �, j + l = µ

(�
ij

�

kl

q

jk � �

ij

↵

kl

q

jk+1) = 0 when 2  �+ µ  n+ 1,

(109)
X

0  i, j, k, l  n

i+ j, k + l  n

i+ k = �, j + l = µ

(�
ij

�

kl

q

jk � �

ij

↵

kl

q

jk+1) = 0 when 0  �, µ  2n and n+ 1 < �+ µ  2n.

(110)
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Proof. We have

0 = D

�

(AB � qBA) = D

�

(A)B � qD

�

(B)A+ �(A)D
�

(B)� q�(B)D
�

(A) =

=
X

0  i, j  n

i+ j  n

(↵
ij

B

i

A

j

B

| {z }

=q

j
B

i+1
A

j

�q�

ij

B

i

A

j

A) +

+
X

0  i, j  n

i+ j  n

X

0  k, l  n

k + l  n

(�
ij

B

i

A

j

�

kl

B

k

A

l � q�

ij

B

i

A

j

↵

kl

B

k

A

l) =

=
n+1
X

i=1

↵

i�1,0q
0
B

i

A

0 �
n+1
X

j=1

�0,j�1qB
0
A

j +

+
X

1  i, j  n+ 1
i+ j  n+ 1

(↵
i�1,jq

j � �

i,j�1q)B
i

A

j +

+
X

0  i, j  n

i+ j  n

X

0  k, l  n

k + l  n

(�
ij

�

kl

q

jk � �

ij

↵

kl

q

jk+1)Bi+k

A

j+l =

=
n+1
X

i=1

(↵
i�1,0B

i � �0,i�1qA
i) +

+
X

1  i, j  n+ 1
i+ j  n+ 1

(↵
i�1,jq

j � �

i,j�1q)B
i

A

j +

+
X

0  �, µ  2n
�+ µ  2n

�

X

0  i, j, k, l  n

i+ j, k + l  n

i+ k = �, j + l = µ

(�
ij

�

kl

q

jk � �

ij

↵

kl

q

jk+1)
�

B

�

A

µ (111)

For shorter notation, let

⇥
�µ

=
X

0  i, j, k, l  n

i+ j, k + l  n

i+ k = �, j + l = µ

(�
ij

�

kl

q

jk � �

ij

↵

kl

q

jk+1)
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Then the equation can be written

0 = ⇥00I +
n+1
X

�=1

(↵
��1,0 +⇥

�,0)B
� +

n+1
X

µ=1

(��0,µ�1q +⇥0,µ)A
µ +

+
X

1  �, µ  n+ 1
�+ µ  n+ 1

(↵
��1,µq

µ � �

�,µ�1q +⇥
�µ

)B�

A

µ +

+
X

0  �, µ  2n
n+ 1 < �+ µ  2n

⇥
�µ

B

�

A

µ (112)

Now each coe�cient has to be zero so we get the following equations:

1. ⇥00 = 0.

2. ↵

��1,0 +⇥
�0 = 0 when 1  �  n+ 1.

3. �0,µ�1q +⇥0µ = 0 when 1  µ  n+ 1.

4. ↵

��1,µq
µ � �

�,µ�1q +⇥
�µ

= 0 when 1  �, µ  n+ 1 and �+ µ  n+ 1.

5. ⇥
�µ

= 0 when 0  �, µ  2n and n+ 1 < �+ µ  2n.

The three first of these equations can be simplified by substituting the expression for
⇥

�µ

.

0 = ⇥00 =
X

0i,j,k,ln

i+j,k+ln

i+k=0,j+l=0

(�
ij

�

kl

q

jk � �

ij

↵

kl

q

jk+1) = �00�00 � �00↵00q

In the same way, the second equation can also be written more simple.

0 = ↵

��1,0 +⇥
�,0 = ↵

��1,0 +
X

0  i, j, k, l  n

i+ j, k + l  n

i+ k = �

j + l = 0 ) j = l = 0

(�
ij

�

kl

q

jk � �

ij

↵

kl

q

jk+1) =

= ↵

��1,0 +
X

0  i, k  n

i+ k  �

(�
i0�k0 � �

i0↵k0q)

when 1  �  n. Similarly the third equation may be simplified to the following.

�0,µ�1q +
X

0  j, l  n

j + l  µ

(�0j�0l � �0j↵0lq) = 0

when 1  µ  n. The proof is finished.
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7.2 Matrix equations in the a�ne case

Let us study the conditions (1-5) above in more detail when n = 1. The first equation
does not depend of n, so it is the same.

�00�00 � q�00↵00 = 0 (113)

For the second condition, note that if an integer � fulfills 1  �  2 then either � = 1
or � = 2. Thus we get two equations. First, when � = 1,

↵0,0 + �10�00q
0 � �10↵00q

1

| {z }

i=1,k=0

+ �00�10q
0 � �00↵10q

1

| {z }

i=0,k=1

= 0, (114)

and when � = 2,
↵1,0 + �10�10q

0 � �10↵10q
1

| {z }

i=1,k=1

= 0. (115)

The third condition is analogous to the second. We get two equations again. First,
when µ = 1,

�0,0q + �01�00q
0 � �01↵00q

1

| {z }

j=1,l=0

+ �00�01q
0 � �00↵01q

1

| {z }

j=0,l=1

= 0, (116)

and when µ = 2,
�0,1q + �01�01q

0 � �01↵01q
1

| {z }

j=1,l=1

= 0. (117)

For the fourth equation, observe that 1  �, µ  2 and �+µ  2 imply that � = µ = 1.
So we get only one equation. To write it down, we need to investigate the sum ⇥11. The
conditions on the indices are

0  i, j, k, l  1,

i+ j, k + l  1,

i+ k = j + l = 1.

This gives two terms, one when i = l = 1, j = k = 0, and one when i = l = 0, j = k = 1.
Explicitly the equation is

↵01q � �10q + �10�01q
0 � �10↵01q

1

| {z }

i=l=1,j=k=0

+ �01�10q
1 � �01↵10q

2

| {z }

i=l=0,j=k=1

= 0. (118)

The fifth and last condition will not occur in the case n = 1 since there are no numbers
x satisfying 2 < x  2. Thus, in matrix notation, we have the following equation.
2

6

6

6

6

6

6

4

��00q 0 0 �00 0 0
1� �10q ��00q 0 �10 �00 0
��01q 0 ��00q �q + �01 0 �00

0 1� �10q 0 0 �10 0
0 ��01q

2
q � �10q 0 �q + �01q �10

0 0 ��01q 0 0 �q + �01

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

↵00

↵10

↵01

�00

�10

�01

3

7

7

7

7

7

7

5

= 0 (119)
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The rows corresponds to equations (113), (114), (116), (115), (118), and (117), respec-
tively.

So far we have not used the fact that the quantum plane has no zero-divizors. Using
this fact and Corollary 14 we can say more. Namely we know that if D

�

is nonzero, then
� must be a homomorphism of algebras. The following proposition gives a necessary
condition for a�ne endomorphisms of the quantum plane when q 6= 0,±1.

Proposition 33. Let A be the quantum plane with generators A and B and the relation
AB = qBA, where q 2 C, and suppose q 6= 0,±1. Let � : A ! A be an algebra
endomorphism such that

�(A) = �00I + �10B + �01A

�(B) = �00I + �10B + �01A

Then exactly one of the following conditions is satisfied.

1. �(A) = 0 or �(B) = 0.

2. �(A) = �01A and �(B) = �10B, and �01, �10 6= 0.

Proof. Suppose that we are given an endomorphism � of A of the form in the proposition.
It is clear that the two conditions cannot be satisfied simultaneously. Using that AB =
qBA and that � is an algebra endomorphism we can do the following calculation.

0 = �(AB � qBA) = �(A)�(B)� q�(B)�(A) =

= (�00I + �10B + �01A)(�00I + �10B + �01A)

�q(�00I + �10B + �01A)(�00I + �10B + �01A) =

= (�00�00 � q�00�00)I

+
�

�00�10 + �10�00 � q(�00�10 + �10�00)
�

B

+
�

�00�01 + �01�00 � q(�00�01 + �01�00)
�

A

+(�10�10 � q�10�10)B
2

+
�

�10�01 + q�01�10 � q(�10�01 + q�01�10)
�

BA

+(�01�01 � q�01�01)A
2 =

= (1� q)�00�00I

+(1� q)(�00�10 + �10�00)B

+(1� q)(�00�01 + �01�00)A

+(1� q)�10�10B
2

+(1� q

2)�10�01BA

+(1� q)�01�01A
2

(120)
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Since the set {Bi

A

j

�

�

i, j � 0} is linear independant, each coe�cient must be zero and
q 6= 0,±1, we have the following equations.

�00�00 = 0 (121)

�00�10 + �10�00 = 0 (122)

�00�01 + �01�00 = 0 (123)

�10�10 = 0 (124)

�10�01 = 0 (125)

�01�01 = 0 (126)

To proceed, we now suppose that condition 1 of Proposition 33 is not satisfied, that is,
we suppose that at least one of �00, �10, �01 is nonzero, and that at least one of �00, �10, �01
is nonzero. Then we show that condition 2 of Proposition 33 is satisfied. By equation
(121), at least one of �00 and �00 is zero. Assume first that �00 6= 0, and �00 = 0. Then,
equations (122) and (123) imply that �10 = �01 = 0, which contradicts the assumption
about �(B) being nonzero. Similarly, if �00 = 0 and �00 6= 0, then equations (122) and
(123) imply that �10 = �01 = 0, which contradicts the assumption about �(A) being
nonzero. Hence in fact we must have �00 = �00 = 0. Now if �10 6= 0, equations (124)
and (125) imply that �10 = �01 = 0, which again is a contradiction. Similarly if �01 6= 0,
then equations (125) and (126) imply that �10 = �01 = 0, which is a contradiction.
Thus �10 = �01 = 0, so that the only coe�cients which are nonzero are �01 and �10, as
desired.

Corollary 34. Let � : A ! A is a linear operator on the quantum plane with q 6= 0,±1,
and let D

�

be a �-derivation. Write

�(A) = �00I + �10B + �01A,

�(B) = �00I + �10B + �01A,

D

�

(A) = ↵00I + ↵10B + ↵01A,

D

�

(B) = �00I + �10B + �01A,

where ↵

ij

, �

ij

, �

ij

, �

ij

2 C. Then one of the following equations is satisfied.

2

6

6

6

6

6

6

4

��00q 0 0
1� �10q ��00q 0
��01q 0 ��00q

0 1� �10q 0
0 ��01q

2
q � �10q

0 0 ��01q

3

7

7

7

7

7

7

5

2

4

↵00

↵10

↵01

3

5 = 0 (127)
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2

6

6

6

6

6

6

4

�00 0 0
�10 �00 0

�q + �01 0 �00

0 �10 0
0 �q + �01q �10

0 0 �q + �01

3

7

7

7

7

7

7

5

2

4

�00

�10

�01

3

5 = 0 (128)

2

6

6

6

6

4

1� �10q 0 0 0 0 0
0 0 0 �q + �01 0 0
0 1� �10q 0 0 0 0
0 0 q � �10q 0 �q + �01q 0
0 0 0 0 0 �q + �01

3

7

7

7

7

5

2

6

6

6

6

6

6

4

↵00

↵10

↵01

�00

�10

�01

3

7

7

7

7

7

7

5

= 0 (129)

Proof. Since the quantum plane has no zero divizors, by Corollary 14, it is enough to
consider the case when � is an algebra endomorphism on A, since otherwise we must
have ↵

ij

= �

ij

= 0 for all i, j so that these equations are trivially satisfied. Then, by
Proposition 33, either �(A) = 0 or �(B) = 0, or �(A) = �01A and �(B) = �10B. In
the first case, substituting �00 = �10 = �01 = 0 into the matrix equation (119) and
simplifying, we come to the first equation, (127). Similarly, if �(B) = 0, substitution of
�00 = �10 = �01 = 0 into (119) gives the second matrix equation in the corollary, equation
(128). Finally, if �(A) = �01A and �(B) = �10B, then �00 = �10 = �00 = �01 = 0 and
substituting this in (119) and removing the first row since it is zero, we get equation
(129).

8 Homogenous (�, ⌧ )-derivations on graded algebras

8.1 Necessary conditions on the grading semigroup

In this section we consider (�, ⌧)-derivations on semigroup-graded associative algebras
with homogenous � and ⌧ , and state some necessary conditions which the semigroup
must satisfy if a given (�, ⌧)-derivation is homogenous.

Proposition 35. Let S be s semigroup, A = �
s2SAs

an S-graded associative algebra.
Let �, ⌧ be homogenous linear operators on A, D 2 D(�,⌧)(A) be a (�, ⌧)-derivation on
A, and suppose D is homogenous. Then for any s 2 S and t 2 S there is an element
u 2 S such that

D(A
s

)⌧(A
t

) ✓ A

u

and D(A
s

A

t

) ✓ A

u

and �(A
s

)D(A
t

) ✓ A

u

. (130)
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The element u can be chosen arbitrary if and only if

D(A
s

)⌧(A
t

) = D

�

(A
s

A

t

) = �(A
s

)D(A
t

) = 0. (131)

Otherwise, when (131) is not true, u must be unique.

Proof. Since �, ⌧ , and D are homogenous, and since the product of homogenous ele-
ments of A is homogenous, there are some u1, u2, u3 2 S such that D(A

s

A

t

) ✓ A

u1 ,
D(A

s

)⌧(A
t

) ✓ A

u2 , and �(A
s

)D(A
t

) ✓ A

u3 . We show that u1, u2, u3 can be chosen to
be equal. For a

s

2 A

s

and a

t

2 A

t

we have

D(a
s

a

t

) = D(a
s

)⌧(a
t

) + �(a
s

)D(a
t

) (132)

since D is a (�, ⌧)-derivation. If D(A
s

A

t

) = 0, then u1 can be chosen arbitrary, and
from (132) follows that D(A

s

)⌧(A
t

) = ��(A
s

)D(A
t

) and therefore we can take u3 = u2.
Hence u = u2 satisfies (130), and is unique, unless D(A

s

)⌧(A
t

) = ��(A
s

)D(A
t

) = 0.
Suppose now that D(A

s

A

t

) 6= 0. Then u1 is unique, and we take u = u1. Using (132)
and that each element of A is uniquely expressed as a finite sum

P

x

g

of homogenous
elements x

g

2 A

g

, we have D(A
s

)⌧(A
t

) ✓ A

u

and �(A
s

)D(A
t

) ✓ A

u

. Hence the
condition (130) holds.

Proposition 36. Let S be a semigroup, A = �
s2SAs

an S-graded associative algebra, ⌧
a homogenous linear operator of right degree m 2 S, � a homogenous linear operator of
right degree n 2 S, and D a (�, ⌧)-derivation, which is also homogenous of right degree
k 2 S. Then for all t 2 S such that there is some left cancellable s 2 S such that
D(A

s

A

t

) 6= 0, it is true that

1. D(A
s

)⌧(A
t

) 6= 0 =) tk = ktm.

2. �(A
s

)D(A
t

) 6= 0 =) tk = ntk.

Proof. By Proposition 35 we find a u such that (130) holds. But we also have

D(A
s

A

t

) ✓ D(A
st

) ✓ A

stk

D(A
s

)⌧(A
t

) ✓ A

sk

A

tm

✓ A

sktm

�(A
s

)D(A
t

) ✓ A

sn

A

tk

✓ A

sntk

If D(A
s

A

t

) 6= 0 and D(A
s

)⌧(A
t

) 6= 0, we have that A
stk

\ A

u

6= 0 and A

sktm

\ A

u

6= 0,
and thus A

stk

= A

u

= A

sktm

. Hence stk = sktm, and since s is left cancellable,
tk = ktm. Similarly, if D(A

s

A

t

) 6= 0 and �(A
s

)D(A
t

) 6= 0, we have that A
stk

\ A

u

6= 0
and A

sntk

\ A

u

6= 0, and thus A
stk

= A

u

= A

sntk

. Hence stk = sntk, and since s is left
cancellable, tk = ntk.

When the grading semigroup is a group, we can say more, as expressed in the fol-
lowing corollary.
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Corollary 37. Let � be a group with its identity denoted 1, and A = �
g2�Ag

a �-
graded algebra. Suppose ⌧ is homogenous of right degree m 2 �, � is homogenous of
right degree n 2 �, and D is a (�, ⌧)-derivation, homogenous of right degree k 2 �.
Suppose D(A1A1) 6= 0. Then

1. If D(A1)⌧(A1) 6= 0 then m = 1

2. If �(A1)D(A1) 6= 0 then n = 1

Proof. Taking t = s = 1 in Proposition 36, we deduce that if D(A1)⌧(A1) 6= 0 then
1k = k1m which implies m = 1. And if �(A1)D(A1) 6= 0 then 1k = n1k which implies
n = 1.

8.2 A projection formula

Let � be a group, and A = �
g2�Ag

a �-graded algebra. For elements a 2 A, g 2 �,
denote by a

g

2 A

g

the g:th homogenous components of a. Equivalently, a
g

is the element
obtained by projecting a onto the subspace A

g

. We have

a =
X

g2�

a

g

(133)

where a

g

2 A

g

for g 2 � and there are only finitely many elements g 2 � such that a
g

is non nonzero. The following proposition can

Proposition 38. Let A =
L

g2� Ag

be a �-graded associative algebra, where � is a
group. Let � and ⌧ be linear operators on A, not necessarily homogenous, and D a
(�, ⌧)-derivation in A. Suppose a, b 2 A are such that �(a) and ⌧(b) are homogenous
elements of A. Let s 2 � and t 2 � be such that �(a) 2 A

s

and ⌧(b) 2 A

t

. Then we
have the following formula

(D(ab))
g

= (D(a))
gt

�1
⌧(b) + �(a)(D(b))

s

�1
g

(134)

Proof. Using that D is a (�, ⌧)-derivation we have D(ab) = D(a)⌧(b) + �(a)D(b). If we
use (133) we have

D(ab) =
X

g2�

(D(a))
g

⌧(b) + �(a)
X

g2�

(D(b))
g

(135)

Since the mappings g 7! gt

�1 and g 7! s

�1
g are bijections of � we can rewrite (135) as

D(ab) =
X

g2�

(D(a))
gt

�1
⌧(b) +

X

g2�

�(a)(D(b))
s

�1
g

=

=
X

g2�

�

(D(a))
gt

�1
⌧(b) + �(a)(D(b))

s

�1
g

�

(136)
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Now since t was chosen so that ⌧(b) 2 A

t

, we have

(D(a))
gt

�1
⌧(b) 2 A

gt

�1
A

t

✓ A

gt

�1
t

= A

g

and similarly, s was chosen so that �(a) 2 A

s

, so

�(a)(D(b))
s

�1
g

2 A

s

A

s

�1
g

✓ A

ss

�1
g

= A

g

Thus (D(a))
gt

�1
⌧(b)+�(a)(D(b))

s

�1
g

2 A

g

is homogenous of degree g. This fact together
with formula (136) imply the desired relation (134).

Corollary 39. Let A =
L

g2� Ag

be a �-graded associative algebra, where � is a group.
Let � and ⌧ be homogenous linear operators on A, and D a (�, ⌧)-derivation in A, and
a, b 2 A be homogenous. Let t 2 � be such that ⌧(b) 2 A

t

and s 2 � be such that
�(a) 2 A

s

. Then D(ab) is a homogenous element of A of degree h 2 �, i.e. D(ab) 2 A

h

,
if and only if

(D(a))
gt

�1 · ⌧(b) + �(a) · (D(b))
s

�1
g

6= 0 =) g = h (137)

for all g 2 �.

9 Generalized products and Jacobi type identities

In this section we consider some general conditions which are necessary and su�cient
for � and (�, ⌧)-derivations to be closed under certain types of products. Throughout,
A will denote an associative algebra.

First we derive conditions for D
�

(A) to be closed under the multiplication in L(A),
that is, function composition. Let D

�

, E

�

2 D
�

(A). Then

D

�

E

�

(ab) = D

�

(E
�

(ab)) = D

�

(E
�

(a)b+ �(a)E
�

(b)) =

= (D
�

E

�

)(a)b+ (�E
�

)(a)D
�

(b) + (D
�

�)(a)E
�

(b) + �

2(a)(D
�

E

�

)(b) (138)

Comparing (138) with Definition 2 of a �-derivation we get the following result:

Proposition 40. Let D
�

and E

�

2 D
�

(A). Then D

�

E

�

2 D
�

(A) if and only if

(�E
�

)(a)D
�

(b) + (D
�

�)(a)E
�

(b) + �

2(a)(D
�

E

�

)(b) = �(a)(D
�

E

�

)(b) (139)

for all a, b 2 A.

Corollary 41. If � is an idempotent, i.e. �

2 = �, and if

(�E
�

)(a)D
�

(b) + (D
�

�)(a)E
�

(b) = 0 (140)

for all D
�

, E

�

2 D
�

(A) and a, b 2 A, then D
�

(A) is a subalgebra of L(A).
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9.1 Lie algebra structure

One can deduce the following corollary by exchanging D

�

and E

�

in (138) and subtract-
ing the obtained equality from (138).

Corollary 42. Let D
�

and E

�

be �-derivations on A. If [�, D
�

](a)E
�

(b) = [�, E
�

](a)D
�

(b)
for all a, b 2 A, then D

�

E

�

� E

�

D

�

is a �

2-derivation.

Corollary 43. If �D
�

= D

�

� and �E

�

= E

�

� then D

�

E

�

� E

�

D

�

is a �

2-derivation.

Corollaries 42 and 43 also follow from the following more general proposition.

Proposition 44. Let k, l 2 Z�0, and let � 2 L(A) be a linear operator. Suppose D

�

k

is a �

k-derivation and E

�

l a �

l-derivation. Then [D
�

k , E
�

l ] is a �

k+l-derivation if and
only if

[�l

, D

�

k ](a)E
�

l(b) = [�k

, E

�

l ](a)D
�

k(b)

for all a, b 2 A.

Proof. Consider the following calculation:

�

D

�

kE
�

l � E

�

lD
�

k)(ab) =

= D

�

k

�

E

�

l(a)b+ �

l(a)E
�

l(b)
�

� E

�

l

�

D

�

k(a)b+ �

k(a)D
�

k(b)
�

=

= D

�

k(E
�

l(a))b+ �

k(E
�

l(a))D
�

k(b) +D

�

k(�l(a))E
�

l(b) + �

k(�l(a))D
�

k(E
�

l(b))�
� E

�

l(D
�

k(a))b� �

l(D
�

k(a))E
�

l(b)� E

�

l(�k(a))D
�

k(b)� �

l(�k(a))E
�

l(D
�

k(b)) =

= (D
�

kE
�

l � E

�

lD
�

k)(a)b+ �

k+l(a)(D
�

kE
�

l � E

�

lD
�

k)(b)+

+ (�k

E

�

l � E

�

l�
k)(a)D

�

k(b)� (�l

D

�

k �D

�

k�
l)(a)E

�

l(b) =

This proves the claim.

