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My main area of research is representation theory, particularly of associative
algebras related to Lie theory. I am also interested in connections to geometry,
combinatorics and mathematical physics.

1. Principal flag orders and their spherical subalgebras

1.1. History
In two short papers by Gelfand and Tsetlin from 1950, bases and matrix coefficients
are given for finite-dimensional irreducible representations of , where  is the
general linear Lie algebra , respectively the orthogonal Lie algebra . Crucially,
in the chain , the branching rule  is multiplicity-free.
The bases are parametrized by triangular arrays of integers subject to interleaving
conditions. Of particular importance is the Gelfand-Tsetlin subalgebra  of the
universal enveloping algebra , defined as the subalgebra generated by the
centers  for . Two remarkable facts are that

 is maximal commutative in  [2][10][27]; and
 is free as a left -module [30][1].

By construction,  acts diagonally in the Gelfand-Tsetlin bases. Moreover, the action
of the root vectors of the reductive Lie algebra  on the basis vectors can be
expressed using shift operators (acting on the entries of the integer arrays) and
rational function in the entries of the arrays.
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In [2] these formulas were used to construct new infinite-dimensional irreducible
representations of . Futorny and Ovsienko introduced in 2010 the notion of a
Galois order [9] as certain subalgebra of the invariants of a skew group algebra, and
proved that the enveloping algebra  is an example of a Galois order. Any
Galois order has an analog of the Gelfand-Tsetlin subalgebra . It is expected,
although still unproven, that  will also be an example. In [8] it was shown
that finite W-algebras of type  are examples of Galois orders.

Knowing that an algebra  is a Galois order has valuable consequences for its
representation theory, in particular for the category  of -modules upon which 

 acts locally finitely. In the case of , this category contains all weight modules
hence all of category . Understanding the category  is very much an active area
of current research (see e.g. [5] and references therein). A completely separate
application is to noncommutative birational equivalence: Computing the division
ring of fractions of a Galois order is equivalent to solving a corresponding
noncommutative invariant theory problem [8].

In [17] I devised a new method to help proving that a given algebra is a Galois
order. Previous methods relied on proving that the candidate subalgebra  is
maximal commutative, i.e. not properly contained in any other commutative
subalgebra. For the finite W-algebras, this was done by hand in [8], which meant
somewhat tedious leading term considerations. Worse is that in the trigonometric
(=quantum) case, this method does not work. Thus it was unknown for a long time
whether the quantum group  is a Galois order. In my paper [17] I define a
class of algebras called principal Galois orders and prove that they are indeed
examples of Galois orders. With this method it suffices to show that an algebra is a
principal Galois order, which turns out to be easier (even though they technically
form a proper subclass). Interestingly, all examples in the literature so far are
actually principal Galois orders, which provides an alternative way to study them.
Using this method I was able to prove that  is a principal Galois order. In
particular this implies that its Gelfand-Tsetlin subalgebra is maximal commutative,
which also had been an open problem for quite some time. Another application of
principal Galois orders is a uniform construction of a family of simple modules
parametrized by the maximal spectrum of , [17]. This generalizes previous results
for  and other algebras, see [3].

In 2019, Webster introduced the notion of a principal flag order. On the one hand,
these algebras are special cases of principal Galois orders, of a particularly simple
form. On the other hand, any principal Galois order  appears as the "spherical

gln

U(gl )n

Γ
U(so )n

A

U

GZ U

Γ U(gln
O GZ

Γ

U (gl )q n

U (gl )q n

Γ
U(gl )n

U

2



•
•
•

subalgebra" of a principal flag order . And in a nice case (all examples in the
literature fall into this case),  and  are Morita equivalent. Thus the representation
theory of  can be much simplified by instead studying the representation theory of

.
Let us be more precise by defining a special case of principal flag orders and their

spherical subalgebras.

1.2. Definition (rational case)
Let  be a complex vector space,  be a complex reflection group, and 

 be a -invariant lattice acting on  by translations. Let  be the
algebra of polynomial functions on , and  its field of fractions. The
semidirect product  acts on . Let  be the
corresponding smash product (skew group algebra). Notice that  acts naturally on 

.
A rational flag order is a subalgebra  of  such that

1. ,
2. ,
3.  for all  and all .

The subalgebra  where  is the symmetrizing
idempotent, is called the spherical subalgebra of .

Replacing  by , the algebra of functions on a complex torus ,
one obtains a trigonometric analog of these notions, relevant to the quantum algebra
( -analog) examples. In the general case of a principal flag/Galois order,  is
replaced by an arbitrary integrally closed noetherian domain, see [32][17] for details.