Corollary 45. Let k, l 2 Z�0, � 2 L(A), and D 2 D
�

k(A), E 2 D
�

l(A). If �l commutes
with D and �

k commutes with E, then [D,E] 2 D
�

k+l(A)

Corollary 46. Let k, l 2 Z�0, � 2 L(A) and D 2 D
�

k(A), E 2 D
�

l(A). If � commutes
with D and E then [D,E] 2 D

�

k+l(A).

For a linear operator � 2 L(A), denote by |�| the order of �, that is the smallest
positive number k such that �k = 1, the identity of L(A). If no such number exists, we
write |�| = 1.

Corollary 47. Let A be an associative algebra, and let � 2 L(A) be a linear operator
on A such that [�,D

�

k(A)] = 0 for every k 2 Z�0. Then
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1. If |�| < 1, then the linear space

D(�)(A) =
M

k2Z|�|

D
�

k(A) (141)

is a Z|�|-graded Lie algebra under the multiplication [D
�

k , E
�

l ] = D

�

kE
�

l�E

�

lD
�

k .

2. If |�| = 1 then the linear space

D(�)(A) =
M

k2Z�0

D
�

k(A) (142)

is an Z�0-graded Lie algebra under the multiplication [D
�

k , E
�

l ] = D

�

kE
�

l �
E

�

lD
�

k .

Note that the subspace D
�

0(A) of D(�)(A) consisting of degree zero elements is a Lie
subalgebra, and it is precisely the standard Lie algebra of derivations in the algebra A.

Define subspaces

E
k

= {D 2 D
�

k(A)
�

� [�, D] = 0} = D
�

k(A)
\

ker(ad �)

where ad � : L(A) ! L(A) is defined by (ad �)(B) = �B � B� for any B 2 L(A). If
D 2 E

k

and E 2 E
l

we use the Jacobi identity to establish

[�, [D,E]] = �[D, [E,�]]� [E, [�, D]] = 0

which implies that [D,E] 2 E
k+l

.

Corollary 48. Let A be associative and � a linear operator A. Then

1. If |�| < 1 there is a Z|�|-graded Lie algebra

E(�)(A) =
M

k2Z|�|

E
k

(143)

2. If |�| = 1 there is an Z�0-graded Lie algebra

E(�)(A) =
M

k2Z�0

E
k

(144)

where E
k

= D
�

k(A)
T

ker(ad �).
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9.2 The f bracket

Fix two linear operators � and ⌧ on A. Let f : D(�,⌧)(A) ⇥ D(�,⌧)(A) ⇥ A ! A be a
function which is linear in the third variable, and denote its value on (D,E, a) by f

D,E

(a).
In other words, assign for each pair (D,E) of (�, ⌧)-derivations a linear operator f

D,E

on A. Now define the f -bracket

[·, ·]
f

: D(�,⌧)(A)⇥D(�,⌧)(A) ! L(A)

[D,E]
f

= DE � f

D,E

ED

We want to find conditions on the function f which ensure that for given D 2 D(�,⌧)(A)
and E 2 D(�,⌧)(A) the bracket product [D,E]

f

is again in the linear space D(�,⌧)(A) of
(�, ⌧)-derivations.

Proposition 49. Let D 2 D(�,⌧)(A) and E 2 D(�,⌧)(A). Then [D,E]
f

2 D(�,⌧)(A) if
and only if

D(E(a))⌧(⌧(b)) + �(E(a))D(⌧(b)) +D(�(a))⌧(E(b)) + �(�(a))D(E(b))

�f

D,E

E(D(a))⌧(⌧(b))� f

D,E

�(D(a))E(⌧(b))

�f

D,E

E(�(a))⌧(D(b))� f

D,E

�(�(a))E(D(b))

�DE(a)⌧(b) + f

D,E

ED(a)⌧(b)� �(a)DE(b) + �(a)f
D,E

ED(b) = 0

(145)

for all a, b 2 A.

Proof. The proof is given by the following computation:

0 = [D,E]
f

(ab)�
⇣

[D,E]
f

(a)⌧(b) + �(a)[D,E]
f

(b)
⌘

=

=
⇣

DE � f

D,E

ED

⌘

(ab)�
⇣

DE � f

D,E

ED

⌘

(a)⌧(b)� �(a)
⇣

DE � f

D,E

ED

⌘

(b) =

= D

⇣

E(a)⌧(b) + �(a)E(b)
⌘

� f

D,E

E

⇣

D(a)⌧(b) + �(a)D(b)
⌘

�DE(a)⌧(b) + f

D,E

ED(a)⌧(b)� �(a)DE(b) + �(a)f
D,E

ED(b) =

= D(E(a))⌧(⌧(b)) + �(E(a))D(⌧(b)) +D(�(a))⌧(E(b)) + �(�(a))D(E(b))

� f

D,E

E(D(a))⌧(⌧(b))� f

D,E

�(D(a))E(⌧(b))

� f

D,E

E(�(a))⌧(D(b))� f

D,E

�(�(a))E(D(b))

�DE(a)⌧(b) + f

D,E

ED(a)⌧(b)� �(a)DE(b) + �(a)f
D,E

ED(b)

We get the following corollary for �-derivations.
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Corollary 50. Let D 2 D
�

(A) and E 2 D
�

(A). Then [D,E]
f

2 D
�

(A) if and only if

�(E(a))D(b) +D(�(a))E(b) + �(�(a))D(E(b))

� f

D,E

E(D(a))b� f

D,E

�(D(a))E(b)

� f

D,E

E(�(a))D(b)� f

D,E

�(�(a))E(D(b))

f

D,E

ED(a)b� �(a)DE(b) + �(a)f
D,E

ED(b) = 0 (146)

for all a, b 2 A.

Corollary 50 may be used to state some su�cient conditions which guarantee that
for given �-derivations D and E the f -bracket [D,E]

f

is again a �-derivation.

Proposition 51. Let D 2 D
�

(A) and E 2 D
�

(A). If

1. f

D,E

(ab) = f

D,E

(a)b for all a, b 2 A,

2. �E � f

D,E

E� = 0,

3. D� � f

D,E

�D = 0,

4. �(�(a)) = �(a) for all a 2 A,

5. f

D,E

(�(�(a)))E(D(b)) = �(a)f
D,E

(E(D(b))) for all a, b 2 A,

then [D,E]
f

= DE � f

D,E

ED 2 D
�

(A).

Proof. It is enough to check that condition (146) in Corollary 50 is satisfied. This follows
from the following calculation:

�(E(a))D(b) +D(�(a))E(b) + �(�(a))D(E(b))

� f

D,E

(E(D(a))b)� f

D,E

(�(D(a))E(b))

� f

D,E

(E(�(a))D(b))� f

D,E

(�(�(a))E(D(b)))

+ f

D,E

(E(D(a)))b� �(a)D(E(b)) + �(a)f
D,E

(E(D(b)))

=�(E(a))D(b)� f

D,E

(E(�(a))D(b)) +D(�(a))E(b)� f

D,E

(�(D(a))E(b))

+ �(�(a))D(E(b))� �(a)D(E(b))

� f

D,E

(E(D(a))b) + f

D,E

(E(D(a)))b

� f

D,E

(�(�(a))E(D(b))) + �(a)f
D,E

(E(D(b)))

=(�(E(a))� f

D,E

(E(�(a))))D(b) + (D(�(a))� f

D,E

(�(D(a))))E(b)

+ (�(�(a))� �(a))D(E(b))

� f

D,E

(E(D(a)))b+ f

D,E

(E(D(a)))b

� f

D,E

(�(�(a)))E(D(b)) + �(a)f
D,E

(E(D(b)))

=0

by conditions 1-5.
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Proposition 52. If

1. f

D,E

(ab) = f

D,E

(a)b = af

D,E

(b) for all a, b 2 A

2. �E � f

D,E

E� = 0

3. D� � f

D,E

�D = 0

4. �(�(a)) = �(a) for all a 2 A

Then [D,E]
f

= DE � f

D,E

ED gives an algebra multiplication on the linear space of
�-derivations.

Proof. This follows directly from Proposition 51. The only property we have to check
is the fifth:

f

D,E

(�(�(a)))E(D(b)) = f

D,E

(�(�(a))E(D(b)))

= �(�(a))f
E,D

(E(D(b))) = �(a)f
D,E

(E(D(b)))

for all a, b 2 A because f

D,E

(ab) = f

D,E

(a)b = af

D,E

(b) for all a, b 2 A by assumption.

9.3 Generalization of ✏-derivations

Proposition 53. Let �

D

, �

E

2 L(A) be linear operators on A, and let D be a �

D

-
derivation of A and E be a �

E

-derivation of A. Then [D,E]
f

is a �

D

�

E

-derivation of
A if and only if

(�
D

E � f

D,E

E�

D

)(a)D(b) + (D�

E

� f

D,E

�

E

D)(a)E(b)+

�

D

�

E

(a)(f
D,E

ED)(b)� (f
D,E

�

E

�

D

)(a)(ED)(b) = 0 (147)

for all a, b 2 A.

Proof. [D,E]
f

2 D
�D�E(A) if and only if

0 =(DE � f

D,E

ED)(ab)�
⇣

(DE � f

D,E

ED)(a)b+ �

D

�

E

(a)(DE � f

D,E

ED)(b)
⌘

=

=D

⇣

E(a)b+ �

E

(a)E(b)
⌘

� f

D,E

E

⇣

D(a)b+ �

D

(a)D(b)
⌘

�

(DE)(a)b+ (f
D,E

ED)(a)b� �

D

�

E

(a)(DE)(b) + �

D

�

E

(a)(f
D,E

ED)(b) =

=(DE)(a)b+ (�
D

E)(a)D(b) + (D�

E

)(a)E(b) + (�
D

�

E

)(a)(DE)(b)�
(f

D,E

ED)(a)b� (f
D,E

�

E

D)(a)E(b)�
(f

D,E

E�

D

)(a)D(b)� (f
D,E

�

E

�

D

)(a)(ED)(b)�
(DE)(a)b+ (f

D,E

ED)(a)b� �

D

�

E

(a)(DE)(b) + �

D

�

E

(a)(f
D,E

ED)(b) =

=(�
D

E � f

D,E

E�

D

)(a)D(b) + (D�

E

� f

D,E

�

E

D)(a)E(b)+

�

D

�

E

(a)(f
D,E

ED)(b)� (f
D,E

�

E

�

D

)(a)(ED)(b)
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for all a, b 2 A.

Corollary 54. If D is a �

D

-derivation, E is a �

E

-derivation, and

1. (f
D,E

�

E

�

D

)(a)(ED)(b) = (�
D

�

E

)(a)(f
D,E

ED)(b)

2.
�

�

D

E � f

D,E

E�

D

�

(a)D(b) = 0

3.
�

D�

E

� f

D,E

�

E

D

�

(a)E(b) = 0

for all a, b 2 A, then [D,E]
f

is a �

D

�

E

-derivation.

Corollary 55. If D is a �

D

-derivation, E is a �

E

-derivation, and

1. f

D,E

(a)b = af

D,E

(b)

2. �

D

�

E

= �

E

�

D

3. �

D

E � f

D,E

E�

D

= 0

4. D�

E

� f

D,E

�

E

D = 0

for all a, b 2 A, then [D,E]
f

is a �

D

�

E

-derivation.

Example 3. Let A = �
�2�A�

be a �-graded associative algebra, where � is an abelian
group, and let ✏ be a commutation factor on � as defined in Section 3.2 by the relations
(15) through (18). Let �, � 2 � and consider the two elements C 2 D(A, ✏)

�

and
D 2 D(A, ✏)

�

. Define two linear operators �
C

and �

D

on A as follows. For a homogenous
element a 2 A

↵

, set

�

C

(a) = ✏(�,↵)a

�

D

(a) = ✏(�,↵)a

Then relation (24) shows that C is a �

C

-derivation, and D is a �

D

-derivation. Now
define a linear operator f

C,D

: A ! A by

f

C,D

(a) = ✏(�, �)a
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for homogenous a 2 A. Then for all a, b 2 A,

f

C,D

(a)b = (✏(�, �)a)b = a(✏(�, �)b) = af

C,D

(b)

(�
C

�

D

)(a) = �

C

(�
D

(a)) = �

C

(✏(�,↵)a) = ✏(�,↵)✏(�,↵)a =

= ✏(�,↵)✏(�,↵)a = �

D

(�
C

(a)) = (�
D

�

C

)(a)

(�
C

D � f

C,D

D�

C

)(a) = �

C

(D(a))� f

C,D

(D(�
C

(a))) =

= ✏(�, � + ↵)D(a)� f

C,D

(D(✏(�,↵)a)) =

= ✏(�, �)✏(�,↵)D(a)� ✏(�, �)✏(�,↵)D(a) = 0

(C�

D

� f

C,D

�

D

C)(a) = C(�
D

(a))� f

C,D

(�
D

(C(a))) =

= C(✏(�,↵)a)� f

C,D

(✏(�, � + ↵)C(a)) =

= ✏(�,↵)C(a)� ✏(�, �)✏(�, �)✏(�,↵)D(a) = 0

By Corollary 55, we conclude that [C,D]
f

= CD � f

C,D

DC = CD � ✏(�, �)DC is a
�

C

�

D

-derivation, that is,

[C,D]
f

(ab) = [C,D]
f

(a)b+ �

C

�

D

(a)[C,D]
f

(b) =

= [C,D]
f

(a)b+ ✏(�,↵)✏(�,↵)a[C,D]
f

(b) =

= [C,D]
f

(a)b+ ✏(� + �,↵)a[C,D]
f

(b)

Thus [C,D]
f

2 D(A, ✏)
�+�

and therefore we have shown that D(A, ✏) = �
�2�D(A, ✏)

�

is a graded algebra, as claimed in Section 3.2.

9.4 The (f, g)-bracket

In this subsection we consider another type of bracket product. Suppose we have as-
sociated for any two (�, ⌧)-derivations D,E on some associative algebra A two linear
operators f

D,E

and g

D,E

, and define

[D,E]
f,g

= Df

D,E

E � Eg

D,E

D,

for D,E 2 D(�,⌧)(A).

Proposition 56. Let D,E 2 D(�,⌧)(A). Then [D,E]
f,g

2 D(�,⌧)(A) if and only if

Df

D,E

(E(a)⌧(b)) +Df

D,E

(�(a)E(b))

� Eg

D,E

(D(a)⌧(b)) + Eg

D,E

(�(a)D(b))

�Df

D,E

E(a)⌧(b) + Eg

D,E

D(a)⌧(b)

� �(a)Df

D,E

E(b) + �(a)Eg

D,E

D(b) = 0

for all a, b 2 A.
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Proof.

0 = Df

D,E

E(ab)� Eg

D,E

D(ab)

�
⇣

(Df

D,E

E � Eg

D,E

D)(a)⌧(b) + �(a)(Df

D,E

E � Eg

D,E

D)(b)
⌘

=

= Df

D,E

⇣

E(a)⌧(b) + �(a)E(b)
⌘

� Eg

D,E

⇣

D(a)⌧(b) + �(a)D(b)
⌘

�Df

D,E

E(a)⌧(b) + Eg

D,E

D(a)⌧(b)

� �(a)Df

D,E

E(b) + �(a)Eg

D,E

D(b) =

= Df

D,E

(E(a)⌧(b)) +Df

D,E

(�(a)E(b))

� Eg

D,E

(D(a)⌧(b)) + Eg

D,E

(�(a)D(b))

�Df

D,E

E(a)⌧(b) + Eg

D,E

D(a)⌧(b)

� �(a)Df

D,E

E(b) + �(a)Eg

D,E

D(b)

Corollary 57. Let D,E 2 D(�,⌧)(A). If

1. Df

D,E

�

E(a) · ⌧(b)
�

= Df

D,E

E(a) · ⌧(b)

2. Df

D,E

�

�(a) · E(b)
�

= �(a)Df

D,E

E(b)

3. Eg

D,E

�

D(a) · ⌧(b)
�

= Eg

D,E

D(a) · ⌧(b)

4. Eg

D,E

�

�(a) ·D(b)
�

= �(a)Eg

D,E

D(b)

for all a, b 2 A, then [D,E]
f,g

2 D(�,⌧)(A).

Corollary 58. Let D,E 2 D(�,⌧)(A). If

1. Df

D,E

R
⌧(a)E = R

⌧(a)Df

D,E

E

2. Df

D,E

L
�(a)E = L

�(a)Df

D,E

E

3. Eg

D,E

R
⌧(a)D = R

⌧(a)Eg

D,E

D

4. Eg

D,E

L
�(a)D = L

�(a)Eg

D,E

D

for all a 2 A, then [D,E]
f,g

2 D(�,⌧)(A).

Corollary 59. Let D,E 2 D(�,⌧)(A). If

1. Df

D,E

(ab) = Df

D,E

(a) · b = a ·Df

D,E

(b)

2. Eg

D,E

(ab) = Eg

D,E

(a) · b = a · Eg

D,E

(b)

for all a, b 2 A, then [D,E]
f,g

2 D(�,⌧)(A).
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9.5 Jacobi identity for the f-bracket [·, ·]
f

.

In this section we find a Jacobi-type identity for the f -bracket previously introduced.

Theorem 60. Let L be any associative algebra, suppose we are given B ✓ L a subset
and f(�,�) : B⇥B ! L a function such that

[C,D]
f

⌘ CD � f

C,D

DC 2 B (148)

whenever C,D 2 B. Suppose further that there is a function

�(�,�,�) : B⇥B⇥B ! L

satisfying the following two conditions:

1. For every triple (C,D,E) of elements of B,

�
C,D,E

= �
D,E,C

· f[D,E]f ,C (149)

2. For every triple (C 0
, D

0
, E

0) of elements of B, either

�
C,D,E

· f
C,D

DCE = �
D,E,C

·Df

E,C

CE (150)

for any cyclic permutation (C,D,E) of (C 0
, D

0
, E

0), or

�
C,D,E

· f
C,D

DCE = �
C,D,E

· Cf

D,E

ED (151)

for any cyclic permutation (C,D,E) of (C 0
, D

0
, E

0), or

�
C,D,E

· f
C,D

DCE = �
E,C,D

· Ef

C,D

DC (152)

for any cyclic permutation (C,D,E) of (C 0
, D

0
, E

0).

Then

�
C,D,E

[[C,D]
f

, E]
f

+ �
E,C,D

[[E,C]
f

, D]
f

+ �
D,E,C

[[D,E]
f

, C]
f

= 0 (153)

for all C,D,E 2 B.
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Proof.

�
C,D,E

[[C,D]
f

, E]
f

+ �
E,C,D

[[E,C]
f

, D]
f

+ �
D,E,C

[[D,E]
f

, C]
f

= �
C,D,E

[CD� f

C,D

DC,E]
f

+�
E,C,D

[EC � f

E,C

CE,D]
f

+�
D,E,C

[DE � f

D,E

ED,C]
f

= �
C,D,E

⇣

(CD � f

C,D

DC)E � f[C,D]f ,EE(CD � f

C,D

DC)
⌘

+ �
E,C,D

⇣

(EC � f

E,C

CE)D � f[E,C]f ,DD(EC � f

E,C

CE)
⌘

+ �
D,E,C

⇣

(DE � f

D,E

ED)C � f[D,E]f ,CC(DE � f

D,E

ED)
⌘

= �
C,D,E

⇣

CDE � f

C,D

DCE

⌘

� �
C,D,E

⇣

f[C,D]f ,E(ECD � Ef

C,D

DC)
⌘

+ �
E,C,D

⇣

ECD � f

E,C

CED

⌘

� �
E,C,D

⇣

f[E,C]f ,D(DEC �Df

E,C

CE)
⌘

+ �
D,E,C

⇣

DEC � f

D,E

EDC

⌘

� �
D,E,C

⇣

f[D,E]f ,C(CDE � Cf

D,E

ED)
⌘

(154)

If we use the condition (149), we see that (154) equals

�
C,D,E

⇣

CDE � f

C,D

DCE

⌘

� �
E,C,D

⇣

ECD � Ef

C,D

DC

⌘

+ �
E,C,D

⇣

ECD � f

E,C

CED

⌘

� �
D,E,C

⇣

DEC �Df

E,C

CE

⌘

+ �
D,E,C

⇣

DEC � f

D,E

EDC

⌘

� �
C,D,E

⇣

CDE � Cf

D,E

ED

⌘

= ��
C,D,E

f

C,D

DCE + �
E,C,D

Ef

C,D

DC

� �
E,C,D

f

E,C

CED + �
D,E,C

Df

E,C

CE

� �
D,E,C

f

D,E

EDC + �
C,D,E

Cf

D,E

ED = 0 (155)

In the final step we used the second condition. The proof is finished.

Using equation (149) repeatedly one obtains:

�
C,D,E

= �
D,E,C

f[D,E]f ,C

= �
E,C,D

f[E,C]f ,Df[D,E]f ,C

= �
C,D,E

f[C,D]f ,Ef[E,C]f ,Df[D,E]f ,C (156)

Thus, for instance, when L has a unit 1, and �
C,D,E

is known to be left cancellable, the
cyclic product f[C,D]f ,Ef[E,C]f ,Df[D,E]f ,C must be 1.

Corollary 61 (Jacobi identity). Let L be an associative algebra with unit 1L, B ✓ L a
subset closed under [·, ·]

f

. Suppose the function f satisfies two conditions:

f[C,D]f ,Ef[E,C]f ,Df[D,E]f ,C = 1L (157)
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and
f[D,E]f ,CfC,D

D = Df

E,C

(158)

for all C,D,E 2 B. Then

[[C,D]
f

, E]
f

+ f[C,D]f ,E[[E,C]
f

, D]
f

+ f[C,D]f ,Ef[E,C]f ,D[[D,E]
f

, C]
f

= 0 (159)

for all C,D,E 2 B.

Proof. Define two triples (C,D,E), (C 0
, D

0
, E

0) of elements of B to be equivalent if one
can be permuted into the other cyclically. We will define � on B⇥3 by defining it on
each element of each equivalence class. So given a class (C,D,E), define

�
C,D,E

= 1, �
E,C,D

= f[C,D]f ,E, �
D,E,C

= f[C,D]f ,Ef[E,C]f ,D

This definition obviously depends on the choice of representative (C,D,E) for the equiv-
alence class. However, it will be shown that this will not matter. This procedure defines
� on the whole of B⇥3. We now show that the conditions in Theorem 60 are satisfied.

For the first condition, let (C,D,E) be any triple of elements of B, and consider

�
D,E,C

· f[D,E]f ,C (160)

If we defined �
D,E,C

= 1 or �
D,E,C

= f[E,C]f ,D then clearly (160) equals �
C,D,E

so that
the condition holds. And if we defined �

D,E,C

= f[C,D]f ,Ef[E,C]f ,D then using (157) we
get

�
D,E,C

· f[D,E]f ,C = f[C,D]f ,Ef[E,C]f ,Df[D,E]f ,C = 1 = �
C,D,E

(161)

Hence the first condition holds.
For the second condition, we will show that the equality (150) is satisfied for any

triple (C,D,E) of elements of B. Multiply both sides of equation (158) by CE from
the right, and by �

D,E,C

from the left to deduce that

�
D,E,C

f[D,E]f ,CfC,D

DCE = �
D,E,C

Df

E,C

CE (162)

is satisfied for all C,D,E 2 B. But we have just shown that �
D,E,C

f[D,E]f ,C = �
C,D,E

and substituting this into (162) we see that equation (150) indeed is satisfied for all
C,D,E 2 B.

Thus by Theorem 60,

�
C,D,E

[[C,D]
f

, E]
f

+ �
E,C,D

[[E,C]
f

, D]
f

+ �
D,E,C

[[D,E]
f

, C]
f

= 0 (163)

for all C,D,E 2 B.
Now given arbitrary C,D,E 2 B we show that (159) holds. If �

C,D,E

was chosen to
be 1, then direct substitution of the values of � into (163) will give (159). Otherwise
we have one of the two equations:

f[D,E]f ,C [[C,D]
f

, E]
f

+ f[D,E]f ,Cf[C,D]f ,E[[E,C]
f

, D]
f

+ [[D,E]
f

, C]
f

= 0 (164)
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if �
C,D,E

= f[D,E]f ,C , or

f[E,C]f ,Df[D,E]f ,C [[C,D]
f

, E]
f

+ [[E,C]
f

, D]
f

+ f[E,C]f ,D[[D,E]
f

, C]
f

= 0 (165)

if �
C,D,E

= f[E,C]f ,Df[D,E]f ,C . But if we multiply equation (164) by f[C,D]f ,Ef[E,C]f ,D and
equation (165) by f[C,D]f ,E and then use (157) both of these become

[[C,D]
f

, E]
f

+ f[C,D]f ,E[[E,C]
f

, D]
f

+ f[C,D]f ,Ef[E,C]f ,D[[D,E]
f

, C]
f

= 0

which is exactly equation (159). We have shown that this equation holds for arbitrary
C,D,E 2 B which was to be proved.

Example 4. Take L = L(A), the algebra of linear transformations of some associative
algebra A, and take B = D(A) the linear space of ordinary derivations in A. Define
f

C,D

= 1L(A), the identity transformation for all C,D 2 D(A). Then D(A) is closed
under the bracket product [·, ·]

f

which now is reduced to the usual Lie bracket

[·, ·] : (D,E) 7! [D,E] = DE � ED.

The conditions of Corollary 61 are satisfied and the conclusion (159) assumes the form

[[C,D], E] + [[E,C], D] + [[D,E], C] = 0

which is the familiar Jacobi identity. Thus (159) is a generalization of the ordinary
Jacobi identity for derivations of an associative algebra.

Example 5. Let � be an abelian group, ✏ a commutation factor on �, and A =
L

�2� A�

be a �-graded ✏ Lie algebra, as defined in Section 3.2. Take

L = Lgr(A, ✏),

and
B = [

�2�D(A, ✏)
�

,

and define
f

D,E

(a) = ✏(�, ⌘)a

for homogenous D 2 D(A, ✏)
�

, E 2 D(A, ✏)
⌘

and a 2 A. In Example 3 on page 58, we
showed that [D,E]

f

= DE � f

D,E

ED 2 D(A, ✏)
�+⌘

for all homogenous D 2 D(A, ✏)
�

,
E 2 D(A, ✏)

⌘

. Thus B is closed under [·, ·]
f

. Now for all a 2 A,

f[C,D]f ,Ef[E,C]f ,Df[D,E]f ,C(a) = ✏(� + �, ⌘)✏(⌘ + �, �)✏(� + ⌘, �)(a) =

= ✏(�, ⌘)✏(�, ⌘)✏(⌘, �)✏(�, �)✏(�, �)✏(⌘, �)a = a
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and

(f[D,E]f ,CfC,D

D)(a) = ✏(� + ⌘, �)✏(�, �)D(a) =

= ✏(�, �)✏(⌘, �)✏(�, �)D(a) = ✏(⌘, �)D(a) = (Df

E,C

)(a)

for all homogenous C,D,E 2 B. Thus, by Corollary 61, we have

[[C,D]
f

, E]
f

+ f[C,D]f ,E[[E,C]
f

, D]
f

+ f[C,D]f ,Ef[E,C]f ,D[[D,E]
f

, C]
f

= 0

That is,

[[C,D]
f

, E]
f

+ ✏(� + �, ⌘)[[E,C]
f

, D]
f

+ ✏(� + �, ⌘)✏(⌘ + �, �)[[D,E]
f

, C]
f

= 0

which after multiplication by ✏(⌘, �) becomes

✏(⌘, �)[[C,D]
f

, E]
f

+ ✏(�, ⌘)[[E,C]
f

, D]
f

+ ✏(�, �)[[D,E]
f

, C]
f

= 0

for all homogenous C,D,E 2 B, which is the ✏ Jacobi identity.

Corollary 62. Let L be an associative algebra with unit 1L, B ✓ L a subset closed
under [·, ·]

f

. Suppose the function f satisfies two conditions:

f[C,D]f ,Ef[E,C]f ,Df[D,E]f ,C = 1L (166)

and
[C,D]

f

E = C[D,E]
f

(167)

for all C,D,E 2 B. Then

[[C,D]
f

, E]
f

+ f[C,D]f ,E[[E,C]
f

, D]
f

+ f[C,D]f ,Ef[E,C]f ,D[[D,E]
f

, C]
f

= 0 (168)

for all C,D,E 2 B.

Proof. The proof is the almost same as in Corollary 61. The only thing we must check is
that the second condition of Theorem 60 is satisfied. We show that in fact the equality
(151) is satisfied for any triple (C,D,E) of elements of B. Expand equation (167) and
cancel one term:

[C,D]
f

E = C[D,E]
f

(CD � f

C,D

DC)E = C(DE � f

D,E

ED)

f

C,D

DCE = Cf

D,E

ED (169)

After multiplication of (169) by �
C,D,E

on the left, we get that equation (151) indeed is
satisfied for all C,D,E 2 B.
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The following gives a weak partial converse of the above corollaries.

Proposition 63. Let L be an associative algebra with unit 1L, B ✓ L a subset closed
under [·, ·]

f

. Let (C 0
, D

0
, E

0) be a triple of elements of B. Suppose that for all cyclic
permutations (C,D,E) of (C 0

, D

0
, E

0),

[[C,D]
f

, E]
f

+ f[C,D]f ,E[[E,C]
f

, D]
f

+ f[C,D]f ,Ef[E,C]f ,D[[D,E]
f

, C]
f

= 0. (170)

Then
(f[D,E]f ,Cf[C,D]f ,Ef[E,C]f ,D � 1L)[[D,E]

f

, C]
f

= 0

for any cyclic permutation (C,D,E) of (C 0
, D

0
, E

0). In particular, if L has no zero-
divizors, then

f[D,E]f ,Cf[C,D]f ,Ef[E,C]f ,D = 1L

for any cyclic permutation (C,D,E) of (C 0
, D

0
, E

0) such that [[D,E]
f

, C]
f

6= 0.

Proof. Let (C,D,E) be any cyclic permutation of (C 0
, D

0
, E

0). Multiply equation (170)
by f[D,E]f ,C from the left:

f[D,E]f ,C [[C,D]
f

, E]
f

+ f[D,E]f ,Cf[C,D]f ,E[[E,C]
f

, D]
f

+ f[D,E]f ,Cf[C,D]f ,Ef[E,C]f ,D[[D,E]
f

, C]
f

= 0 (171)

Since (170) holds for any cyclic permutation of (C 0
, D

0
, E

0) we also have

[[D,E]
f

, C]
f

+ f[D,E]f ,C [[C,D]
f

, E]
f

+ f[D,E]f ,Cf[C,D]f ,E[[E,C]
f

, D]
f

= 0 (172)

Finally, if we subtract (172) from (171) we have

(f[D,E]f ,Cf[C,D]f ,Ef[E,C]f ,D � 1)[[D,E]
f

, C]
f

= 0 (173)

9.6 Commutation operators and ! Lie algebras

In this section we generalize some of the concepts introduced in Section 3.2. Namely,
we generalize commutation factors ✏ to commutation operators !, and �-graded ✏ Lie
algebras to �-graded ! Lie algebras. Throughout, � will denote an abelian group.

Definition 9. Let V = �
�2�V�

be a �-graded linear space. Then a map

! : �⇥ � ! Lgr(V )0 (174)

is called a commutation operator for V if

!(� + �, ⌘)!(⌘ + �, �)!(� + ⌘, �) = id
V

(175)

for all �, �, ⌘ 2 � and
!(� + ⌘, �)E!(�, �)D = D!(⌘, �)E (176)

for all �, �, ⌘ 2 � and D 2 Lgr(V )
�

, E 2 Lgr(V )
⌘

such that DE = ED.
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Definition 10. Let ! be a commutation operator for (the underlying linear space of) a
�-graded algebra A = �

�2�A�

in which the product is denoted by h·, ·i. Then A is called
a �-graded ! Lie algebra if the following two identities are satisfied whenever C,D,E

are homogenous elements of A of degrees �, �, ⌘ respectively:

hC,Di = �!(�, �)
⇣

hD,Ci
⌘

(177)

hhC,Di, Ei+!(�+�, ⌘)
⇣

hhE,Ci, Di
⌘

+(!(�+�, ⌘)!(⌘+�, �))
⇣

hhD,Ei, Ci
⌘

= 0 (178)

Lemma 64. Let ! be a commutation operator for a �-graded linear space V = �
�2�V�

.
Then

!(0, �) = !(�, 0) = id
V

for all � 2 � (179)

!(�, �)!(�, �) = id
V

for all �, � 2 � (180)

Proof. If we take � = � = 0 in (175) we get

!(0, ⌘)!(⌘, 0)!(⌘, 0) = id
V

for all ⌘ 2 � (181)

Now id
V

2 Lgr(V )0 so if we use (176) with � = ⌘ = 0 and D = E = id
V

we have

!(0, �) id
V

!(�, 0) id
V

= id
V

!(0, �) id
V

for all � 2 �

that is,
!(0, �)!(�, 0) = !(0, �) for all � 2 � (182)

Thus
id

V

= !(0, �)!(�, 0)!(0, �) = !(0, �)!(�, 0) = !(0, �) (183)

where we used (181) in the first equality, and (182) in the second and third. Another
application of (182) yields, using (183),

id
V

!(�, 0) = id
V

for all � 2 � (184)

Hence (179) is proved. To prove (180), use (175) with � = 0:

id
V

= !(�, ⌘)!(⌘, �)!(� + ⌘, 0) = !(�, ⌘)!(⌘, �) id
V

(185)

for all �, ⌘ 2 �. The proof is finished.

Let ! be a commutation operator for a �-graded associative algebra A = �
�2�A�

.
On the �-graded linear space A we define a new product

h·, ·i
!

: A⇥ A ! A

by setting
hC,Di

!

= CD � !(�, �)
�

DC) 2 A

�+�

for homogenous C 2 A

�

and D 2 A

�

and extending linearly. We get a new �- graded
algebra structure on the linear space A. This algebra will be denoted by A(!).
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Proposition 65. If A is a �-graded associative algebra, then A(!) is an ! Lie algebra.

Proof. We must check that the conditions (177) and (178) are satisfied. Equation (177)
holds because

� !(�, �)
⇣

hD,Ci
!

⌘

= �!(�, �)
⇣

DC � !(�, �)
�

CD

�

⌘

=

=
⇣

!(�, �)!(�, �)
⌘

(CD)� !(�, �)
�

DC

�

= CD � !(�, �)
⇣

DC

⌘

= hC,Di
!

where we used (180) from Lemma 64 in the third equality. Next, we prove (178) by
direct calculation, using (176) and (175).

hhC,Di
!

, Ei
!

+ !(� + �, ⌘)
⇣

hhE,Ci
!

, Di
!

⌘

+

+
�

!(� + �, ⌘)!(⌘ + �, �)
�

⇣

hhD,Ei
!

, Ci
!

⌘

=

= hC,Di
!

E � !(� + �, ⌘)
�

EhC,Di
!

�

+

+ !(� + �, ⌘)
⇣

hE,Ci
!

D

⌘

� !(� + �, ⌘)
⇣

!(⌘ + �, �)
�

DhE,Ci
!

�

⌘

+

+
�

!(� + �, ⌘)!(⌘ + �, �)
�

⇣

hD,Ei
!

C

⌘

�

�
�

!(� + �, ⌘)!(⌘ + �, �)!(� + ⌘, �)
�

⇣

ChD,Ei
!

⌘

=

= CDE � !(�, �)(DC)E � !(� + �, ⌘)(ECD) + !(� + �, ⌘)
⇣

E!(�, �)
�

DC

�

⌘

+

+ !(� + �, ⌘)(ECD)� !(� + �, ⌘)
⇣

!(⌘, �)(CE)D
⌘

�

�
�

!(� + �, ⌘)!(⌘ + �, �)
�

(DEC) +
�

!(� + �, ⌘)!(⌘ + �, �)
�

⇣

D!(⌘, �)(CE)
⌘

+

+
�

!(� + �, ⌘)!(⌘ + �, �)
�

(DEC)�
�

!(� + �, ⌘)!(⌘ + �, �)
�

⇣

!(�, ⌘)(ED)C
⌘

�

�
�

!(� + �, ⌘)!(⌘ + �, �)!(� + ⌘, �)
�

(CDE)+

+
�

!(� + �, ⌘)!(⌘ + �, �)!(� + ⌘, �)
�

⇣

C!(�, ⌘)(ED)
⌘

=

= �!(�, �)(DC)E + !(� + �, ⌘)
⇣

E!(�, �)(DC)
⌘

�

� !(� + �, ⌘)
⇣

!(⌘, �)(CE)D
⌘

+
�

!(� + �, ⌘)!(⌘ + �, �)
�

⇣

D!(⌘, �)(CE)
⌘

�

�
�

!(� + �, ⌘)!(⌘ + �, �)
�

⇣

!(�, ⌘)(ED)C)
⌘

+ C!(�, ⌘)(ED) =
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= C!(�, ⌘)(ED)� !(� + �, ⌘)
⇣

!(⌘, �)(CE)D
⌘

+

+ !(� + �, ⌘)
n

E!(�, �)(DC)� !(⌘ + �, �)
⇣

!(�, ⌘)(ED)C
⌘o

+

+
�

!(� + �, ⌘)!(⌘ + �, �)
�

n

D!(⌘, �)(CE)� !(� + ⌘, �)
⇣

!(�, �)(DC)E
⌘o

=

=
⇣

L
C

!(�, ⌘)R
D

� !(� + �, ⌘)R
D

!(⌘, �)L
C

⌘

(E)+

+ !(� + �, ⌘)
n⇣

L
E

!(�, �)R
C

� !(⌘ + �, �)R
C

!(�, ⌘)L
E

⌘

(D)
o

+

+ !(� + �, ⌘)!(⌘ + �, �)
n⇣

L
D

!(⌘, �)R
E

� !(� + ⌘, �)R
E

!(�, �)L
D

⌘

(C)
o

=

= 0

where we could use (176) in the last equality, because R
D

and L
D

are homogenous linear
operators on A of degree �, whenever D is homogenous of degree �. Also, right and left
multiplication operators commute, since A is associative. We have shown that (177)
and (178) holds in A(!), hence it is a �-graded ! Lie algebra.

Proposition 66. Let V be a �-graded linear space and suppose ! : �⇥� ! Lgr(V )0 is
a function such that

!(↵, �)!(�,↵) = id
V

(186)

!(↵ + �, �) = !(↵, �)!(�, �) (187)

!(↵, �)A!(�, �)C = !(�, �)C!(↵, �)A (188)

for all ↵, �, � 2 � and A 2 Lgr(V )
↵

, C 2 Lgr(V )
�

such that AC = CA. Then ! is a
commutation operator for V . Furthermore, if A is an ! Lie algebra with this !, equation
(178) is equivalent to

!(�,↵)
⇣

hhA,Bi, Ci
⌘

+ !(�, �)
⇣

hhC,Ai, Bi
⌘

+ !(↵, �)
⇣

hhB,Ci, Ai
⌘

= 0 (189)

Proof. We check that conditions (175) and (176) are satisfied. We have for all �, �, ⌘ 2 �,

!(� + �, ⌘)!(⌘ + �, �)!(� + ⌘, �) = !(�, ⌘)!(�, ⌘)!(⌘, �)!(�, �)!(�, �)!(⌘, �) =

= !(�, ⌘) id
V

id
V

!(⌘, �) = id
V

where we used (186) and (187). Thus (175) is true. Also, when D 2 Lgr(V )
�

and
E 2 Lgr(V )

⌘

are two commuting homogenous linear mappings on V ,

!(� + ⌘, �)E!(�, �)D = !(�, �)!(⌘, �)E!(�, �)D =

= !(�, �)!(�, �)D!(⌘, �)E = D!(⌘, �)E
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where we used equations (186)-(188). Therefore (176) holds, and we have shown that !
is a commutation operator for V .

Now let A be an ! Lie algebra with multiplication h·, ·i, where the mapping ! satisfies
equations (186)-(188). Then, by definition of an ! Lie algebra, equation (178) is fulfilled.
That is, we have for all homogenous C 2 Lgr(A)

�

, D 2 Lgr(A)
�

and E 2 Lgr(A)
⌘

,

hhC,Di, Ei+ !(� + �, ⌘)
⇣

hhE,Ci, Di
⌘

+ (!(� + �, ⌘)!(⌘ + �, �))
⇣

hhD,Ei, Ci
⌘

= 0

If we apply the invertible operator !(⌘, �) to both sides of this equation and use (187)
we get the equivalent equation

!(⌘, �)
⇣

hhC,Di, Ei
⌘

+ (!(⌘, �)!(�, ⌘)!(�, ⌘))
⇣

hhE,Ci, Di
⌘

+

+ (!(⌘, �)!(�, ⌘)!(�, ⌘)!(⌘, �)!(�, �))
⇣

hhD,Ei, Ci
⌘

= 0

Finally, using (186), this is equivalent to

!(⌘, �)
⇣

hhC,Di, Ei
⌘

+ !(�, ⌘)
⇣

hhE,Ci, Di
⌘

+ !(�, �)
⇣

hhD,Ei, Ci
⌘

= 0

which was to be proved.

The following example shows in which sence commutation operators generalize com-
mutation factors.

Example 6. Let V = �
�2�V�

be a �-graded linear space and let ✏ be a commutation
factor on �. Then define a map

!

✏

: �⇥ � ! Lgr(V )0 (190)

by setting
!

✏

(�, �) = ✏(�, �) · id
V

(191)

for all �, � 2 � and v 2 V , where id
V

is the identity operator on V . Clearly !

✏

(�, �)
is homogenous of degree zero for any �, � 2 �. We claim that !

✏

is a commutation
operator for V . To prove this, we can use Proposition 66. It is easy to see, using the
properties of the commutation factor ✏, that (186) and (187) are satisfied with ! = !

✏

.
We check the third condition (188). Let ↵, �, � 2 � and let A 2 Lgr(V )

↵

, C 2 Lgr(V )
�

be commuting homogenous linear operators. Then

!

✏

(↵, �)A!
✏

(�, �)C = ✏(↵, �)A✏(�, �)C = ✏(�, �)C✏(↵, �)A = !

✏

(�, �)C!

✏

(↵, �)A

Thus, by Proposition 66, !
✏

is a commutation operator.
Furthermore, any �-graded ✏ Lie algebra is a �-graded !

✏

Lie algebra. This follows
since in any �-graded ✏ Lie algebra, the two identities (21) and (22) are true. Using
this, and the definition (190)-(191) of !

✏

, one can easily verify that (177) and (189) are
true. But by Proposition 66, (189) is equivalent to (178).
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Remark 15. It would be interesting to construct examples of commutation operators
and �-graded ! Lie algebras which does not come from commutation factors and �-
graded ✏-Lie algebras.

10 Homogenous (�, ⌧ )-derivations on the Witt Lie
algebra

In Section 10.1 we consider (�, ⌧)-derivations from a groupoid with unit to a field. Then
in Section 10.2 we show how these (�, ⌧)-derivations can induce (�, ⌧)-derivations on
more complicated structures. In the final subsection we prove that any homogenous
(�, ⌧)-derivation of degree zero on the Witt algebra can be obtained via such a construc-
tion.

10.1 (�, ⌧)-Derivations from a groupoid with unit to a field

A groupoid B is a set with binary operation. By a nonassociative ring we mean a ring
whose multiplication is not necessarily associative.

Definition 11. Let B be a groupoid, R be a nonassociative ring and let �, ⌧ : B ! R

be any two functions. Then a map D : B ! R which satisfies

D(xy) = D(x)⌧(y) + �(x)D(y) (192)

is called a (�, ⌧)-derivation from B to R. Denote by D(�,⌧)(B,R) the set of all (�, ⌧)-
derivations from B to R.

Since the zero map from B to R, which takes every x 2 B to the zero element in
R, is a (�, ⌧)-derivation for any � and ⌧ , we are interested in the pairs (�, ⌧) of maps
B ! R for which there exist nonzero (�, ⌧)-derivations from B to R. The set of such
pairs (�, ⌧) will be denoted by M(B,R):

M(B,R) = {(�, ⌧) 2 R

B ⇥R

B

�

� D(�,⌧)(B,R) 6= {0}}, (193)

where R

B denotes the set of functions from B to R.
In this section we will investigate M(B,R) and the corresponding sets D(�,⌧)(B,R)

for (�, ⌧) 2 M(B,R), in the case when the groupoid B has a neutral element e 2 B and
R is a field F . The set of functions from B to F , which we will denote by F

B, has a
natural structure of a ring by pointwise addition and multiplication:

(f · g)(x) = f(x) · g(x), (f + g)(x) = f(x) + g(x).

Embedding F into F

B by identifying each a 2 F with the constant function f

a

2 F

B

defined by f

a

(x) = a for all x 2 B, and restricting the ring multiplication in F

B to
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F ⇥ F

B, FB can be viewed as a linear space over F . We have the following simple
lemma.

Lemma 67. Let B be a groupoid, and F a field. Let �, ⌧ : B ! F be any maps. Then
D(�,⌧)(B,F ) is an F -linear subspace of FB.

Proof. Let c, d 2 F and D,E 2 D(�,⌧)(B,F ). Then

(c ·D + d · E)(xy) = c ·D(xy) + d · E(xy) =

= cD(x)⌧(y) + c�(x)D(y) + dE(x)⌧(y) + d�(x)E(y) =

= cD(x)⌧(y) + dE(x)⌧(y) + �(x)cD(y) + �(x)dE(y) =

= (c ·D + d · E)(x)⌧(y) + �(x)(c ·D + d · E)(y)

for all x, y 2 B, since F is commutative. Thus c ·D + d · E 2 D(�,⌧)(B,F ).

Next we will prove a proposition which will allow us to splitM(B,F ) into two disjoint
sets.

Proposition 68. Let B be a groupoid with unit e, F be a field, and let (�, ⌧) 2 M(B,F ).
Then the following three statements are equivalent

1) �(e) = ⌧(e) = 1,

2) �(e) + ⌧(e) 6= 1,

3) D(e) = 0 for every D 2 D(�,⌧)(B,F ).