1.3. Examples
Examples of rational flag orders include:

Trigonometric Cherednik algebras associated to , [32][25].
The nilHecke algebra [32]
Any Braverman-Finkelberg-Nakajima Coulomb branch [32].

Examples of rational Galois orders include:
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The spherical subalgebra of the previous examples. Thus in particular:
The universal enveloping algebra , [9].
Any orthogonal Gelfand-Tsetlin (OGZ) algebra [26][32].
Any truncated (=level ) Yangian  [8].
Any finite W-algebra of type  [8].
"Parabolic" subalgebras of the above examples [17].

1.4. The quantum group  and generalizations
In [6] we proved that the quantized enveloping algebra  is a "Galois ring"
which is weaker than Galois order. In [17] I proved that  is a Galois order.

In [14] I introduced a new family of algebras called quantum OGZ algebras. They
are quantizations of the orthogonal Gelfand-Tsetlin (OGZ) algebras introduced by
Mazorchuk [26]. Special cases include  and quantized Heisenberg algebras. I
showed that quantum OGZ algebras are Galois rings, with symmetry group being a
direct product of complex reflection groups . Later, in [17], I proved that
the quantum OGZ algebras are also examples of Galois orders.

1.5. Category of Gelfand-Tsetlin modules
Let  be a rational flag order. A finitely generated -module  is a Gelfand-Tsetlin
module if  acts locally finite on . Equivalently,  splits as a direct sum of
generalized weight spaces with respect to .

The full subcategory of Gelfand-Tsetlin modules is one of the primary objects of
study in the representation theory of a rational (or more generally, principal) flag
order. In particular a crucial problem is to understand the simple objects.

The fiber over , denoted , is the set of isomorphism classes of simple
Gelfand-Tsetlin -modules  such that , where

The main theorem of Futorny-Ovsienko [10] is the following (which we formulate
only in the present special case of rational flag orders).

Theorem The set  is non-empty and finite for any .

The cardinality can be explicitly bound in terms of orders of stabilizer subgroups,
provided it is known that  is flat as a left -module. This theorem can be
regarded as a rough classification of simple Gelfand-Tsetlin modules.
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1.6. Ongoing and future work
This subsection contains some topics related to Galois order that I am working on.

1.6.1. The orthogonal Lie algebra
An obvious question is how much of the Gelfand-Tsetlin theory for the general
linear Lie algebra can be carried over to the orthogonal Lie algebra. Evidence
suggest most of it should carry over. According to Mazorchuk [27], the Gelfand-
Tsetlin subalgebra  is maximal commutative. Moreover the corresponding classical
integrable system associated to  has been studied by Evans and Colarusso [1].
Their work indicates that  is free as a left and right -module. However, it is
still unknown whether  is a Galois order. The category of Gelfand-Tsetlin
modules has not been studied systematically either; only partial results are known.

1.6.2. Residue description of principal flag/Galois orders
Given a principal flag order  with an embedding , how can we describe
the image in a global way (not just with a generating set)? For any ideal  of the
algebra  one can construct a principal flag order by considering rational shift
operators which preserve  and . For example, Ginzburg-Kapranov-Vasserot [11]
proved that the affine Hecke algebra (and its degenerate version) can be obtained in
this way. In that case  is the principal ideal generated by the Weyl denominator
(generator of the relative invariants  as a -module). It is expected that
when such a global description is possible, it would be much easier to describe
simple Gelfand-Tsetlin modules, because it allows the direct calculation of relevant
localizations.

1.6.3. Flatness and deformation quantization
A crucial property of the known examples of principal flag and Galois orders is that
they are flat (in fact, free) over their Gelfand-Tsetlin subalgebras. Since flatness
means locally free, this implies that upon localization and completion, the
cardinality of isoclasses of simple Gelfand-Tsetlin modules in a given fiber can be
bounded from above with a precise bound [10][32]. In this context I am interested in
the connections to poisson geometry and deformation quantization. In particular, I
would like to solve the following problem:

Derive sufficient conditions for a principal flag order to be flat over its Gelfand-
Tsetlin subalgebra.
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1.6.4. Noncommutative deformations of Kleinian singularities
These noncommutative algebras, introduced by Rosenberg (Type ) and Crawley-
Boevey and Holland (Types ), are deformations of the algebra of functions on
a Kleinian singularity  where  is a finite subgroup of . They are the
simples examples of symplectic reflection algebras which are not rational Cherednik
algebras [4]. In ongoing work I have shown that noncommutative Kleinian
singulariteis of Type  are examples of Galois orders. Previously, via generalized
Weyl algebras, it is known that the Type  singularities are also Galois orders. I am
interested in finding a uniform realization of all types  noncommutative
Kleinian singularities as Galois orders, and to study the consequences for
representation theory.