Proof. Clearly 1) implies 2). Suppose that 2) holds. Then for every (�, ⌧)-derivation D

from B to F we have

D(e) = D(e · e) = D(e)⌧(e) + �(e)D(e)

so that,
D(e)(1� ⌧(e)� �(e)) = 0,

and therefore D(e) = 0, since F has no zero-divizors. Thus 2) implies 3). Finally,
suppose that 3) holds. Then since (�, ⌧) 2 M(B,F ), there is a nonzero (�, ⌧)-derivation
D from B to F . Pick an x 2 B such that D(x) 6= 0. Then, since we assumed D(e) = 0
we get

(1� �(e))D(x) = D(e · x)� �(e)D(x) = D(e)⌧(x) + �(e)D(x)� �(e)D(x) = 0

and

D(x)(1� ⌧(e)) = D(x · e)�D(x)⌧(e) = D(x)⌧(e) + �(x)D(e)�D(x)⌧(e) = 0.

Thus �(e) = 1 and ⌧(e) = 1, because F has no zero-divizors.
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Remark 16. The same proof holds when F is replaced by an arbitrary nonassociative
ring with unit and no zero-divizors.

Corollary 69. Let B be a groupoid with unit e, F be a field, and let (�, ⌧) 2 M(B,F ).
Then either �(e) + ⌧(e) = 1 or �(e) = ⌧(e) = 1.

Form the following two subsets of M(B,F ):

N1(B,F ) = {(�, ⌧) 2 M(B,F )
�

�

�(e) + ⌧(e) = 1} (194)

N2(B,F ) = {(�, ⌧) 2 M(B,F )
�

�

�(e) = ⌧(e) = 1} (195)

Corollary 69 shows thatN1(B,F ) andN2(B,F ) form a partition ofM(B,F ) into disjoint
sets. We will now study the first of these cases. It would of course also be interesting
to study the other case.

10.1.1 The case �(e) + ⌧(e) = 1.

Theorem 70. Let B be a groupoid with unit e, F be a field, and (�, ⌧) 2 N1(B,F ).
Then D(�,⌧)(B,F ) is one-dimensional as a linear space over F , and �+⌧ is a basisvector.
Furthermore, the coordinate of D 2 D(�,⌧)(B,F ) in the basis {� + ⌧} equals D(e).

Proof. If (�, ⌧) 2 N1(B,F ) ✓ M(B,F ) we have that D(�,⌧)(B,F ) 6= {0}. Thus it is
enough to show that D(�,⌧)(B,F ) ✓ F · (�+⌧). Let D 2 D(�,⌧)(B,F ) be arbitrary. First
we observe, using �(e) + ⌧(e) = 1, that

�(x)D(e)�D(x)�(e) = �(x)D(e)�D(x)(1� ⌧(e)) =

= D(x)⌧(e) + �(x)D(e)�D(x) = D(x · e)�D(x) = 0

and therefore
D(e)�(x) = D(x)�(e). (196)

Similarly, we have

D(e)⌧(x)� ⌧(e)D(x) = D(e)⌧(x)� (1� �(e))D(x) =

= D(e)⌧(x) + �(e)D(x)�D(x) = D(e · x)�D(x) = 0

which imply
D(e)⌧(x) = D(x)⌧(e). (197)

Adding (196) and (197) yields

D(e)(�(x) + ⌧(x)) = D(x)(�(e) + ⌧(e)) = D(x).

In other words, D = D(e) · (� + ⌧) 2 F · (� + ⌧).
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Corollary 71. Let B be a groupoid with unit e, F be a field, and (�, ⌧) 2 N1(B,F ).
Then � and ⌧ are both (�, ⌧)-derivations from B to F , and

�(x)⌧(e) = �(e)⌧(x) (198)

holds for all x 2 B. In particular, if �(e) = 0, then � = 0 and if ⌧(e) = 0, then ⌧ = 0.

Proof. Let D be a (�, ⌧)-derivation from B to F such that D(e) 6= 0. Such a D exists,
since otherwise, by Proposition 68, we would have �(e) + ⌧(e) 6= 1 which contradicts
that (�, ⌧) 2 N1(B,F ). From (196) and (197) follows

�(x) =
�

D(e)�1
�(e)

�

D(x) (199)

⌧(x) =
�

D(e)�1
⌧(e)

�

D(x) (200)

for all x 2 B. Thus � and ⌧ are also (�, ⌧)-derivations from B to F . Therefore, by
Theorem 70,

�(x) = �(e)(� + ⌧)(x) = �(e)�(x) + �(e)⌧(x) =

= (1� ⌧(e))�(x) + �(e)⌧(x) = �(x)� ⌧(e)�(x) + �(e)⌧(x),

for all x 2 B, so that
�(x)⌧(e) = �(e)⌧(x)

for all x 2 B. Finally, if �(e) = 0, then ⌧(e) = 1, and if ⌧(e) = 0, then �(e) = 1, so the
last part follows directly from equation (198).

If R is a ring, let hR, ·i denote the multiplicative groupoid of R whose underlying set
is R and whose operation is the multiplication · from the ring R.

Theorem 72. Let B be a groupoid with unit e, and F be a field. Then

N1(B,F ) = {(p', q')
�

�

p, q 2 F, p+ q = 1,' 2 Hom(B, hF, ·i),' 6= 0}.

Proof. Let (�, ⌧) 2 N1(B,F ). Assume first that �(e) = 0. Then by Corollary 71, � = 0.
Also, by Corollary 71, ⌧ is a (�, ⌧)-derivation from B to F . Thus for x, y 2 B,

⌧(xy) = ⌧(x)⌧(y) + �(x)⌧(y) = ⌧(x)⌧(y),

which shows that ⌧ is a homomorphism from B to hF, ·i. Also ⌧ is nonzero, since
⌧(e) = 1 � �(e) = 1. So (�, ⌧) = (p', q') with p = 0, q = 1, and ' = ⌧ . Now assume
�(e) 6= 0. Then by equation (198) in Corollary 71 we have

⌧(x) = �(e)�1
⌧(e)�(x) = �(e)�1(1� �(e))�(x) = (�(e)�1 � 1)�(x) (201)
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for all x 2 B. By Corollary 71, � is a (�, ⌧)-derivation, so for any x, y 2 B,

�(xy) = �(x)⌧(y) + �(x)�(y) =

= �(x)(�(e)�1 � 1)�(y) + �(x)�(y) =

= �(e)�1
�(x)�(y),

(202)

where we used (201) in the second equality. Now, define ' : B ! F by '(x) =
�(e)�1

�(x). Then, ' is nonzero, since '(e) = 1 and from (202) follows

'(xy) = �(e)�1
�(xy) = �(e)�1

�(e)�1
�(x)s(y) = �(e)�1

�(x)�(e)�1
�(y) = '(x)'(y)

which shows that ' is a homomorphism from B to hF, ·i. Let p = �(e) and q = 1��(e).
Then �(x) = p'(x) by definition of ', and ⌧(x) = q'(x) by (201).

Conversely, let p, q 2 F be such that p+q = 1, and let ' be a nonzero homomorphism
from B to hF, ·i. Let x 2 B be such that '(x) 6= 0. Then

1 = '(x)�1
'(x) = '(x)�1

'(x · e) = '(x)�1
'(x)'(e) = '(e)

so that
p'(e) + q'(e) = p+ q = 1. (203)

Also, for all x, y 2 B we have

'(xy) = '(x)'(y) = '(x)q'(y) + p'(x)'(y)

which shows that ' is a (p', q')-derivation. Equation (203) together with the existence
of the nonzero (p', q')-derivation ', shows that indeed (p', q') 2 N1(B,F ) which was
to be proved.

10.2 (�, ⌧)-Derivations induced from grading groupoid

Let B be a groupoid and R an (associative) commutative ring. Consider the R-module

A =
M

b2B

A

b

(204)

where each A

b

is a cyclic R-module generated by some element which we denote by x

b

:

A

b

= {rx
b

+ nx

b

�

�

r 2 R, n 2 Z} (205)

When ↵ and � are functions from B to R, we can consider (↵, �)-derivations � from B

to R. In this subsection we show that we can associate to every such �, an R-linear map
from A to A which is a (�, ⌧)-derivation, with � and ⌧ depending on ↵ and �.
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Let ModEnd
R

(A) be the R-algebra of all R-module endomorphisms on A, and let
ModEnd

R

(A)0 denote the subalgebra of ModEnd
R

(A) consisting of those R-module
endomorphisms which map each A

b

into itself. Let R

B denote the commutative R-
algebra of functions B ! R, with pointwise operations. Define

� : RB ! ModEnd
R

(A)0 (206)

by letting �(f), f 2 R

B, be the R-module endomorphism determined by

�(f)(x
b

) = f(b)x
b

for b 2 B (207)

It is clear that �(f) maps each A

b

into itself.

Proposition 73. � is a homomorphism of R-algebras.

Proof. For any b 2 B, f, g 2 R

B and r 2 R we have

�(f + g)(x
b

) = (f + g)(b)x
b

= (f(b) + g(b))x
b

= f(b)x
b

+ g(b)x
b

=

= �(f)(x
b

) + �(g)(x
b

) =
�

�(f) + �(g)
�

(x
b

),

�(r · f)(x
b

) = (r · f)(b)x
b

= r · f(b)x
b

= r · �(f)(x
b

) =
�

r · �(f)
�

(x
b

),

�(f · g)(x
b

) = (f · g)(b)x
b

= (f(b) · g(b))x
b

= f(b)g(b)x
b

= g(b)f(b)x
b

=

= g(b)�(f)(x
b

) = �(f)(g(b)x
b

) = �(f)
�

�(g)(x
b

)
�

=
�

�(f) � �(g)
�

(x
b

).

Remark 17. Note that � is surjective if R is a ring with unity 1, and � is injective if
and only if all the cyclic R-modules A

b

are free R-modules. In particular, when R is a
field, � is bijective.

Suppose that the R-module A has been given the structure of a B-graded R-algebra,
i.e. suppose we have introduced an R-algebra multiplication on A such that A

b

A

c

✓ A

bc

for all b, c 2 B. Then we let AlgEnd
R

(A)0 be the subset of ModEnd
R

(A)0 consisting of
the R-algebra endomorphisms on A which map each A

b

into itself. Let hR, ·i denote the
multiplicative groupoid of R.

Proposition 74. If f 2 R

B is a groupoid homomorphism from B to hR, ·i, that is, if

f(bc) = f(b)f(c) (208)

for all b, c 2 B, then �(f) is an R-algebra endomorphism of A. In other words,

�
�

Hom(B, hR, ·i)
�

✓ AlgEnd
R

(A)0. (209)
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Proof. Let b, c 2 B. Then, sinceA isB-graded, x
b

x

c

2 A

bc

and thus for f 2 Hom(B, hR, ·i)
we have

�(f)(x
b

x

c

) = f(bc)x
b

x

c

= f(b)f(c)x
b

x

c

= f(b)x
b

f(c)x
c

= �(f)(x
b

) · �(f)(x
c

),

which proves the claim.

Proposition 75. If ↵, � 2 R

B are maps and � 2 R

B is an (↵, �)-derivation from B to
R, that is,

�(bc) = �(b)�(c) + ↵(b)�(c) (210)

for b, c 2 B, then �(�) is a (�(↵),�(�))-derivation on A, mapping each A

b

into itself.
In other words

�
�

D(↵,�)(B,R)
�

✓ D(�(↵),�(�))(A)0 (211)

Proof. Let b, c 2 B. Then, since A is B-graded, x
b

x

c

2 A

bc

and thus for � 2 D(↵,�)(B,R)
we have

�(�)(x
b

x

c

) = �(bc)x
b

x

c

= (�(b)�(c) + ↵(b)�(c)
�

x

b

x

c

=

= �(b)x
b

�(c)x
c

+ ↵(b)x
b

�(c)x
c

= �(�)(x
b

)�(�)(x
c

) + �(↵)(x
b

)�(�)(x
c

).
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The Witt algebra d is an algebra with basis {d
n

�

�

n 2 Z} and the relation

[d
m

, d

n

] = (m� n)d
m+n

. (212)

It is easy to check that d is a Lie algebra. Note also that d is Z-graded with the grading

d = �
n2ZCdn.

If we let B be the group hZ,+i of integers under addition, R be the field C of complex
numbers, A be the Witt algebra d, and A

n

= Cd
n

, then we can construct the map �,
as defined in (206)-(207), which, since C is a field, is bijective (see Remark 17).

Proposition 76. If � is a nonzero homogenous endomorphism on d of degree s, then
s = 0.

Proof. Write �(d
n

) = ↵

n

d

n+s

, where ↵

n

2 C for n 2 Z. Then

0 = �([d
m

, d

n

]� (m� n)d
m+n

) = [�(d
m

), �(d
n

)]� (m� n)�(d
m+n

) =

= [↵
m

d

m+s

,↵

n

d

n+s

]� (m� n)↵
m+n

d

m+n+s

=

= ↵

m

↵

n

(m+ s� n� s)d
m+n+2s � (m� n)↵

m+n

d

m+n+s

.

(213)
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Thus, if s 6= 0, we must have in particular (m�n)↵
m+n

= 0 for all integers m,n. Taking
m = 1, n = �1 we see that 2↵0 = 0, and for n = 0, and m arbitrary nonzero, we have
m↵

m

= 0. Thus ↵
n

= 0 for all integers n, which contradicts the assumption of � being
nonzero.

Theorem 77. Let � be a homogenous endomorphism on d of degrees zero. Then there
exists a unique groupoid homomorphism ' 2 Hom(hZ,+i, hC, ·i) such that � = �('),
where � is the map defined in (206)-(207).

Remark 18. In other words, when B is the group hZ,+i of integers under addition,
R is the field C of complex numbers, and A is the Witt algebra d = �

n2ZCdn we have
equality in (209).

Proof. Write �(d
n

) = ↵

n

d

n

. Uniqueness of ' is clear, since � is injective. In fact, if
there is such a ' we must have �(d

n

) = �(')(d
n

) = '(n)d
n

. Thus '(n) = ↵

n

. We must
now prove that if we define ' in this way, it is a homomorphism from hZ,+i to hC, ·i.
From (213) follows that

(m� n)(↵
m

↵

n

� ↵

m+n

) = 0

for all integers m,n. Thus ↵
m

↵

n

= ↵

m+n

for all m 6= n, which imply

↵

m

(↵0 � 1) = 0 for m 6= 0.

If ↵
m

= 0 for all m 6= 0, then ↵0 = ↵1↵�1 = 0 so that ' is the zero map, which is a
homomorphism. Otherwise, we must have ↵0 = 1. Then ↵1↵�1 = ↵0 = 1 so ↵1 6= 0 and
↵�1 6= 0. Therefore, we have for n 6= 1,

↵

n

↵

n

= ↵

n

↵

n

↵1↵
�1
1 = ↵

n

↵

n+1↵
�1
1 = ↵2n+1↵

�1
1 = ↵2n↵1↵

�1
1 = ↵2n,

and for n 6= �1,

↵

n

↵

n

= ↵

n

↵

n

↵�1↵
�1
�1 = ↵

n

↵

n�1↵
�1
�1 = ↵2n�1↵

�1
�1 = ↵2n↵�1↵

�1
�1 = ↵2n.

Thus ↵
m

↵

n

= ↵

m+n

for all integers m,n. Therefore ' is a homomorphism from hZ,+i
to hC, ·i, satisfying �(') = �.

Theorem 78. Let f and g be homomorphisms from hZ,+i to hC, ·i, and let D be a
homogenous (�(f),�(g))-derivation on d of degree zero. Then there is a unique (f, g)-
derivation � from hZ,+i to C such that D = �(�) where � is the map defined in
(206)-(207).

Remark 19. In other words, when B is the group hZ,+i of integers under addition,
R is the field C of complex numbers, and A is the Witt algebra d = �

n2ZCdn we have
equality in (211).
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Proof. Write D(d
n

) = �

n

d

n

. Uniqueness of � is clear, since � is injective. In fact,
as before, �(n) = �

n

. We must now prove that if we define � in this way, it is an
(f, g)-derivation from hZ,+i to C.

Suppose first that f = g = 0. Then �(f) = �(g) = 0 also, so that

D([d
m

, d

n

]) = [D(d
m

),�(g)(d
n

)] + [�(f)(d
m

), D(d
n

)] = 0.

But we also have

D([d
m

, d

n

]) = D((m� n)d
m+n

) = (m� n)�(m+ n)d
m+n

, (214)

for all m,n 2 Z. Therefore we have

(m� n)�(m+ n) = 0, for n,m 2 Z. (215)

If we choose n = 0 and m 6= 0 in (215), we obtain �(m) = 0 for all m 6= 0. Taking
n = �1, m = 1 in (215) we also get �(0) = 0. Thus �(n) = 0 for all n 2 Z so � is
trivially an (f, g)-derivation from hZ,+i to C.

Next, suppose that f 6= 0 (the case g 6= 0 is symmetric). Then, since f(0)2 =
f(0 + 0) = f(0), we have either f(0) = 0 or f(0) = 1. But if f(0) = 0 we would have

f(n) = f(n+ 0) = f(n)f(0) = 0

for all n which contradicts f 6= 0. Thus f(0) = 1. This fact implies that

f(1)f(�1) = f(0) = 1, (216)

which in particular means that f(1) and f(�1) both are nonzero. Now

D([d
m

, d

n

]) = [D(d
m

),�(g)(d
n

)] + [�(f)(d
m

), D(d
n

)] =

= [�(m)d
m

, g(n)d
n

] + [f(m)d
m

, �(n)d
n

] =

= (�(m)g(n) + f(m)�(n)
�

(m� n)d
m+n

.

Using this and (214) we obtain

�(m+ n) = �(m)g(n) + f(m)�(n), for all m,n 2 Z,m 6= n. (217)

The proof is finished if we can show that (217) implies that

�(2n) = �(n)g(n) + f(n)�(n) for any n 2 Z.

It can be done as follows. Let n 2 Z be arbitrary, and let x 2 {1,�1} be such that
x 6= n. Then 2n 6= x so it follows from (217) that

�(x)g(2n) + f(x)�(2n) = �(x+ 2n) =

= �((n+ x) + n) =

= �(n+ x)g(n) + f(n+ x)�(n) =

= �(n+ x)g(n) + f(n)f(x)�(n).
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Using that (216) implied f(x) 6= 0, we can solve for �(2n) and obtain

�(2n) =
1

f(x)

�

�(n+ x)g(n) + f(n)f(x)�(n)� �(x)g(2n)
�

=

=
1

f(x)

�

�(x+ n)g(n) + f(n)f(x)�(n)� �(x)g(n)g(n)
�

=

=
1

f(x)

⇣

�

�(x)g(n) + f(x)�(n)
�

g(n) + f(n)f(x)�(n)� �(x)g(n)g(n)
⌘

=

=
1

f(x)

�

�(x)g(n)g(n) + f(x)�(n)g(n) + f(n)f(x)�(n)� �(x)g(n)g(n)
�

=

=
1

f(x)

�

f(x)�(n)g(n) + f(n)f(x)�(n)
�

=

= �(n)g(n) + f(n)�(n),

where we in the third equality used x 6= n and (217). This completes the proof.

11 A Generalization of the Witt algebra

Let C[t, t�1] denote the algebra of all complex Laurent polynomials:

C[t, t�1] = {
X

k2Z

a

k

t

k | a
k

2 C, only finitely many nonzero}.

The Witt algebra defined in Section 10.3 is isomorphic to the Lie algebra D(C[t, t�1])
of all derivations of C[t, t�1]. In this section we will use this fact as a starting point for
a generalization of the Witt algebra to an algebra consisting of �-derivations.

Let A be a commutative associative algebra over C with unity 1. If � : A ! A

is a homomorphism of algebras, we denote as usual by D
�

(A) the A-module of all �-
derivations on A. For clarity we will denote the module multiplication by · and the
algebra multiplication in A by juxtaposition. The annihilator Ann(D) of an element
D 2 D

�

(A) is the set of all a 2 A such that a ·D = 0. It is easy to see that Ann(D) is
an ideal in A for any D 2 D

�

(A).
We fix now a homomorphism � : A ! A, an element � 2 D

�

(A), and an element
� 2 A, and we assume that these objects satisfy the following two conditions.

�(Ann(�)) ✓ Ann(�), (218)

�(�(a)) = ��(�(a)), for a 2 A. (219)

Let
A ·� = {a ·� | a 2 A}

denote the cyclic A-submodule of D
�

(A) generated by �. In this setting, we have the
following theorem, which introduces a C-algebra structure on A ·�.
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Theorem 79. The map

[·, ·]
�

: A ·�⇥ A ·� ! A ·� (220)

defined by setting

[a ·�, b ·�]
�

= (�(a) ·�) � (b ·�)� (�(b) ·�) � (a ·�), for a, b 2 A, (221)

where � denotes composition of functions, is a well defined C-algebra product on the
linear space A ·�, and it satisfies the following identities for a, b, c 2 A:

[a ·�, b ·�]
�

=
�

�(a)�(b)� �(b)�(a)
�

·�, (222)

[a ·�, b ·�]
�

= �[b ·�, a ·�]
�

, (223)

and

[�(a) ·�, [b ·�, c ·�]
�

]
�

+ � · [a ·�, [b ·�, c ·�]
�

]
�

+

+[�(b) ·�, [c ·�, a ·�]
�

]
�

+ � · [b ·�, [c ·�, a ·�]
�

]
�

+

+[�(c) ·�, [a ·�, b ·�]
�

]
�

+ � · [c ·�, [a ·�, b ·�]
�

]
�

= 0.

(224)

Proof. We must first show that [·, ·]
�

is a well defined function. That is, if a1 ·� = a2 ·�,
then

[a1 ·�, b ·�]
�

= [a2 ·�, b ·�]
�

, (225)

and
[b ·�, a1 ·�]

�

= [b ·�, a2 ·�]
�

, (226)

for b 2 A. Now a1 ·� = a2 ·� is equivalent to a1 � a2 2 Ann(�). Therefore, using the
assumption (218), we also have �(a1 � a2) 2 Ann(�). Hence

[a1 ·�, b ·�]
�

� [a2 ·�, b ·�]
�

= (�(a1) ·�) � (b ·�)� (�(b) ·�) � (a1 ·�)

� (�(a2) ·�) � (b ·�) + (�(b) ·�) � (a2 ·�) =

= (�(a1 � a2) ·�) � (b ·�)

� (�(b) ·�) � ((a1 � a2) ·�) =

= 0,

which shows (225). The proof of (226) is symmetric.
Next we prove (222), which also shows that A ·� is closed under [·, ·]

�

. Let a, b, c 2 A

be arbitrary. Then, since � is a �-derivation of A we have

[a ·�, b ·�]
�

(c) = (�(a) ·�)
⇣

(b ·�)(c)
⌘

� (�(b) ·�)
⇣

(a ·�)(c)
⌘

=

= �(a)�
�

b�(c)
�

� �(b)�
�

a�(c)
�

=

= �(a)
�

�(b)�(c) + �(b)�(�(c))
�

� �(b)
�

�(a)�(c) + �(a)�(�(c))
�

=

=
�

�(a)�(b)� �(b)�(a)
�

�(c) + (�(a)�(b)� �(b)�(a))�(�(c)).
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Since A is commutative, the last term is zero. Thus (222) is true. (223) is clear from
the definition. Using the linearity of � and �, and the definition of [·, ·]

�

, or the formula
(222), it is also easy to see that [·, ·]

�

is bilinear.
It remains to prove (224). For this we shall introduce some convenient notation. If

f : A⇥ A⇥ A ! A ·� is a function, we will write

 
a,b,c

f(a, b, c)

for the cyclic sum
f(a, b, c) + f(b, c, a) + f(c, a, b).

We note the following properties of the cyclic sum:

 
a,b,c

�

x · f(a, b, c) + y · g(a, b, c)
�

= x·  
a,b,c

f(a, b, c) + y·  
a,b,c

g(a, b, c),

 
a,b,c

f(a, b, c) = 
a,b,c

f(b, c, a) = 
a,b,c

f(c, a, b),

where f, g : A⇥ A⇥ A ! A ·� are two functions, and x, y 2 A. Combining these two
identities we obtain

 
a,b,c

�

f(a, b, c) + g(a, b, c)
�

= 
a,b,c

�

f(a, b, c) + g(b, c, a)
�

= 
a,b,c

�

f(a, b, c) + g(c, a, b)
�

,

which we shall refer to as the shifting property of cyclic summation. With this notation,
(224) can be written

 
a,b,c

n

[�(a) ·�, [b ·�, c ·�]
�

]
�

+ � · [a ·�, [b ·�, c ·�]
�

]
�

o

= 0. (227)

Using (222) and that � is a �-derivation of A we get

[�(a) ·�, [b ·�, c ·�]
�

]
�

=

= [�(a) ·�,

�

�(b)�(c)� �(c)�(b)
�

·�]
�

=

=
n

�

2(a)�
�

�(b)�(c)� �(c)�(b)
�

� �

�

�(b)�(c)� �(c)�(b)
�

�
�

�(a)
�

o

·� =

=
n

�

2(a)
⇣

�
�

�(b)
�

�(c) + �

2(b)�2(c)��
�

�(c)
�

�(b)� �

2(c)�2(b)
⌘

�
⇣

�

2(b)�
�

�(c)
�

� �

2(c)�
�

�(b)
�

⌘

�
�

�(a)
�

o

·� =

= �

2(a)�
�

�(b)
�

�(c) ·�+ �

2(a)�2(b)�2(c) ·�
� �

2(a)�
�

�(c)
�

�(b) ·�� �

2(a)�2(c)�2(b) ·�
� �

2(b)�
�

�(c)
�

�
�

�(a)
�

·�+ �

2(c)�
�

�(b)
�

�
�

�(a)
�

·�, (228)

where �2 = � �� and �2 = � ��. Applying cyclic summation to the second and fourth
term in (228) we get

 
a,b,c

n

�

2(a)�2(b)�2(c) ·�� �

2(a)�2(c)�2(b) ·�
o

=

= 
a,b,c

n

�

2(a)�2(b)�2(c) ·�� �

2(b)�2(a)�2(c) ·�
o

= 0,
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using the shifting property and that A is commutative. Similarly, if we apply cyclic
summation to the fifth and sixth term in (228) and use the relation (219) we obtain

 
a,b,c

n

� �

2(b)�
�

�(c)
�

�
�

�(a)
�

·�+ �

2(c)�
�

�(b)
�

�
�

�(a)
�

·�
o

=

= 
a,b,c

n

� �

2(b)�
�

�(c)
�

��

�

�(a)
�

·�+ �

2(c)�
�

�(b)
�

��

�

�(a)
�

·�
o

=

= �·  
a,b,c

n

� �

2(b)�
�

�(c)
�

�

�

�(a)
�

·�+ �

2(b)�
�

�(a)
�

�

�

�(c)
�

·�
o

= 0,

where we again used the shifting property of cyclic summation. Consequently, the only
terms in the right hand side of (228) which do not vanish when we take cyclic summation
are the first and the third. In other words,

 
a,b,c

[�(a) ·�, [b ·�, c ·�]
�

]
�

=

= 
a,b,c

n

�

2(a)�
�

�(b)
�

�(c) ·�� �

2(a)�
�

�(c))�(b) ·�
o

. (229)

We now consider the other term in (227). First note that from (222) we have

[b ·�, c ·�]
�

=
�

�(c)�(b)��(b)�(c)
�

·�

since A is commutative. Using first this and then (222) we get

� · [a ·�, [b ·�, c ·�]
�

]
�

=

= � · [a ·�,

�

�(c)�(b)��(b)�(c)
�

·�]
�

=

= �

⇣

�(a)�
�

�(c)�(b)��(b)�(c)
�

� �

�

�(c)�(b)��(b)�(c)
�

�(a)
⌘

·� =

= �

n

�(a)
⇣

�2(c)�(b) + �

�

�(c)
�

�
�

�(b)
�

��2(b)�(c)� �

�

�(b)
�

�
�

�(c)
�

⌘

�
⇣

�

�

�(c)
�

�

2(b)� �

�

�(b)
�

�

2(c)
⌘

�(a)
o

·� =

= ��(a)�2(c)�(b) ·�+ ��(a)�
�

�(c)
�

�
�

�(b)
�

·�
� ��(a)�2(b)�(c) ·�� ��(a)�

�

�(b)
�

�
�

�(c)
�

·�
� ��

�

�(c)
�

�

2(b)�(a) ·�+ ��

�

�(b)
�

�

2(c)�(a) ·�.

Using (219), this is equal to

��(a)�2(c)�(b) ·�+ �(a)�
�

�(c)
�

�
�

�(b)
�

·�
� ��(a)�2(b)�(c) ·�� �(a)�

�

�(b)
�

�
�

�(c)
�

·�
��

�

�(c)
�

�

2(b)�(a) ·�+�
�

�(b)
�

�

2(c)�(a) ·� =

= ��(a)�2(c)�(b) ·�� ��(a)�2(b)�(c) ·�
��

�

�(c)
�

�

2(b)�(a) ·�+�
�

�(b)
�

�

2(c)�(a) ·�.
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The first two terms of this last expression vanish after a cyclic summation and using the
shifting property, so

 
a,b,c

� · [a ·�, [b ·�, c ·�]
�

]
�

=

= 
a,b,c

n

��
�

�(c)
�

�

2(b)�(a) ·�+�
�

�(b)
�

�

2(c)�(a) ·�
o

. (230)

Finally, combining this with (229) we deduce

 
a,b,c

n

[�(a) ·�, [b ·�, c ·�]
�

]
�

+ �[a ·�, [b ·�, c ·�]
�

]
�

o

=

= 
a,b,c

[�(a) ·�, [b ·�, c ·�]
�

]
�

+  
a,b,c

�[a ·�, [b ·�, c ·�]
�

]
�

=

= 
a,b,c

n

�

2(a)�
�

�(b)
�

�(c) ·�� �

2(a)�
�

�(c))�(b) ·�
o

+  
a,b,c

n

��
�

�(c)
�

�

2(b)�(a) ·�+�
�

�(b)
�

�

2(c)�(a) ·�
o

=

= 
a,b,c

n

�

2(a)�
�

�(b)
�

�(c) ·�� �

2(a)�
�

�(c))�(b) ·�
o

+  
a,b,c

n

��
�

�(b)
�

�

2(a)�(c) ·�+�
�

�(c)
�

�

2(a)�(b) ·�
o

=

= 0,

as was to be shown. The proof is complete.

Remark 20. If A is not assumed to be commutative, the construction still works if one
impose on � the additional condition that

[a, b]�(c) = 0 for all a, b, c 2 A.

Then the mapping x ·� : b 7! x�(b) is again a �-derivation for all x 2 A. Furthermore,
since [A,A] is an ideal in A,

[a, b]x�(c) = 0 for all a, b, c, x 2 A.

Hence A · � is a left A-module. Then Theorem 79 remain valid with the same proof.
We only need to note that, although A is not commutative we have [a, b] ·� = 0 which
is to say that

ab ·� = ba ·�.

Example 7. Take A = C[t, t�1], � = id
A

, the identity operator on A, � = d

dt

, and
� = 1. In this case one can show that A ·� is equal to the whole D

�

(A). The conditions
(218) and (219) are trivial to check. The definition (221) coincides with the usual Lie
bracket of derivations, and equation (224) reduces to twice the usual Jacobi identity.
Hence we recover the ordinary Witt algebra.
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Example 8. Let A be a unique factorization domain, and let � : A ! A be a homo-
morphism, di↵erent from the identity. Then by Theorem 27,

D
�

(A) = A ·�,

where � = id��

g

and g = GCD

�

(id��)(A)
�

. Furthermore, let y 2 A and set

x =
id��

g

(y) =
y � �(y)

g

.

Then we have

�(g)�(x) = �(gx) = �(y)� �

2(y) = (id��)(�(y)). (231)

From the definition of g we know that it divides (id��)(g) = g � �(g). Thus g also
divides �(g). When we divide (231) by g and substitute the expression for x we obtain

�(g)

g

�

� id��

g

(y)
�

=
id��

g

(�(y)),

or, with our notation � = id��

g

,

�(g)

g

�

�

�(y)
�

= �(�(y)).

This shows that (219) holds with � = �(g)/g. Since A has no zero-divizors and � 6= id,
it follows that Ann(�) = 0 so the equation (218) is clearly true. Hence we can use
Theorem 79 to define an algebra structure on D

�

(A) = A ·� which satisfies (223) and
(224) with � = �(g)/g.

Let us now make the following definition.

Definition 12. A homomorphism Lie algebra is a nonassociative algebra L together
with an algebra homomorphism h : L ! L, such that

[x, y]
h

= �[y, x]
h

, (232)

[(id+h)(x), [y, z]
h

]
h

+ [(id+h)(y), [z, x]
h

]
h

+ [(id+h)(z), [x, y]
h

]
h

= 0, (233)

where [·, ·]
h

denotes the product in L.

If L is a Lie algebra, it is a homomorphism Lie algebra with its homomorphism
h = id

L

equal to the identity operator on L.
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Example 9. Suppose A is a commutative associative algebra, � : A ! A a ho-
momorphism, � 2 D

�

(A) and � 2 A satisfy the equations (218)-(219). Then since
�(Ann(�)) ✓ Ann(�), the mapping � induces a map

�̄ : A ·� ! A ·�,

�̄ : a ·� 7! �(a) ·�.

This map has the following property

[�̄(a ·�), �̄(b ·�)]
�

= [�(a) ·�, �(b) ·�]
�

=

=
�

�

2(a)�(�(b))� �

2(b)�(�(a))
�

·� =

=
�

�

2(a)��(�(b))� �

2(b)��(�(a))
�

·� =

= ��

�

�(a)�(b)� �(b)�(a)
�

·� =

= � · �̄([a ·�, b ·�]
�

).

We suppose now that � 2 C\{0}. Dividing both sides of the above calculation by �

2

and using bilinearity of the product, we obtain that

1

�

�̄

is an algebra homomorphism A · � ! A · �, and Theorem 79 makes A · � into a
homomorphism Lie algebra with (1/�)�̄ as its homomorphism.
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(Non-commutative geometry.)

[Har1] V. K. Harchenko, Action of groups and algebras Lie on non-commutative rings,
Uspechi Mat. Nauk, vol.35, no. 2, 1980, pp. 67–90, (Russian).
(Derivations of associative rings and algebras.)

[Har2] V. K. Harchenko, “Automorphisms and derivations of associative rings”,
Novosibirsk, 1989.
(Derivations of associative rings and algebras.)

[HaS] J. T. Hartwig, S. D. Silvestrov, Generalized derivations on algebras, to appear.

[HS] L. Hellström, S. D. Silvestrov, Commuting elements q-deformed Heisenberg al-
gebras, World Scientific, 2000, 256 pp (ISBN: 981-02-4403-7).
(q-Deformed Heisenberg algebras and q-di↵erence operators.)

[Her1] I. N. Herstein, “Non-commutative rings”, Carus Monograph, 15, 1968. (Russian
translation: Moscow, Mir, 1972.)
(Derivations of associative rings.)

[Her2] I. N. Herstein, “Rings with involution”, The Univ. of Chicago Press, 1976.
(Derivations of associative rings with involution.)



REFERENCES 89

[J1] N. Jacobson, “Structure of rings”, Colloquium Publications, 37, Amer. Math.
Soc., 1956. (Russian translation: Moscow, Inostr. Liter., 1961.)
(Derivations of associative rings and algebras.)

[J2] N. Jacobson, “Lie Algebras”, Interscience Publishers, 1962 (Dover, 1979).

[Jor1] D. A. Jordan, Krull and Global Dimension of Certain Iterated Skew Polynomial
Rings, Contemporary Mathematics, vol. 130, 1992, pp. 49–67.
(Krull dimension and global dimension for Ore type rings.)

[Jor2] D. A. Jordan, Iterated skew polynomial rings and quantum groups, J. Algebra,
156, (1993), pp. 194-218
(Ore type rings and quantum groups.)

[Jos] A. Joseph, “Some Ring Theoretic Techniques and Open Problems in Envelop-
ing Algebras”, in S. Montgomery, L. Small, eds., ”Noncommutative Rings”,
Springer-Verlag, 1992.
(�-Derivations, enveloping algebras, homological algebra, ring theory.)

[Kac] V. Kac, P. Cheung “Quantum Calculus”, Springer, 2002.
(q-Derivatives and q-analysis.)

[Ka] S. Kaijser, Derivation-type Operators on Algebras, Research report, Department
of mathematics, Uppsala University, 1969.

[K] I. Kaplansky, “Introduction to di↵erential algebra”,Moscow, Inostr. Liter., 1959,
(Russian translation).
(Di↵erential rings and fields.)

[Ka] C. Kassel, Quantum groups, Springer-Verlag, 1995. Russian translation: Fazis,
Moscow, 1999.
(�-Derivations and quantum groups.)

[Kol1] E. R. Kolchin, “Di↵erential algebra and algebraic groups”, Acad. Press, 1973.
(Di↵erential rings and fields.)

[Kol2] E. R. Kolchin, “Di↵erential algebraic groups”, Acad. Press, 1985.
(Di↵erential rings and fields.)

[LLe1] T. Y. Lam, A. Leroy, Algebraic conjugacy classes and skew polynomial rings,
in F. van Oystaeyen and L. LeBruyn, eds., ”Perspectives in NATO ASI Series,
Kluwer Publishers, 1988, 153-203.
(�-Derivations and skew polynomial rings.)



90 REFERENCES

[LLe2] T. Y. Lam, A. Leroy, Vandermonde and Wronskian Matrices over Division
Rings, J. Algebra, 119, 1988, 308–336.
(Theory of Vandermonde and Wronskian matrices based on �-derivations and
skew polynomial rings.)

[Lee] T.-K. Lee, �-commuting mappings in semiprime rings, Communications in
Algebra, 29, 1 (2001), 2945-2951.
(Commutativity theorems in rings extended to (�, ⌧)-derivations cont. of Beidar,
et.al. [BFKL].)
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[Le2] A. Leroy, (S)-dérivations algébriques sur les corps gauches et sur les anneaux
premiers, Comm. Algebra, 14, 1986, 1473–1479.
(�-Derivations and skew polynomial rings.)

[Man] Yu. I. Manin, “Topics in Non-commutative Geometry”, Princeton University
Press, 1991.
(Super-derivaitons on graded supercommutative rings and their pseudodi↵eren-
tial calculus in non-commutative geometry.)

[Mat] M. Matsuda, “First order algebraic di↵erential equation”, LNM 804, Springer-
Verlag, 1980.
(Di↵erential rings and fields.)

[MR] O.B. Melnikov, V. N. Remeslennikov, V. A. Romankov, L. A. Skornjakov, P.
Shestakov, “General algebra”, vol. I, Moscow, Nauka, 1990, (Russian).
(Derivations and �-derivations, derivations in rings and algebras (ch. III.1.3, pp.
304 – 306), di↵erential rings (ch. III.5.5, p. 556 – 557), �-derivations in group
rings (ch. II.1.2, p. 105 – 106), �-derivations in rings, and skew-polynomial ring
or ring of di↵erential polynomials (ch. II.2.3, pp. 335).)

[MP] A. V. Michalev, E. V. Pankratjev, “Di↵erential and di↵erence algebra”,Moscow,
VINITI, vol. 25, 1987, pp. 67–139, (Russian).
(Derivations of associative rings and algebras.)

[Mon] S. Montgomery, S. P. Smith, Skew derivations and U

q

(sl(2)), Israel J. Math.,
130, 1990, pp. 158-166.
(Skew Di↵erential operators play important role in quantum groups.)

[NSS] V. E. Nazaikinskii, V. E. Shatalov, B. Yu. Sternin, Methods of Noncommutative
Analysis. Theory and Applications, De Gruyter studies in mathematics 22, De



REFERENCES 91

Gruyter, Berlin, New York, 1976.
(Di↵erence and q-di↵erence operators and non-commutative analysis.)

[Ore1] O. Ore, Theory of non-commutative polynomials, Ann. Math., 34, 1933, 480-
508.
(The article where Ore rings where introduced.)

[P] R. S. Pierce, “Associative algebras”, Springer-Verlag, New York, 1982. (Russian
translation: Moscow, Mir, 1986.)
(Derivations of associative rings.)

[Po] J.-F. Pommaret, “Di↵erential Galois theory”, Gordon and Breach Sci. Publ.,
1983.
(Di↵erential rings and fields.)
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Abstract. We consider representations of the Virasoro algebra, a one-dimensional cen-

tral extension of the Lie algebra of vectorfields on the unit circle. Positive-energy, highest

weight and Verma representations are defined and investigated. The Shapovalov form

is introduced, and we study Kac formula for its determinant and some consequences for

unitarity and degeneracy of irreducible highest weight representations. In the last section

we realize the centerless Ramond algebra as a super Lie algebra of superderivations.
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94 2 DEFINITIONS AND NOTATIONS

1 Introduction

In this second part of the master thesis we review some of the representation theory for
the Virasoro algebra. It is the unique nontrivial one-dimensional central extension of
the Witt algebra, which is the Lie algebra of all vectorfields on the unit circle. More
specifically we will study highest weight representations, which is an important class
of representations. Shapovalov ([5]) defined a Hermitian form on any highest weight
representation. This in particular induces a nondegenerate form on the irreducible
quotient. Thus properties of irreducible highest weight representations can be studied
in terms of this form. In [2], [3] Kac gave a formula for the determinant of the Shapovalov
form. The formula was proved by Feigin and Fuchs in [1].

In Section 2 we introduce some notation that will be used throughout the article.
The Witt algebra is defined algebraically as the Lie algebra of all derivations of Laurent
polynomials. We show that it has a unique nontrivial one-dimensional central extension,
namely the Virasoro algebra. We define highest weight, positive energy, and Verma
representations in Section 3. Conditions for an irreducible highest weight representation
to be degenerate or unitary are considered in Section 4. We also provide some lemmas to
support the main theorem (Theorem 28), the Kac determinant formula, although we do
not give a complete proof. Finally, in Section 5 we consider a supersymmetric extension
of the Witt algebra, and we show that it has a representation as superderivations on
C[t, t�1

, ✏ | ✏2 = 0]. Superderivations are special cases of �-derivations, as described in
the first part of the master thesis.

2 Definitions and notations

For a Lie algebra g, let U(g) denote its universal enveloping algebra.

Definition 1 (Extension). Let g and I be Lie algebras. An extension eg of g by I is a
short exact sequence

0 ���! I ���! eg ���! g ���! 0

of Lie algebras. The extension is central if the image of I is contained in the center of
eg, and one-dimensional if I is.

Note that eg is isomorphic to g�I as linear spaces. Given two Lie algebras g and I, one
may always give g�I a Lie algebra structure by defining [x+a, y+b]g�I = [x, y]g+[a, b]I
for x, y 2 g, a, b 2 I. This extension is considered to be trivial.

Definition 2 (Antilinear anti-involution). An antilinear anti-involution ! on a complex
algebra A is a map A ! A such that

!(�x+ µy) = �!(x) + µ!(y) for �, µ 2 C, x, y 2 A (1)
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and
!(xy) = !(y)!(x) for x, y 2 A, (2)

!(!(x)) = x for x 2 A. (3)

Definition 3 (Unitary representation). Let g be a Lie algebra with an antilinear anti-
involution ! : g ! g. Let ⇡ : g ! gl(V ) be a representation of g in a linear space
V equipped with an Hermitian form h·, ·i. The form h·, ·i is called contravariant with
respect to ! if

h⇡(x)u, vi = hu, ⇡(!(x))vi for all x 2 g, u, v 2 V.

The representation ⇡ is said to be unitary if in addition hv, vi > 0 for all nonzero v 2 V .

Remark 1. If only one representation is considered, we will often use module notation
and write xu for ⇡(x)u whenever it is convenient to do so.

The following Lemma will be used a number of times.

Lemma 1. Let V be a representation of a Lie algebra g which decomposes as a direct
sum of eigenspaces of a finite dimensional commutative subalgebra h:

V =
M

�2h⇤
V� (4)

where V� = {v 2 V | hv = �(h)v for all h 2 h}, and h⇤ is the dual vector space of h.
Then every subrepresentation U of V respects this decomposition in the sence that

U =
M

�2h⇤
(U \ V�).

Proof. Any v 2 V can be written in the form v =
Pm

j=1 wj, where wj 2 V�j according
to (4). Since �i 6= �j for i 6= j there is an h 2 h such that �i(h) 6= �j(h) for i 6= j. Now
if v 2 U , then

v = w1 + w2 + . . . + wm

h(v) = �1(h)w1 + �2(h)w2 + . . . + �m(h)wm
...

h

m�1(v) = �1(h)m�1
w1 + �2(h)m�1

w2 + . . . + �m(h)m�1
wm

The coe�cient matrix in the right hand side is a Vandermonde matrix, and thus invert-
ible. Therefore each wj is a linear combination of vectors of the form h

i(v), all of which
lies in U , since v 2 U and U is a representation of g. Thus each wj 2 U \ V�j and the
proof is finished.
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2.1 The Witt algebra

The Witt algebra d can be defined as the complex Lie algebra of derivations of the
algebra C[t, t�1] of complex Laurent polynomials. Explicitly,

C[t, t�1] = {
X

k2Z

akt
k
��
ak 2 C, only finitely many nonzero}

and

d = {D : C[t, t�1] ! C[t, t�1]
��
D is linear and D(pq) = D(p)q + pD(q)} (5)

with the usual Lie bracket: [D,E] = DE � ED. One can check that d is closed under
this product. The following proposition reveals the structure of d.

Proposition 2. Consider the elements dn of d defined by

dn = �t

n+1 d

dt

for n 2 Z.

Then
d =

M

n2Z

Cdn (6)

and
[dm, dn] = (m� n)dm+n for m,n 2 Z. (7)

Proof. Clearly d ◆
L

n2Z Cdn. To show the reverse inclusion, let D 2 d be arbitrary.
Then, using (5), i.e. that D is a derivation of C[t, t�1], we obtain

D(1) = D(1 · 1) = D(1) · 1 + 1 ·D(1) = 2D(1).

Hence D(1) = 0, which implies that

0 = D(t · t�1) = D(t) · t�1 + t ·D(t�1),

which shows that
D(t�1) = D(t) · (�t

�2). (8)

Now define the element E 2
L

n2Z Cdn by

E = D(t)
d

dt

,

and note that E(t) = D(t). Note further that E(t�1) = D(t) · (�t

�2) and thus, by (8),
that the derivations E and D coincide on the other generator t�1 of C[t, t�1] also. Using
the easily proved fact that a derivation of an algebra is uniquely determined by the value
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on the generators of the algebra, we conclude that D = E. Therefore d ✓
L

n2Z Cdn
and the proof of (6) is finished.

We now show the relation (7). For any p(t) 2 C[t, t�1], we have

(dmdn)(p(t)) = dm(�t

n+1 · p0(t)) =
= dm(�t

n+1) · p0(t) + (�t

n+1) · dm(p0(t)) =
= �t

m+1 · (�(n+ 1))tn · p0(t) + (�t

n+1)(�t

m+1)p00(t) =

= (n+ 1)tm+n+1 · p0(t) + t

m+n+2
p

00(t).

The second of these terms is symmetric in m and n, and therefore vanishes when we
take the commutator, yielding

[dm, dn](p(t)) =
�
(n+ 1)� (m+ 1)

�
t

m+n+1
p

0(t) = (m� n) · dm+n(p(t)),

as was to be shown.

Remark 2. Note that the commutation relation (7) shows that d is Z-graded as a Lie
algebra with the grading (6).

2.2 Existence and uniqueness of Vir

Theorem 3. The Witt algebra d has a unique nontrivial one-dimensional central ex-
tension ed = d � Cc, up to isomorphism of Lie algebras. This extension has a basis
{c} [ {dn | n 2 Z}, where c 2 Cc, such that the following commutation relations are
satisfied:

[c, dn] = 0 for n 2 Z, (9)

[dm, dn] = (m� n)dm+n + �m,�n
m

3 �m

12
c for m,n 2 Z. (10)

The extension ed is called the Virasoro algebra, and is denoted by Vir.

Proof. We first prove uniqueness. Suppose ed = d � Cc is a nontrivial one-dimensional
central extension of d. Let dn, n 2 Z denote the standard basis elements of d, then we
have

[dm, dn] = (m� n)dm+n + a(m,n)c

[c, dn] = 0
(11)

for m,n 2 Z, where a : Z⇥Z ! C is some function. Note that we must have a(m,n) =
�a(n,m) because ed is a Lie algebra and thus has an anti-symmetric product:

0 = [dm, dn] + [dn, dm] = (m� n+ n�m)d0 + (a(m,n) + a(n,m))c.
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Define new elements

d

0
n =

⇢
d0 if n = 0
dn � 1

na(0, n)c if n 6= 0

c

0 = c

Then {c0} [ {d0n | n 2 Z} is a new basis for ed. The new commutation relations are

[c0, d0n] = 0

[d0m, d
0
n] = (m� n)dm+n + a(m,n)c =

= (m� n)d0m+n + a

0(m,n)c0 (12)

for m,n 2 Z, where a

0 : Z⇥ Z ! C is defined by

a

0(m,n) =

⇢
a(m,n) if m+ n = 0
a(m,n) + m�n

m+na(0,m+ n) if m+ n 6= 0
(13)

Note that since a is antisymmetric, so is a

0, and therefore in particular a

0(0, 0) = 0.
From (13) follows that a

0(0, n) = 0 for any nonzero n. These facts together with (12)
shows that

[d00, d
0
n] = �nd

0
n (14)

Using now the Jacobi identity which holds in ed we obtain

[[d00, d
0
n], d

0
m] + [[d0n, d

0
m], d

0
0] + [[d0m, d

0
0], d

0
n] = 0

[�nd

0
n, d

0
m] + [(n�m)d0n+m + a

0(n,m)c0, d00]� [d0n,md

0
m] = 0

�(n+m)(n�m)d0n+m � (n+m)a0(n,m)c0 + (n�m)(n+m)d0n+m = 0

which shows that a

0(n,m) = 0 unless n + m = 0. Thus, setting b(m) = a

0(m,�m),
equation (12) can be written

[c0, d0n] = 0

[d0m, d
0
n] = (m� n)d0m+n + �m+n,0b(m)c0

Again we use Jacobi identity

[[d0n, d
0
1], d

0
�n�1] + [[d01, d

0
�n�1], d

0
n] + [[d0�n�1, d

0
n], d

0
1] = 0

[(n� 1)d0n+1, d
0
�n�1] + [(n+ 2)d0�n, d

0
n] + [(�2n� 1)d0�1, d

0
1] = 0

(n�1)(2(n+1)d00+b(n+1)c0)+(n+2)(�2nd00+b(�n)c0)+(�2n�1)(�2d00+b(�1)c0) = 0

(2n2 � 2� 2n2 � 4n+ 4n+ 2)d00 +
�
(n� 1)b(n+ 1)� (n+ 2)b(n) + (2n+ 1)b(1)

�
c

0 = 0,
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which is equivalent to

(n� 1)b(n+ 1) = (n+ 2)b(n)� (2n+ 1)b(1).

This is a second order linear recurrence equation in b. One verifies that b(m) = m and
b(m) = m

3 are two solutions, obviously linear independent. Thus there are ↵, � 2 C
such that

b(m) = ↵m

3 + �m.

Finally, we set

dn = d

0
n + �n,0

↵ + �

2
c

0
,

and
c = 12↵c0.

If ↵ 6= 0, this is again a change of basis. Then, for m+ n 6= 0,

[dm, dn] = (m� n)d0m+n + �m+n,0(↵m
3 + �m)c0 =

= (m� n)dm+n + �m+n,0
m

3 �m

12
c,

and for m+ n = 0,

[dm, dn] = (m� n)d0m+n + (↵m3 + �m)c0 =

= 2md

0
m+n + 2m

↵ + �

2
c

0 + (↵m3 � ↵m)c0 =

= 2mdm+n +
m

3 �m

12
c =

= (m� n)dm+n + �m+n,0
m

3 �m

12
c.

From these calculations we also see that ↵ = 0 corresponds to the trivial extension.
The proof of uniqueness is finished. To prove existence, it is enough to check that the
relations (9)-(10) define a Lie algebra, which is easy.

The antilinear map ! : Vir ! Vir defined by requiring

!(dn) = d�n (15)

!(c) = c (16)

is an antilinear anti-involution on Vir. Indeed

[!(dn),!(dm)] = [d�n, d�m] = (�n+m)d�n�m + ��n,m
�n

3 + n

12
c =

= (m� n)d�(m+n) + �m,�n
m

3 �m

12
c = !([dm, dn]).
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Contravariance of Hermitian forms on representations of Vir, and unitarity of the rep-
resentations will always be considered with respect to this !.

Note that Vir has the following triangular decomposition into Lie subalgebras:

n

� =
1M

i=1

Cd�i h = Cc� Cd0 n

+ =
1M

i=1

Cdi (17)

3 Representations of Vir

3.1 Positive-energy and highest weight representations

Definition 4 (Positive-energy representation of Vir). Let ⇡ : Vir ! gl(V ) be a repre-
sentation of Vir in a linear space V such that

a) V admits a basis consisting of eigenvectors of ⇡(d0),

b) all eigenvalues of the basis vectors are non-negative, and

c) the eigenspaces of ⇡(d0) are finite-dimensional.

Then ⇡ is said to be a positive-energy representation of Vir.

Definition 5 (Highest weight representation of Vir). A representation of Vir in a linear
space V is a highest weight representation if there is an element v 2 V and two numbers
C, h 2 C, such that

cv = Cv, (18)

d0v = hv, (19)

V = U(Vir)v = U(n�)v, (20)

n

+
v = 0. (21)

The vector v is called a highest weight vector and (C, h) is the highest weight.

Remark 3. The second equality in condition (20) follows from (18), (19) and (21). To
see this, use the Poincaré-Birkho↵-Witt theorem:

U(Vir) = U(n�)U(h)U(n+),

and write U(n+) = C · 1 + U(n+)n+. Then

U(Vir)v = U(n�)U(h)(C · 1 + U(n+)n+)v = U(n�)U(h)v = U(n�)v,

where we used (21) in the second equality, and (18)-(19) in the last.
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Proposition 4. Any highest weight representation V with highest weight (C, h) has the
decomposition

V =
M

k2Z�0

Vh+k (22)

where Vh+k is the (h+ k)-eigenspace of d0 spanned by vectors of the form

d�is . . . d�i1(v) with 0 < i1  . . .  is, i1 + . . .+ is = k.

Proof. Using that [d0, ·] is a derivation of U(Vir) we get

d0d�is . . . d�i1 � d�is . . . d�i1d0 =
sX

m=1

d�is . . . d�im+1 [d0, d�im ]d�im�1 . . . d�i1 =

=
sX

m=1

imd�is . . . d�im+1d�imd�im�1 . . . d�i1 =

= (i1 + . . .+ is)d�is . . . d�i1 . (23)

Therefore we have

d0(d�is . . . d�i1(v)) = (i1 + . . .+ is)d�is . . . d�i1(v) + d�is . . . d�i1d0(v) =

= (i1 + . . .+ is + h)d�is . . . d�i1(v).

Proposition 5. An irreducible positive energy representation of Vir is a highest weight
representation.

Proof. Let Vir ! gl(V ) be an irreducible positive energy representation of Vir in a
linear space V , and let w 2 V be a nontrivial eigenvector for d0. Then d0w = �w for
some � 2 R�0. Now for any t 2 Z�0 and (jt, . . . , j1) 2 Zt we have, using the same
calculation as in Proposition 4,

d0djt . . . dj1w = (�� (jt + . . .+ j1))djt . . . dj1w.

Since V is a positive energy representation, this shows that the set

M = {j 2 Z
��
djt . . . dj1w 6= 0 for some t � 0, (jt, . . . , j1) 2 Zt with jt + . . .+ j1 = j}

is bounded from above by �. It is also nonempty, because 0 2 M . Let t � 0 and
(jt, . . . , j1) 2 Zt with jt + . . .+ j1 = maxM be such that v = djt . . . dj1w 6= 0. Then

djv = djdjt . . . dj1w = 0 for j > 0 (24)
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since otherwise j +maxM = j + jt + . . .+ j1 2 M , which is impossible. We also have

d0v = d0djt . . . dj1w = (�� (jt + . . .+ j1))djt . . . dj1w = hv (25)

where we set h = � � (jt + . . . + j1). Using some argument involving restrictions to
eigenspaces, it can be shown using Schur’s Lemma that c acts by some multiple C 2 C
of the identity operator on V . In particular we have

cv = Cv. (26)

Consider the submodule V

0 of V defined by

V

0 = U(Vir)v. (27)

It is nontrivial, since 0 6= v 2 V

0. Therefore, since V is irreducible, we must have
V = V

0. Recalling Remark 3 and using (24)-(27), it now follows that V is a highest
weight representation, and the proof is finished.

Proposition 6. A unitary highest weight representation V of Vir is irreducible.

Proof. If U is a subrepresentation of V , then V = U � U

?. Using the decomposition
(22) of V and Lemma 1 we obtain

U =
M

k�0

U \ Vh+k U

? =
M

k�0

U

? \ Vh+k

In particular, since Vh is one-dimensional and spanned by some nonzero highest weight
vector v, we have either v 2 U or v 2 U

?. Thus either U = V or U = 0.

3.2 Verma representations

Definition 6 (Verma representation of Vir). A highest weight representation M(C, h)
of Vir with highest weight vector v and highest weight (C, h) is called a Verma repre-
sentation if it satisfies the following universal property:

For any highest weight representation V of Vir with heighest weight vector u and
highest weight (C, h), there exists a unique epimorphism ' : M(C, h) ! V of Vir-
modules which maps v to u.

Proposition 7. For each C, h 2 C there exists a unique Verma representation M(C, h)
of Vir with highest weight (C, h). Furthermore, the map U(n�) ! M(C, h) sending x

to xv is not only surjective, but also injective.
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Proof. To prove existence, let I(C, h) denote the left ideal in U(Vir) generated by the
elements {dn | n > 0} [ {d0 � h · 1U(Vir), c � C · 1U(Vir)}, where 1U(Vir) is the identity
element in U(Vir). Form the linear space M(C, h) = U(Vir)/I(C, h), and define a map
⇡ : Vir ! gl(M(C, h)) by

⇡(x)(u+ I(C, h)) = xu+ I(C, h).

Then ⇡ is a representation of Vir. Furthermore, it is a highest weight representation of
Vir with highest weight vector v = 1U(Vir) + I(C, h) and highest weight (C, h).

We now show that ⇡ is a Verma representation. Let ⇢ : Vir ! gl(V ) be any
highest weight representation with highest weight (C, h) and highest weight vector u.
By restricting the multiplication we can view U(Vir) as a left Vir-module. The action
of U(Vir) on V

↵ : U(Vir) ! V

x ! xu

then becomes a Vir-module homomorphism. We claim that ↵(I(C, h)) = 0. Indeed, it
is enough to check that the image under ↵ of the generators dn, n > 0, d0 � h · 1U(Vir),
and c� C · 1U(Vir) of the left ideal are zero, and this follows since V is a highest weight
representation of Vir with highest weight vector u and highest weight (C, h). Thus ↵

induces a Vir-module epimorphism ' : U(Vir)/I(C, h) = M(C, h) ! V which clearly
maps v to u. This shows existence of the map '.

Next we prove that there can exist at most one Vir-module epimorphism ' : M(C, h) !
V which maps v to u. Since M(C, h) is a highest weight module, any element is a linear
combination of elements of the form

d�is . . . d�i1 + I(C, h),

where ij > 0 and s � 0. We show by induction on s that ' is uniquely defined on each
such element. If s = 0, we must have '(1U(Vir) + I(C, h)) = '(v) = u. If s > 0 we have

'(d�is . . . d�i1 + I(C, h)) = '(⇡(d�is)(d�is�1 . . . d�i1 + I(C, h) =

= ⇢(d�is)'(d�is�1 . . . d�i1 + I(C, h))

since ' is a Vir-module homomorphism. By induction on s, ' is uniquely defined on
M(C, h). Consequently, ⇡ is a Verma representation.

Uniqueness of the Verma representaion M(C, h) is a standard exercise in abstract
nonsense. Injectivity of the map U(n�) 3 x 7! ⇡(x)(1U(Vir) + I(C, h)) = x + I(C, h)
follows from the Poincaré-Birkho↵-Witt theorem.

In the rest of the article, v shall always denote a fixed choice of a nonzero highest
weight vector in M(C, h).
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Proposition 8. a) The Verma representation M(C, h) has the decomposition

M(C, h) =
M

k2Z�0

M(C, h)h+k (28)

where M(C, h)h+k is the (h+ k)-eigenspace of d0 of dimension p(k) spanned by vectors
of the form

d�is . . . d�i1(v) with 0 < i1  . . .  is, i1 + . . .+ is = k

b) M(C,h) is indecomposable, i.e. we cannot find nontrivial subrepresentations W1,W2

of M(C, h) such that
M(C, h) = W1 �W2.

c) M(C,h) has a unique maximal proper subrepresentation J(C, h), and

V (C, h) = M(C, h)/J(C, h)

is the unique irreducible highest weight representation with highest weight (C, h).

Proof. Part (a) is a restatement of Proposition 4 for Verma modules. It remains to de-
termine the dimension of an eigenspace Vh+k of d0. Note that in a Verma representation,
the set of all the vectors

d�is . . . d�i1(v), is � . . . � i1 � 1, i1 + . . .+ is = k

form a basis for Vh+k because a vanishing linear combination would contradict the in-
jectivity of the linear map U(n�) 3 x 7! xv 2 M(C, h). The number of such vectors are
precisely the number of partitions of k into positive integers.

For part b), assume that M(C, h) = W1 �W2 is a decomposition into subrepresen-
tations. Using Lemma 1 with g = Vir and h = Cd0 and V = M(C, h) and U = W1 and
U = W2, we would have

W1 =
M

k�0

W1 \M(C, h)h+k W2 =
M

k�0

W2 \M(C, h)h+k

respectively. Since dimM(C, h)h = 1, we have eitherM(C, h)h ✓ W1 orM(C, h)h ✓ W2.
In the former case, v 2 W1 which imply, since W1 is a representation of Vir, that
M(C, h) = U(V ir)v ✓ W1. In other words, W1 = M(C, h) and W2 = 0. The other case
is symmetric. Thus no nontrivial decompositions can exist.

To prove c), we observe from the proof of part b) that a subrepresentation ofM(C, h)
is proper if and only if it does not contain the highest weight vector v. Thus if we form
the sum J(C, h) of all proper subrepresentations ofM(C, h), it is itself a proper subrepre-
sentation of M(C, h). Clearly J(C, h) is maximal among all proper subrepresentations.
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It is also unique, because it contains and is contained in any other maximal proper
subrepresentation of M(C, h).

For the uniqueness of V (C, h), let V 0(C, h) be any irreducible highest weight module
with the same highest weight (C, h). Then by definition of the Verma module there is
a submodule J

0(C, h) of M(C, h) such that

V

0(C, h) = M(C, h)/J 0(C, h).

Since V

0(C, h) is irreducible, J 0(C, h) must be maximal and proper, and hence equal to
J(C, h). Thus V 0(C, h) = V (C, h), and the proof is finished.

3.3 Shapovalov’s form

Proposition 9. Let C, h 2 R. Then

a) there is a unique contravariant Hermitian form h·|·i on M(C,h) such that hv|vi = 1,

b) the eigenspaces of d0 are pairwise orthogonal with respect to this form,

c) J(C, h) = kerh·|·i ⌘ {u 2 M(C, h) | hu|wi = 0 for all w 2 M(C, h)}.

The form is called Shapovalov’s form.

Proof. a) We first prove uniqueness of the form. The antilinear anti-involution ! : Vir !
Vir defined in equations (15)-(16) extends uniquely to an antilinear anti-involution e! :
U(Vir) ! U(Vir) on the universal enveloping algebra as follows:

e!(x1 . . . xm) = !(xm) . . .!(x1)

for elements xi 2 Vir. If x, y 2 U(Vir), then

hxv|yvi = hv|e!(x)yvi (29)

since the form is contravariant.
The universal enveloping algebra U(Vir) of Vir has the following decomposition:

U(Vir) = (n�U(Vir) + U(Vir)n+)� U(h).

Since h is commutative, we can identify U(h) with S(h), the symmetric algebra on the
vectorspace h = Cc � Cd0. Let P : U(Vir) ! S(h) = U(h) be the projection, and let
e(C,h) : S(h) ! C be the algebra homomorphism determined by

e(C,h)(c) = C e(C,h)(d0) = h
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Then we have for x 2 U(Vir),

P (x)v = e(C,h)(P (x))v

Since M(C, h) is a highest weight representation, we have

hv|n�U(Vir)v + U(Vir)n+
vi = hn+

v|U(Vir)vi+ hv|U(Vir)n+
vi = 0

Therefore
hxv|yvi = hv|e!(x)yvi = hv|P (e!(x)y)vi = e(C,h)

�
P (e!(x)y)

�
. (30)

This shows that the form is unique, if it exists.
To show existence, we recall the construction of M(C, h) as a quotient of U(Vir) by

a left ideal I(C, h). Clearly P (n+) = P (n�) = 0, but we also have

e(C,h)(P (c� C · 1)) = e(C,h)(c� C · 1) = C � C = 0

e(C,h)(P (d0 � h · 1)) = e(C,h)(d0 � h · 1) = h� h = 0

where 1 = 1U(Vir). Note further that

P (xy) = P (x)y P (yx) = yP (x)

for x 2 U(Vir), y 2 U(h). Combining these observations we deduce

e(C,h)(P (x)) = 0 for x 2 I(C, h) or x 2 e!(I(C, h)). (31)

It is now clear that we may take (30) as the definition of the form, because if xv = x

0
v

and yv = y

0
v for some x, x

0
, y, y

0 2 U(Vir) then x� x

0
, y � y

0 2 I(C, h) so that

hxv|yvi � hx0
v|y0vi = h(x� x

0)v|yvi+ hx0
v|(y � y

0)vi =
= he!(y)(x� x

0)v|vi+ hv|e!(x0)(y � y

0)vi =
= 0.

It is easy to see that the form is Hermitian. Contravariance is also clear:

hxyv|zvi = e(C,h)

�
P (e!(xy)z)

�
= e(C,h)

�
P (e!(y)e!(x)z)

�
= hyv|e!(x)zvi.

Finally, we have
hv|vi = e(C,h)(P (1 · 1)) = 1,

which concludes the proof of part a).
b) If x 2 M(C, h)h+k and y 2 M(C, h)h+l with k 6= l we have

(k � l)hx|yi = h(h+ k)x|yi � hx|(h+ l)yi = hd0x|yi � hx|d0yi = hx|!(d0)y � d0yi = 0
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since !(d0) = d0, and therefore we must have hx|yi = 0.
c) It is easy to see, using contravariance of the form, that kerh·|·i is a Vir sub-

representation of M(C, h). Since hv|vi = 1, it is a proper subrepresentation. Hence
kerh·|·i ✓ J(C, h).

Conversely, suppose x 2 U(Vir) is such that xv 2 J(C, h), but xv /2 kerh·|·i. Then
there is a y 2 U(Vir) such that

0 6= hyv|xvi = e(C,h)(P (e!(y)x)).

Since J(C, h) is a representation of Vir, we have found z = e!(y)xv 2 J(C, h) with
a nonzero component in M(C, h)h = Cv. Therefore, using Lemma 1, we must have
v 2 J(C, h). This contradicts J(C, h) 6= M(C, h) and the proof is finished.

Corollary 10. If C, h 2 R, then V(C,h)=M(C,h)/J(C,h) carries a unique contravariant
Hermitian form h·|·i such that hv + J(C, h)|v + J(C, h)i = 1.

From now on we will always assume that C, h 2 R so that the Shapovalov form is
always defined.

4 Unitarity and degeneracy of representations

The unique irreducible highest weight representation V (C, h) with highest weight (C, h)
is called a degenerate representation if V (C, h) 6= M(C, h). In this section we will
investigate for which highest weights (C, h) the representation V (C, h) is degenerate.

We will also study unitary highest weight representations. From the preceeding
section we can draw some simple but important conclusions.

Proposition 11. There exists at most one unitary highest weight representation of Vir
for a given highest weight (C, h), namely V (C, h).

Proof. Use Proposition 6, and Proposition 8 part c).

Thus to study unitary highest weight representations, it is enough to consider those
of the irreducible representations V (C, h) which are unitary. This leads to the question:
For which highest weights (C, h) is V (C, h) unitary? We have the following preliminary
result.

Proposition 12. If V (C, h) is unitary, then C � 0 and h � 0.

Proof. A necessary condition for unitarity of V (C, h) is that

cn = hd�nv|d�nvi � 0 for n > 0.
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Since the form is contravariant we have

cn = hv|dnd�nvi = hv|
�
d�ndn + 2nd0 +

n

3 � n

12
c

�
vi = 2nh+

n

3 � n

12
C

Since c1 = 2h, we must have h � 0. Also, if n is su�cently large, cn has the same sign
as C, so C � 0 is also necessary.

To give a more detailed answer, we consider the matrix S(C, h) of the Shapovalov
form on M(C, h).

S(C, h) =
�
hd�is . . . d�i1v|d�jt . . . d�j1vi

�
1i1...is, 1j1...jt

SinceM(C, h) is a direct sum of finite-dimensional pairwise orthogonal subspacesM(C, h)h+n,
n � 0, the matrix S(C, h) is also a direct sum of matrices Sn(C, h), n � 0, where Sn(C, h)
is the matrix of the Shapovalov form restricted to M(C, h)h+n.

Sn(C, h) =
�
hd�is . . . d�i1v|d�jt . . . d�j1vi

�
(i1,...,is),(j1,...,jt)2P (n)

, (32)

where P (n) denotes the set of all partitions of n. We now define

detn(C, h) = detSn(C, h) (33)

A necessary and su�cient condition for the degeneracy of V (C, h) is that J(C, h) 6= 0,
and this happens if and only if detn(C, h) = 0 for some n � 0. If V (C, h) is unitary,
Sn(C, h) must be positive semi-definite for each n � 0, and thus detn(C, h) must be
non-negative for n � 0.

The following proposition shows that the representation theory for Vir is more in-
teresting than that of the Witt algebra.

Proposition 13 (Gomes). If C = 0, the only unitary highest weight representation ⇡

with heighest weight (C, h) is the trivial one which satisfies ⇡(dn) = 0 for all n 2 Z.

Proof. Suppose V (0, h) is unitary, and let N 2 Z�0. Then it is necessary that S2N(0, h)
is positive semi-definite. In particular the matrix


hd�2Nv|d�2Nvi hd2�Nv|d�2Nvi
hd�2Nv|d2�Nvi hd2�Nv|d2�Nvi

�
(34)

must be positive semi-definite. Since C = 0 we have

hd�2Nv|d�2Nvi = hv|(4Nd0 +
(2N)3 � 2N

12
c)vi = 4Nh,
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hd2�Nv|d�2Nvi = hd�2Nv|d2�Nvi = hv|d2Nd2�Nvi =
= hv|(3NdNd�N + d�N3NdN)vi =
= 3N · 2Nh =

= 6N2
h,

hd2�Nv|d2�Nvi = hd�Nv|(2Nd0d�N + d�N2Nd0)vi =
= 2N(h+N + h)hd�Nv|d�Nvi =
= (4Nh+ 2N2) · 2Nh =

= 8N2
h

2 + 4N3
h.

Consequently the matrix (34) has the determinant

(4Nh)(8N2
h

2 + 4N3)� (6N2
h)2 = 32N3

h

3 + 16N4
h

2 � 36N4
h

2 = 4N3
h

2(8h� 5N),

which is negative for su�cently large N , unless h = 0. By uniqueness, V (0, 0) must be
the trivial one-dimensional representation.

Our next goal is to find a general formula for detn(C, h). For this we will need a
series of lemmas.

4.1 Some lemmas

The universal enveloping algebra U(n�) of n� has a natural filtration

U(n�) =
1[

k=0

U(n�)(k) (35)

U(n�)(0) ✓ U(n�)(1) ✓ . . . (36)

U(n�)(k)U(n
�)(l) ✓ U(n�)(k+l) for k, l 2 Z�0 (37)

where
U(n�)(k) =

X

0rk

(n�)r =
X

0rk
jr�...j1�1

Cd�jr . . . d�j1 . (38)

For simplicity we will also use the notation

K(s) = U(Vir)n+ + U(n�)(s�1)d0 + U(n�)(s�1)c+ U(n�)(s) for s � 1,

and we note that
U(n�)(t)K(s) ✓ K(t+s) for t � 0, s � 1, (39)

K(s) ✓ K(s+1) for s � 1. (40)
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Lemma 14. Let i � 1 and js, . . . , j1 � 1 be integers, where s � 1. Then

did�js . . . d�j1 2 K(s). (41)

Furthermore, if i /2 {j1, . . . , js}, then (41) can be replaced by the stronger conclusion

did�js . . . d�j1 2 U(Vir)n+ + U(n�)(s�2)d0 + U(n�)(s�2)c+ U(n�)(s), (42)

where U(n�)(�1) is to be interpreted as zero.

Proof. We mainly consider (41), the case (42) being analogous. We use induction on s.
If s = 1, we have

did�j1 = d�j1di + (i+ j1)di�j1 + �i,�j1

i

3 � i

12
c.

Now d�j1di 2 U(Vir)n+ and �i,�j1 = 0 since i, j1 � 1. For the middle term (i+ j1)di�j1

there are three cases. First, if i < j1, then (i+ j1)di�j1 2 U(n�)(1) = U(n�)(s). Secondly,
if i > j1, then (i+ j1)di�j1 2 U(Vir)n+. Finally, if i = j1 (this case does not occur when
proving (42)), then (i+ j1)di�j1 = (i+ j1)d0 2 U(n�)(0)d0 = U(n�)(s�1)d0.

For the induction step, first note that

did�js . . . d�j1 = d�jsdid�js�1 . . . d�j1 + [di, d�js ]d�js�1 . . . d�j1 .

Using the induction hypothesis and (39) we have

d�jsdid�js�1 . . . d�j1 2 U(n�)(1)K(s�1) ✓ K(s).

Therefore it is enough to show that

[di, d�js ]d�js�1 . . . d�j1 2 K(s). (43)

This is clear if i� js < 0, since U(n�)s ✓ K(s). But (43) is also true if i� js > 0, using
the induction hypothesis and (40). It remains to consider the case i = js (this case does
not occur when proving (42)). Since [di, d�i] = 2id0 +

i3�i
12 c, we get

[di, d�js ]d�js�1 . . . d�j1 = (2id0 +
i

3 � i

12
c)d�js�1 . . . d�j1 =

=
i

3 � i

12
d�js�1 . . . d�j1c+ 2id�js�1 . . . d�j1d0

+ 2i(js�1 + . . .+ j1)d�js�1 . . . d�j1 .

Each of these terms belongs to the desired linear space K(s).
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In the next lemmas, h·|·i will denote the Shapovalov form on M(C, h). We will fix
C 2 R, and consider an expression of the form

hd�is . . . d�i1v|d�jt . . . d�j1vi

as a polynomial in h. We will use the notation degh p for the degree of p as a polynomial
in h.

Lemma 15. Suppose we have some integers s, t � 1 and it�1, . . . , i1 � 1. If x 2 K(s),
then

deghhd�it�1 . . . d�i1v|xvi  min{t, s}. (44)

Proof. To show (44), we use induction on t+ s. If t+ s = 2, then t = s = 1 and we have

xv = ↵d0v + �cv + (�d�k + �)v = (↵h+ �C + �)v + �d�kv

for some ↵, �, �, � 2 C and k � 1. Thus

hv|xvi = ↵h+ �C + �.

The degree of this as a polynomial in h is less than or equal to 1 = min{t, s}.
The induction step can be carried out by noting that xv is a linear combination of

elements of the form

w1 = d�kr�1 . . . d�k1d0v = hd�kr�1 . . . d�k1v,

w2 = d�kr�1 . . . d�k1cv = Cd�kr�1 . . . d�k1v,

w3 = d�kr . . . d�k1v,

where r  s. By Lemma 14 we have

dit�1d�kr�1 . . . d�k1 2 K(r�1) ✓ K(s�1)

dit�1d�kr . . . d�k1 2 K(r) ✓ K(s)

and therefore,

deghhd�it�1 . . . d�i1v|w1i = degh

⇣
h · hd�it�2 . . . d�i1v|dit�1d�kr�1 . . . d�k1vi

⌘


 1 + min{t� 1, s� 1}  min{t, s}

by the induction hypothesis. Similarly,

deghhd�it�1 . . . d�i1 |w2i = degh

⇣
C · hd�it�2 . . . d�i1v|dit�1d�kr�1 . . . d�k1vi

⌘


 min{t� 1, s� 1}  min{t, s}
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Finally,

deghhd�it�1 . . . d�i1 |w3i = deghhd�it�2 . . . d�i1v|dit�1d�kr . . . d�k1vi 
 min{t� 1, s}  min{t, s}

This proves the induction step.

Corollary 16. If it, . . . , i1 � 1 and js, . . . , j1 � 1, where s, t � 1, then

deghhd�it . . . d�i1v|d�js . . . d�j1vi  min{t, s}. (45)

Proof. Take x = ditd�js . . . d�j1 which is in K(s) by Lemma 14.

We now consider the case s = t.

Lemma 17. Let t � 1 be an integer.

i) If it � . . . � i1 � 1 then

deghhd�it . . . d�i1v|d�it . . . d�i1vi = t. (46)

and the coe�cient of ht is positive.

ii) If it � . . . � i1 � 1 and jt � . . . � j1 � 1 but (it, . . . , i1) 6= (jt, . . . , j1), then

deghhd�it . . . d�i1v|d�jt . . . d�j1vi < t (47)

Proof. We show part i) by induction on t. For t = 1 we have

di1d�i1v = 2i1d0v +
i

3
1 � i1

12
cv = 2i1hv +

i

3
1 � i1

12
Cv

and therefore

hd�i1v|d�i1vi = hv|di1d�i1vi = hv|2i1hv +
i

3
1 � i1

12
Cvi = 2i1h+

i

3
1 � i1

12
C

For the induction step, use the formula

ditd�it . . . d�i1v =
tX

r=1

d�it . . . d�ir+1 [dit , d�ir ]d�ir�1 . . . d�i1v

and note that it � ir � 0. We consider each term separately. If r is such that ir = it,
then

d�it . . . d�ir+1 [dit , d�ir ]d�ir�1 . . . d�i1v =

= d�it . . . d�ir+1

�
2itd0 +

i

3
t � it

12
c

�
d�ir�1 . . . d�i1v =

=
⇣
2it(h+ ir�1 + . . .+ i1) +

i

3
t � it

12
C

⌘
d�it . . . d�ir+1d�ir�1 . . . d�i1v.
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Thus, using the induction hypothesis,

deghhd�it�1 . . . d�i1v|d�it . . . d�ir+1 [dit , d�ir ]d�ir�1 . . . d�i1vi = 1 + t� 1 = t

and the coe�cient of ht is positive.
If r is such that ir < it, then by Lemma 14 we have

d�it . . . d�ir+1 [dit , d�ir ]d�ir�1 . . . d�i1 2 U(n�)(t�r)K(r�1) ✓ K(t�1),

so it follows from Lemma 15 that

deghhd�it�1 . . . d�i1v|d�it . . . d�ir+1 [dit , d�ir ]d�ir�1 . . . d�i1vi  min{t, t� 1} = t� 1.

Thus such terms do not contribute to the highest power of h.
To show (47), we use induction on t. For t = 1 we have i1 6= j1 so hd�i1v|d�j1vi = 0,

since the eigenspaces of d0 are pairwise orthogonal. For the induction step consider the
calculation

deghhd�it . . . d�i1v|d�jt . . . d�j1vi =

= deghhd�it�1 . . . d�i1v|
tX

p=1

d�jt . . . d�jp+1 [dit , d�jp ]d�jp�1 . . . d�j1vi 

 max
1pt

{deghhd�it�1 . . . d�i1v|d�jt . . . d�jp+1 [dit , d�jp ]d�jp�1 . . . d�j1vi}

For each p 2 {1, . . . , t} we consider three cases. First, if it � jp < 0 then

d�jt . . . d�jp+1 [dit , d�jp ]d�jp�1 . . . d�j1 2 U(n�)(t�p)U(n
�)(1)U(n

�)(p�1) ✓ U(n�)(t)

so that

deghhd�it�1 . . . d�i1v|d�jt . . . d�jp+1 [dit , d�jp ]d�jp�1 . . . d�j1vi  t� 1 < t (48)

by Corollary 16. Secondly, if it � jp > 0 then

d�jt . . . d�jp+1 [dit , d�jp ]d�jp�1 . . . d�j1 2 U(n�)(t�p)K(p�1) ✓ K(t�1)

by Lemma 14, and therefore (48) holds again, using Lemma 15. For the third case,
when it � jp = 0, we have

d�jt . . . d�jp+1 [dit , d�jp ]d�jp�1 . . . d�j1v = �d�jt . . . d�jp+1d�jp�1 . . . d�j1v

where � = 2it(h+ jp�1 + . . .+ j1) +
i3t�it
12 C. We claim now that

(it�1, . . . , i1) 6= (jt, . . . , jp+1, jp�1, . . . , j1). (49)
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Assume the contrary. Then in particular it�1 = jt, and since jt � . . . � j1 and it �
. . . � i1, it = jp we get

jt � . . . � jp+1 � jp = it � it�1 = jt.

Thus all inequalities must be equalities. Hence

jp+1 = it�1 � . . . � ip = jp+1.

Again all inequalities must be equalities, and consequently

jk = il whenever k, l � p.

In addition we assumed that ik = jk for k < p. This contradicts (it, . . . , i1) 6= (jt, . . . , j1),
so (49) is true. Thus we can use the induction hypothesis to conclude that

deghhd�it�1 . . . d�i1v|d�jt . . . d�jp+1 [dit , d�jp ]d�jp�1 . . . d�j1vi =
= 1 + deghhd�it�1 . . . d�i1v|d�jt . . . d�jp+1d�jp�1 . . . d�j1vi < 1 + (t� 1) = t.

The proof is finished.

4.2 Kac determinant formula

If p and q are two complex polynomials in h, we will write

p ⇠ q

if their highest degree terms coincide. In other words, p ⇠ q if and only if degh(p� q) <
min{degh p, degh q}. It is easy to see that ⇠ is an equivalence relation on the set of
complex polynomials in h.

Proposition 18.

detn(C, h) ⇠
Y

1i1...it
i1+...+it=n

hd�it . . . d�i1v|d�it . . . d�i1vi (50)

Proof. Let P (n) denote the set of all partitions of n, and for i 2 P (n), let `(i) denote
the length of i. For i = (i1, . . . , is), j = (j1, . . . , jt) 2 P (n), define

Aij = hd�is . . . d�i1v|d�jt . . . d�j1vi

Then a standard formula for the determinant gives

detn(C, h) =
X

�2SP (n)

(�1)sgn�
Y

i2P (n)

Ai�(i). (51)
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We will show that the term with � = id has strictly higher h-degree than the other
terms in the sum. From Lemma 17 part i) follows that degh Aii = `(i) for all i 2 P (n).
Therefore, we have

degh
Y

i2P (n)

Ai�(i) =
X

i2P (n)

`(i) when � = id . (52)

It follows from Corollary 16 that

degh Ai�(i)  min{`(i), `(�(i))},

for any � 2 SP (n) and all i 2 P (n). Also, by trivial arithmetic,

min{`(i), `(�(i))}  `(i) + `(�(i))

2
, (53)

so for any � 2 SP (n), i 2 P (n) it is true that

degh Ai�(i) 
`(i) + `(�(i))

2
. (54)

But when � 6= id, there is some j 2 P (n) such that �(j) 6= j. If `(�(j)) 6= `(j), the
inequality (53) is strict for i = j. On the other hand, if `(�(j)) = `(j), then we can use
Lemma 17 part ii) to obtain

degh Aj�(j) < `(j) =
`(j) + `(�(j))

2

In either case we have

degh Aj�(j) <
`(j) + `(�(j))

2
. (55)

Therefore, if we sum the inequalities (54) for all partitions i 6= j, and add (55) to the
result we get

degh
Y

i2P (n)

Ai�(i) =
X

i2P (n)

degh Ai�(i) <

X

i2P (n)

`(i) + `(�(i))

2
=

X

i2P (n)

`(i), (56)

when � 6= id. In the last equality we used that � : P (n) ! P (n) is a bijection. Hence,
combining (52) and (56) with (51), we obtain (50), which was to be proved.

Lemma 19. Let k � 1 be an integer. Then

[dn, d
k
�n] = nkd

k�1
�n

�
n(k � 1) + 2d0 +

n

2 � 1

12
c

�
(57)

for all n 2 Z.
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Proof. We use induction on k. For k = 1, we have

nd

0
�n

�
n · 0 + 2d0 +

n

2 � 1

12
c

�
= 2nd0 +

n

3 � n

12
c = [dn, d�n]. (58)

For the induction step, we assume that (57) holds for k = l. Then consider the following
calculations:

[dn, d
l+1
�n ] = dnd

l+1
�n � d

l+1
�n dn =

=
�
dnd

l
�n � d

l
�ndn

�
d�n + d

l
�n

�
dnd�n � d�ndn

�
=

= [dn, d
l
�n]d�n + d

l
�n[dn, d�n] =

= nld

l�1
�n

�
n(l � 1) + 2d0 +

n

2 � 1

12
c

�
d�n + d

l
�n(2nd0 +

n

3 � n

12
) =

= nd

l
�n

�
ln(l + 1) + (l + 1)(2d0 +

n

2 � 1

12
c)
�
=

= n(l + 1)dl�n(nl + 2d0 +
n

2 � 1

12
c)

This shows the induction step.

Lemma 20. Let k � 1 be an integer. Then

hdk�nv|dk�nvi = k!nk(2h+
n

2 � 1

12
C)(2h+

n

2 � 1

12
C+n) · . . . ·(2h+ n

2 � 1

12
C+n(k�1))

(59)

for all n 2 Z.

Proof. We use induction on k. For k = 1, the right hand side of (59) equals

1!n1
�
2h+

n

2 � 1

12
C + n(1� 1)

�
= 2hn+

n

3 � n

12
C

while the left hand side is

hd�n|d�nvi = hv|dnd�nvi =

= hv|(d�ndn + 2nd0 +
n

3 � n

12
c)vi =

= hv|(2nh+
n

3 � n

12
C)vi =

= 2hn+
n

3 � n

12
C

So (59) holds for k = 1.
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For the induction step, we suppose that (59) holds for k = l. Then we have

hdl+1
�n v|dl+1

�n vi = hdl�nv|dndl+1
�n vi =

= hdl�nv|
⇣
d

l+1
�n dn + n(l + 1)dl�n

�
nl + 2d0 +

n

2 � 1

12
c

�⌘
vi =

= n(l + 1)(nl + 2h+
n

2 � 1

12
C)hdl�nv|dl�nvi =

= n(l + 1)(nl + 2h+
n

2 � 1

12
C) · l!nl(2h+

n

2 � 1

12
C)(2h+

n

2 � 1

12
C + n) · . . .

. . . · (2h+
n

2 � 1

12
C + n(l � 1)) =

= (l + 1)!nl+1(2h+
n

2 � 1

12
C)(2h+

n

2 � 1

12
C + n) · . . . · (2h+

n

2 � 1

12
C + nl)

where we used Lemma 19 in the second equality. This shows the induction step and the
proof is finished.

Corollary 21.

hdk�nv|dk�nvi ⇠ k!(2nh)k

Lemma 22. Let i1, . . . , is, j1, . . . js 2 Z>0, where ip 6= iq for p 6= q. Then

hdjs�is . . . d
j1
�i1v|d

js
�is . . . d

j1
�i1vi ⇠ hdjs�isv|d

js
�isvi . . . hd

j1
�i1v|d

j1
�i1vi. (60)

Proof. We use induction on
P

k jk. If
P

k jk = 1, then we must have s = 1 so (60) is
trivial.

To carry out the induction step, we will use that

hdjs�is . . . d
j1
�i1v|d

js
�is . . . d

j1
�i1vi = hdjs�1

�is . . . d

j1
�i1v|disd

js
�is . . . d

j1
�i1vi.

First we use the Leibniz rule to obtain

disd
js
�is . . . d

j1
�i1v =

⇣ jsX

p=1

d

js�p
�is [dis , d�is ]d

p�1
�is

⌘
d

js�1

�is�1
. . . d

j1
�i1v

+ d

js
�isdisd

js�1

�is�1
. . . d

j1
�i1v =

=
⇣ jsX

p=1

2is
�
h+ (p� 1)is + js�1is�1 + . . .+ j1i1

�
+

i

3
s � is

12
C

⌘

· djs�1
�is d

js�1

�is�1
. . . d

j1
�i1v + d

js
�isdisd

js�1

�is�1
. . . d

j1
�i1v =

= (2isjsh+ A) · djs�1
�is d

js�1

�is�1
. . . d

j1
�i1v + d

js
�isdisd

js�1

�is�1
. . . d

j1
�i1v,
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where A is a constant independent of h. Consequently

hdjs�is . . . d
j1
�i1v|d

js
�is . . . d

j1
�i1vi ⇠ 2isjshhdjs�1

�is . . . d

j1
�i1v|d

js�1
�is . . . d

j1
�i1vi

+ hdjs�1
�is . . . d

j1
�i1v|d

js
�isdisd

js�1

�is�1
. . . d

j1
�i1vi. (61)

By the induction hypothesis,

2isjshhdjs�1
�is . . . d�i1

j1
v|djs�1

�is . . . d

j1
�i1vi ⇠

⇠ 2isjshhdjs�1
�is v|djs�1

�is vi · hdjs�1

�is�1
v|djs�1

�is�1
vi . . . hdj1�i1v|d

j1
�i1vi ⇠

⇠ 2isjsh(js � 1)!(2ish)
js�1 · hdjs�1

�is�1
v|djs�1

�is�1
vi . . . hdj1�i1v|d

j1
�i1vi ⇠

⇠ hdjs�isv|d
js
�isvi . . . hd

j1
�i1v|d

j1
�i1vi. (62)

where we used Corollary 21 two times. The result will now follow from (61)-(62) if we
can show that

deghhd
js�1
�is . . . d

j1
�i1v|d

js
�isdisd

js�1

�is�1
. . . d

j1
�i1vi < j1 + . . .+ js. (63)

Since is 6= ip for p < s we have by Lemma 14 that

d

js
�isdisd

js�1

�is�1
. . . d

j1
�i1 2 U(Vir)n+ + U(n�)(k�2)d0 + U(n�)(k�2)c+ U(n�)(k),

where k = j1 + . . .+ js. If x 2 U(Vir)n+, then xv = 0. If x 2 U(n�)(k�2), then

deghhd
js�1
�is . . . d

j1
�i1v|xd0vi = 1 + deghhd

js�1
�is . . . d

j1
�i1v|xvi  1 + j1 + . . .+ js � 2,

deghhd
js�1
�is . . . d

j1
�i1v|xcvi = deghhd

js�1
�is . . . d

j1
�i1v|xvi  j1 + . . .+ js � 2,

by Corollary 16. Finally, if y 2 U(n�)(k), then

deghhd
js�1
�is . . . d

j1
�i1v|yvi  j1 + . . .+ js � 1,

again by Corollary 16. These inequalities finishes the proof of (63) and we are done.

Lemma 23.

detn(C, h) ⇠
Y

r,s2Z>0
1rsn

hds�rv|ds�rvim(r,s)
,

where m(r, s) is the number of partitions of n in which r appears exactly s times.

Proof. Use Proposition 18 and Lemma 22.
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Proposition 24. For fixed C, detn(C, h) is a polynomial in h of degree

X

r,s2Z>0
1rsn

p(n� rs).

The coe�cient K of the highest power of h is given by

K =
Y

r,s2Z>0
1rsn

((2r)ss!)m(r,s)
, (64)

and m(r, s) can be calculated in terms of the partition function as follows:

m(r, s) = p(n� rs)� p(n� r(s+ 1)). (65)

Proof. We first show (65). It is easy to see that the number of partitions of n in which
r appears at least s times is p(n� rs). But the number of partitions in which r appears
exactly s times is equal to the number those which appears at least s times minus the
number of those that appears at least s+ 1 times. Thus (65) is true.

From Lemma 23 and Corollary 21 follows that the coe�cient of the highest power
of h is equal to (64) and that

degh detn(C, h) =
X

r,s2Z>0
1rsn

sm(r, s) =

=
X

1rn

[n/r]X

s=1

s

�
p(n� rs)� p(n� r(s+ 1))

�
=

=
X

1rn

[n/r]X

s=1

⇣
p(n� rs) + (s� 1) · p(n� rs)� s · p(n� r(s+ 1))

⌘
=

=
X

1rn

[n/r]X

s=1

⇣
p(n� rs)� [n/r] · p(n� r([n/r] + 1))

⌘
=

=
X

r,s2Z>0
1rsn

p(n� rs)

Lemma 25. Let V be a linear space of dimension n, and let A 2 End(V )[t]. Then
detA(t) is divisible by t

k, where k is the dimension of kerA(0).
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Proof. Choose a basis {e1, . . . ek} for the subspace kerA(0) of V and extend it to a basis
B = {e1, . . . ek, ek+1, . . . en} for V . Write

A(t) = A0 + A1t+ . . . Amt
m
,

where Ai 2 End(V ). Let M0 and M(t) be the matrices of A0 and A(t) respectively in
the basis B. Since M0ei = A(0)ei = 0 for 1  i  k, the first k columns of M0 in the
basis {e1, . . . , en} are zero, and therefore the first k columns of M(t) are divisible by t.
The result follows.

Lemma 26. If detn(C, h) has a zero at h = h0, then detn(C, h) is divisible by

(h� h0)
p(n�k)

where k is the smallest positive integer for which detk(C, h) vanishes at h = h0.

Proof. Set Jn(C, h) = J(C, h) \M(C, h)h+n = kerSn(C, h). For m � 1, we have

detm(C, h0) = 0 () Jm(C, h0) 6= 0.

Since detk(C, h0) = 0 we can thus pick u 2 Jk(C, h0), u 6= 0. This u must satisfy

dnu = 0 for n > 0,

since otherwise we would have for any w 2 M(C, h0),

hw|dnui = hd�nw|ui = 0,

because u 2 J(C, h0). But 0 6= dnu 2 M(C, h0)h0+k�n:

d0dnu = [d0, dn]u+ dnd0u = (h0 + k � n)dnu

and this contradicts the minimality of k. Then U(Vir)u is a subrepresentation of
J(C, h0). The subspace U(Vir)u \M(C, h)h+n is spanned by the elements

d�is . . . d�i1u, is � . . . i1 � 1, is + . . .+ i1 = n� k.

These are also linearly independent, since U(Vir) has no divizors of zero. Therefore
Jn(C, h0) has a subspace of dimension p(n � k), so Sn(C, h0) has a kernel of at least
dimension p(n� k). The result now follows from Lemma 25.

We will need the following fact, which we will not prove.

Fact 27. detn(C, h) has a zero at h = hr,s(C), where

hr,s(C) =
1

48

⇣
(13� C)(r2 + s

2) +
p
(C � 1)(C � 25)(r2 � s

2)� 24rs� 2 + 2C
⌘
, (66)

for each pair (r, s) of positive integers such that 1  rs  n.
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The following is the main theorem of this article.

Theorem 28 (Kac determinant formula).

detn(C, h) = K

Y

r,s2Z>0
1rsn

(h� hr,s(C))p(n�rs)
, (67)

where
K =

Y

r,s2Z>0
1rsn

((2r)ss!)m(r,s) (68)

and
m(r, s) = p(n� rs)� p(n� r(s+ 1))

and hr,s is given by (66).

Proof. From Fact 27 follows that detn(C, h) has a zero at h = hr,s(C) for each r, s 2 Z>0

satisfying 1  rs  n. Using Lemma 26 we deduce that detn(C, h) is divisible by
(h � hr,s(C))p(n�rs) for each r, s 2 Z>0 with 1  rs  n. Hence detn(C, h) is divisible
by the right hand side of (67), as polynomials in h. But we know from Proposition 24
that the degree in h of the determinant detn(C, h) equals the degree in h of the right
hand side of (67), and that the coe�cient of the highest power of h is given by (68).
Therefore equality holds in (67), and the proof is finished.

If we set
'r,r(C) = h� hr,r(C), (69)

and
'r,s(C) = (h� hr,s(C))(h� hs,r(C)), (70)

for r 6= s, then (67) can be written

detn(C, h) = K

Y

r,s2Z>0
sr

1rsn

'r,s(C)p(n�rs)
. (71)

We will also use the following notation

↵r,s =
1

48

�
(13� C)(r2 + s

2)� 24rs� 2 + 2C
�
=

=
1

4
(r � s)2 � 1

48
(C � 1)(r2 + s

2 � 2), (72)

�r,s =
1

48

p
(C � 1)(C � 25)(r2 � s

2). (73)
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Then
hr,s = ↵r,s + �r,s.

Note that ↵ is symmetric in its indices, and � is antisymmetric. Therefore

'r,s = (h� hr,s)(h� hs,r) = h

2 � 2↵r,sh+ ↵

2
r,s � �

2
r,s, (74)

for r 6= s.

4.3 Consequences of the formula

Let us now return to the questions we asked at the beginning of Section 4.

Proposition 29. a) V (1, h) = M(1, h) if and only if h 6= m

2
/4 for all m 2 Z.

b) V (0, h) = M(0, h) if and only if h 6= (m2 � 1)/24 for all m 2 Z.

Proof. a) Putting C = 1 in (66) we get

hr,s(1) =
1

48

�
12(r2 + s

2)� 24rs
�
=

(r � s)2

4
.

Thus, using (67) we obtain

detn(1, h) = K

Y

r,s2Z>0
1rsn

(h� (r � s)2

4
)p(n�rs)

.

Therefore, detn(1, h) 6= 0 for all n 2 Z if and only if h 6= m

2
/4 for all m 2 Z.

b) When C = 0 we obtain

hr,s(0) =
1

48

�
13(r2 + s

2) + 5(r2 � s

2)� 24rs� 2
�
=

=
9r2 + 4s2 � 12rs� 1

24
=

=
(3r � 2s)2 � 1

24
.

Hence by formula (67) we have

detn(0, h) = K

Y

r,s2Z>0
1rsn

(h� (3r � 2s)2 � 1

24
)p(n�rs)

.

This shows that detn(0, h) 6= 0 for all n 2 Z if and only if h 6= (m2 � 1)/24 for all
m 2 Z.
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We need the following fact which we will not prove.

Fact 30. V (1, 3) is unitary.

Then we have the following proposition.

Proposition 31. a) V (C, h) = M(C, h) for C > 1, h > 0.
b) V (C, h) is unitary for C � 1 and h � 0.

Proof. a) It will be enough to show that detn(C, h) > 0 for all C > 1, h > 0 and
n � 1. We prove in fact that each factor 'r,s of the product (71) is positive. For s = r,
1  r  n we have

'r,r(C) = h� 1

48

�
(13� c)2r2 � 24r2 � 2 + 2C

�
= h+

1

24
(C � 1)(r2 � 1) > 0,

if C > 1 and h > 0. For r 6= s we have

'r,s = h

2 � 2↵r,sh+ ↵

2
r,s � �

2
r,s =

= h

2 � 1

2
(r � s)2h+

1

24
(C � 1)(r2 + s

2 � 2)h

+
1

16
(r � s)4 � 2

1

4 · 48(r � s)2(C � 1)(r2 + s

2 � 2) +
1

482
(C � 1)2(r2 + s

2 � 2)2

� 1

482
(C � 1)(C � 25)(r2 � s

2)2 =

=
⇣
h� (r � s)2

4

⌘2

+
1

24
(C � 1)(r2 + s

2 � 2)h

+
1

482
(C � 1)2

�
(r2 + s

2 � 2)2 � (r2 � s

2)2
�

+ (C � 1)
� 24

482
(r2 � s

2)2 � 1

2 · 48(r � s)2(r2 + s

2 � 2)
�
=

=
⇣
h� (r � s)2

4

⌘2

+
1

24
(C � 1)(r2 + s

2 � 2)h

+
1

482
(C � 1)2

�
2r2s2 � 4(r2 + s

2) + 4 + 2r2s2
�

+
1

96
(C � 1)(r � s)2

�
r

2 + 2rs+ s

2 � r

2 � s

2 + 2
�
=

=
⇣
h� (r � s)2

4

⌘2

+
1

24
(C � 1)(r2 + s

2 � 2)h

+
1

12 · 48(C � 1)2(r2 � 1)(s2 � 1)

+
1

48
(C � 1)(r � s)2(rs+ 1).
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This expression is strictly positive when C > 1 and h > 0. Therefore, when C > 1, h > 0,
we have detn(C, h) > 0 for all n > 0, which proves part a).

b) Let C � 1 and h � 0 be arbitrary. Since R�1 ⇥ R�0 is pathwise connected, we
can choose a path ⇡ from (1, 3) to (C, h), i.e. a continuous function

⇡ : [0, 1] ! R�1 ⇥ R�0,

such that
p(0) = (1, 3) and p(1) = (C, h).

Moreover, this path can be chosen so that the image of the open interval (0, 1) is con-
tained in the open quadrant R>1 ⇥ R>0.

Let n 2 Z�0, and let

q(x, t) = an(x)t
p(n) + . . .+ a0(x) = det(Sn(⇡(x))� tI)

be the characteristic polynomial of Sn(⇡(x)), the matrix of the Shapovalov form at level
n on the Verma module with highest weight ⇡(x). Since Sn(⇡(x)) is Hermitian, each
root of its characteristic equation is real. For x 2 [0, 1], we denote the roots by �j(x),
j = 1, . . . , p(n) such that

�1(x)  . . .  �p(n)(x) for all x 2 [0, 1].

By a theorem on roots of polynomial equations, the roots are continuous functions of
the coe�cients. Thus, since the coe�cients ai in this case depend continuously on x,
the roots �j(x) of the characteristic equation of Sn(⇡(x)) are continuous functions of
x 2 [0, 1]. By the proof of part a) and the choice of ⇡, we have det

�
Sn(⇡(x))

�
6= 0 for

x 2 (0, 1). By Proposition 29 part a) we also have det(Sn(⇡(0))) = det(Sn(1, 3)) 6= 0,
since 3 6= m

2
/4 for all integers m. Thus none of the roots �j(x) can be zero when x < 1.

From Fact 30 follows that �j(0) > 0 for j = 1, . . . , p(n), so using the intermediate value
theorem we obtain �j(x) > 0 for j = 1, . . . , p(n) and x 2 [0, 1). Hence �j(1) � 0 for
j = 1, . . . , p(n). By spectral theory there is a unitary matrix U such that

Ū

t
Sn(⇡(1))U = U

�1
Sn(⇡(1))U = diag(�j(1)),

which shows that Sn(⇡(1)) = Sn(C, h) is positive semi-definite for any n 2 Z�0. Thus
V (C, h) is unitary.

4.4 Calculations for n = 3

In this section we calculate det3(C, h) first by hand, and then by using Kac determinant
formula.
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4.4.1 By hand

We have

det3(C, h) =

������

hd�3v|d�3vi hd�3v|d�2d�1vi hd�3v|d3�1vi
hd�2d�1v|d�3vi hd�2d�1v|d�2d�1vi hd�2d�1v|d3�1vi
hd3�1v|d�3vi hd3�1v|d�2d�1vi hd3�1v|d3�1vi

������
.

We calculate the entries:

hd�3v|d�3vi = hv|(6d0 +
33 � 3

12
c)vi =

= 6h+ 2C

hd�2d�1v|d�3vi = hd�1v|5d�1vi =
= 10h

hd3�1v|d�3vi = hd2�1v|4d�2vi =
= 4hd�1v|3d�1vi =
= 24h

hd�2d�1v|d�2d�1vi = hd�1v|(4d0 +
23 � 2

12
c)d�1v + d�23d1vi =

= (4(h+ 1) + C/2)2h =

= 8h2 + (C + 8)h

hd3�1v|d�2d�1vi = hd2�1v|3d�1d�1v + d�22d0vi =
= 3hd�1v|2d0d�1v + d�12d0vi+ 2hhd�1v|3d�1vi =
= 6(h+ 1)2h+ 6h · 2h+ 6h · 2h =

= 36h2 + 12h

hd3�1v|d3�1vi = hd2�1v|2d0d2�1v + d�12d0d�1v + d

2
�12d0vi =

= 2(h+ 2 + h+ 1 + h)hd�1v|2d0d�1v + d�12d0vi =
= 6(h+ 1) · 2(h+ 1 + h) · 2h =

= 24h(2h2 + 3h+ 1) =

= 48h3 + 72h2 + 24h
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Thus the determinant is equal to

det3(C, h) =

������

6h+ 2C 10h 24h
10h 8h2 + (C + 8)h 36h2 + 12h
24h 36h2 + 12h 48h3 + 72h2 + 24h

������
=

= 48h2

������

3h+ C 10h 12h
5 8h+ C + 8 18h+ 6
1 3h+ 1 2h2 + 3h+ 1

������
=

= 48h2
⇣
12h

�
15h+ 5� (8h+ C + 8)

�

� (18h+ 6)
�
(3h+ C)(3h+ 1)� 10h

�

+ (2h2 + 3h+ 1)
�
(3h+ C)(8h+ C + 8)� 50h

�⌘
=

= 48h2
⇣
84h2 � (12C + 36)h

� (18h+ 6)(9h2 + (3C � 7)h+ C)

+ (2h2 + 3h+ 1)(24h2 + (11C � 26)h+ C

2 + 8C)
⌘
=

= 48h2
⇣
84h2 � (12C + 36)h

�
�
162h3 + (54C � 72)h2 + (36C � 42)h+ 6C

�

+ 48h4 + (22C + 20)h3 + (2C2 + 49C � 54)h2

+ (3C2 + 35C � 26)h+ C

2 + 8C =

= 48h2
⇣
48h4 + (22C � 142)h3 + (2C2 � 5C + 102)h2

+ (3C2 � 13C � 20)h+ C

2 + 2C
⌘
. (75)

4.4.2 Using the formula

To use the determinant formula, we first calculate the coe�cient K for n = 3. The
partitions of 3 are (3), (2, 1) and (1, 1, 1). Thus

K = ((2 · 1)11!)1 · ((2 · 1)22!)0 · ((2 · 2)11!)1 · ((2 · 1)33!)1 · ((2 · 3)11!)1 =
= 2 · 4 · 8 · 6 · 6 = 482.

By (71) we now have

det3(C, h) = 482'2
1,1'2,1'3,1. (76)

First we have

'1,1(C) = h� h1,1(C) = h. (77)
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We will use the notation introduced in (73)-(72). Then

↵2,1 =
1

4
(2� 1)2 � 3

48
(C � 1) =

5

16
� 1

16
C,

↵

2
2,1 =

1

162
C

2 � 10

162
C +

25

162
,

�

2
2,1 =

9

482
(C � 1)(C � 25) =

1

162
C

2 � 26

162
C +

25

162
.

Hence, using (74),

'2,1(C) = h

2 + (
1

8
C � 5

8
)h+

1

16
C. (78)

Also,

↵3,1 =
1

4
(3� 1)2 � 8

48
(C � 1) =

7

6
� 1

6
C,

↵

2
3,1 =

1

36
C

2 � 14

36
C +

49

36
,

�

2
3,1 =

64

482
(C � 1)(C � 25) =

1

36
C

2 � 26

36
C +

25

36
.

Therefore,

'3,1(C) = h

2 + (
1

3
C � 7

3
)h+

1

3
C +

2

3
. (79)

Consequently, using (76) we have

det3(C, h) = 482h2
�
h

2 + (
1

8
C � 5

8
)h+

1

16
C

��
h

2 + (
1

3
C � 7

3
)h+

1

3
C +

2

3

�
=

= 48h2
�
16h2 + (2C � 10)h+ C

��
3h2 + (C � 7)h+ C + 2

�
=

= 48h2
�
48h4 + (16C � 112 + 6C � 30)h3

+ (16C + 32 + 2C2 � 14C � 10C + 70 + 3C)h2

+ (2C2 + 4C � 10C � 20 + C

2 � 7C)h+ C

2 + 2C
�
=

= 48h2
�
48h4 + (22C � 142)h3 + (2C2 � 5C + 102)h2

+ (3C2 � 13C � 20)h+ C

2 + 2C
�
.

This coincides with (75).

5 The centerless Ramond algebra

Let C[x, y, z] be the commutative associative algebra of polynomials in three indetermi-
nates x, y, z. Form the ideal I generated by the two elements xy � 1 and z

2. Let

A = C[x, y, z]/I
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denote the quotient algebra. We will denote the images of x, y, and z under the canonical
projection C[x, y, z] ! A by t, t�1 and ✏ respectively. Then we have

t

�1
t = tt

�1 = 1 ✏

2 = 0.

The algebra A can also be thought of as the tensor product algebra of C[t, t�1] with the
exterior algebra ⇤(C✏) on a one-dimensional linear space.

We have a Z2-grading
A = A0 � A1, (80)

AiAj ⇢ Ai+j, (81)

defined by
A0 = C[t, t�1], A1 = C[t, t�1]✏.

Since A

2
1 = 0, A can also be thought of as a supercommutative algebra:

ab = (�1)|a||b|ba for a, b 2 A0 [ A1,

where |a| 2 Z2 denotes the degree of a homogenous element a 2 A0 [ A1.
For n 2 Z we define the linear operators Ln, Fn on A by

Ln = �t

n+1 d

dt

� n

2
t

n
✏

d

d✏

,

Fn = it

n+1
✏

d

dt

+ it

n d

d✏

.

More explicitly we can define these mappings by requiring

Ln : tk 7! �kt

n+k
,

Ln : tk✏ 7! (�k � n

2
)tn+k

✏,

and

Fn : tk 7! ikt

n+k
✏,

Fn : tk✏ 7! it

n+k
,

where i =
p
�1.

Proposition 32. For n 2 Z, Ln is an even superderivation on A and Fn is an odd
superderivation on A, in the sence that

Ln(ab) = Ln(a)b+ aLn(b)

Fn(ab) = Fn(a)b+ (�1)|a|aFn(b)

for homogenous a, b 2 A.
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Proof. A straightforward calculation yields

Ln(t
k
t

l) = Ln(t
k+l) = (�k � l)tn+k+l = �kt

n+k
t

l � t

k · ltn+l = Ln(t
k)tl + t

k
Ln(t

l),

Ln(t
k
✏t

l) = Ln(t
k+l

✏) = (�k � l � n/2)tn+k+l
✏ = (�k � n/2)tn+k

✏ · tl � t

k
✏ · ltn+l =

= Ln(t
k
✏)tl + t

k
✏Ln(t

l),

Ln(t
k
t

l
✏) = Ln(t

k+l
✏) = (�k � l � n/2)tn+k+l

✏ = �kt

n+k · tl✏+ t

k · (�l � n/2)tn+l
✏ =

= Ln(t
k)tl✏+ t

k
Ln(t

l
✏),

Ln(t
k
✏t

l
✏) = Ln(0) = 0 = (�k � n/2)tn+k

✏ · tl✏+ t

k
✏ · (�l � n/2)tn+l

✏ =

= Ln(t
k
✏)tl✏+ t

k
✏Ln(t

l
✏),

and

Fn(t
k
t

l) = Fn(t
k+l) = i(k + l)tn+k+l

✏ = ikt

n+k
✏ · tl + t

k · iltn+l
✏ = Fn(t

k)tl + t

k
Fn(t

l),

Fn(t
k
✏t

l) = Fn(t
k+l

✏) = it

n+k+l = it

n+k
t

l � t

k
✏ · iltn+l

✏ = Fn(t
k
✏)tl � t

k
✏Fn(t

l),

Fn(t
k
t

l
✏) = Fn(t

k+l
✏) = it

n+k+l = ikt

n+k
✏ · tl✏+ t

k · itn+l = Fn(t
k)tl✏+ t

k
Fn(t

l
✏),

Fn(t
k
✏t

l
✏) = Fn(0) = 0 = it

n+k · tl✏� t

k
✏ · itn+l = Fn(t

k
✏)tl✏� t

k
✏Fn(t

l
✏).

The anticommutator [P,Q]+ of two linear operators P and Q on A is defined by

[P,Q]+ = PQ+QP.

Proposition 33. The operators Ln, Fn satisfy the following commutation relations:

[Lm, Ln] = (m� n)Lm+n,

[Lm, Fn] = (
1

2
m� n)Fm+n,

[Fm, Fn]+ = 2Lm+n.

Remark 4. This shows that Ln and Fn generate a super Lie algebra. It is called the
centerless Ramond algebra.

Proof. We have

[Lm, Ln](t
k) = (LmLn � LnLm)(t

k) =

= Lm(�kt

n+k)� Ln(�kt

m+k) =

= �k(�n� k)tm+n+k + k(�m� k)tn+m+k =

= (m� n)(�k)tm+n+k =

= (m� n)Ln+m(t
k),
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and

[Lm, Ln](t
k
✏) = (LmLn � LnLm)(t

k
✏) =

= Lm((�k � n/2)tn+k
✏)� Ln((�k �m/2)tm+k

✏) =

= (�k � n/2)(�n� k �m/2)tm+n+k
✏

� (�k �m/2)(�m� k � n/2)tn+m+k
✏ =

= (nk + n

2
/2�mk �m

2
/2)tm+n+k

✏ =

= (m� n)(�k � (m+ n)/2)tm+n+k
✏ =

= (m� n)Lm+n(t
k
✏).

Also,

[Lm, Fn](t
k) = (LmFn � FnLm)(t

k) =

= Lm(ikt
n+k

✏)� Fn(�kt

m+k) =

= ik(�n� k �m/2)tm+n+k
✏+ ki(m+ k)tn+m+k

✏ =

= (m/2� n)iktm+n+k
✏ =

= (m/2� n)Fm+n(t
k),

and

[Lm, Fn](t
k
✏) = (LmFn � FnLm)(t

k
✏) =

= Lm(it
n+k)� Fn((�k �m/2)tm+k

✏) =

= �i(n+ k)tm+n+k � (�k �m/2)itn+m+k =

= (m/2� n)itm+n+k =

= (m/2� n)Fm+n(t
k).

Finally we have,

[Fm, Fn]+(t
k) = (FmFn + FnFm)(t

k) =

= Fm(ikt
n+k

✏) + Fn(ikt
m+k

✏) =

= ki

2
t

m+n+k + ki

2
t

n+m+k =

= 2Lm+n(t
k),

and

[Fm, Fn]+(t
k
✏) = (FmFn + FnFm)(t

k
✏) =

= Fm(it
n+k) + Fn(it

m+k) =

= i

2(n+ k)tm+n+k
✏+ i

2(m+ k)tn+m+k
✏ =

= 2(�k � (m+ n)/2)tm+n+k
✏ =

= 2Lm+n(t
k).
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The proof is finished.
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