1.6.5. Integrable systems on Slodowy slices (with M. Colarusso)
The goal of this project is to generalize the classical Kostant-Wallach integrable
system related to the Lie algebra , to the case of an arbitrary Slodowy slice. This
is motivated by the connection to Gelfand-Tsetlin theory for finite W-algebras [8],
which have been shown to be quantizations of Slodowy slices by Gan and Ginzburg.

1.6.6. Cherednik algebras and Hopf Galois orders
Work of Webster [32] implies that rational Cherednik algebras associated to some
complex reflection groups are examples of principal flag orders. In ongoing work I
have shown the same for trigonometric Cherednik algebras, and affine and
degenerate affine Hecke algebras. Via Dunkl-Opdam differential-reflection
representations one can also realize these algebras using a differential analog of
principal flag orders. I am also developing a generalized framework which include
both group algebra and differential analogs of Galois order and which makes
contact with the theory of Hopf Galois extensions.

1.6.7. Crystal bases
In [18] we gave explicit crystal data for the crystal bases of finite-dimensional
irreducible -modules in terms of Gelfand-Tsetlin patterns. We conjecture that this
method may lead to crystal bases for other examples of Galois orders, such as OGZ
algebras.
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2. Twisted generalized Weyl algebras

Introduced by Mazorchuk and Turowska [29] in 1999, these are certain -graded
algebras given by generators and relations involving automorphisms  and
distinguished elements  of a base ring . On the one hand this family contains
many interesting noncommutative algebras such as multiparameter quantized Weyl
algebras, primitive quotients of enveloping algebras, quantum spheres; their tensor
products and finite order invariant subalgebras. On the other hand their
representation theory is reminiscent of that of weight modules over semi-simple Lie
algebras.

2.1. Definition
Given an algebra  with  commuting automorphisms  and  central non-
zerodivisors  of , let  be the algebra obtained from  by adjoining 
generators  to  subject to relations:

The associated twisted generalized Weyl algebra  is defined as  where  can be
defined as

The original definition of  is less explicit [29]. I showed the equivalence to this
simpler definition in [15].

2.2. Examples
If  for all , then  is a generalized Weyl algebra (GWA) as
introduced by Bavula in the early 1990's.
If  is a polynomial algebra in the 's and if 

, then  is isomorphic to the :th Weyl algebra.
If  for all  then  is isomorphic to the skew group algebra .
If  and  and 

 then  is isomorphic to a quotient of  [31][22].
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2.3. Consistency equations and their solutions

A critical point about TGWAs is that the automorphisms  and elements  must
satisfy (binary and ternary) consistency relations in order to ensure that  is non-trivial:

The binary relations were pointed out in [29]. We discovered the ternary relations in
[7] and proved the binary and ternary relations together were sufficient for
consistency. Thus the natural question arises to describe all solutions to these TGWA
consistency equations.

Some solutions were given in [29] and [31]. In [13], I found solutions attached to
any symmetric generalized Cartan matrix. In [22] we generalized these by finding
solutions attached to multiquivers. In the two papers [19][20], we obtained a
complete classification of solutions in the case when  is a polynomial ring and the 

 are additive shift automorphisms.

2.3.1. Future work
I am interested in studying solutions to the binary consistency equation when  is
replaced by the algebra of holomorphic functions on an affine complex variety.

2.4. Relation to enveloping algebras of Lie (super) algebras
One of the motivations to introduce TGWAs was to find a class which contains
Bavula's generalized Weyl algebras as well as enveloping algebras of simple Lie
algebras [29]. Although the class of TGWAs is not the answer to this question, there
are many interesting connections. In [29] the authors constructed some modules
reminiscent of Lie algebra modules. Another connection is that the Mickelsson-
Zhelobenko step algebras  are examples of TGWAs [28].

In [13], I found that Kac-Moody Serre relations (which appear in presentations of
simple Lie algebras and Kac-Moody algebras) and generalizations of such relations
hold among the generators , under reasonable assumptions in any TGWA. In
[22] we proved that a primitive quotient  of the enveloping algebra  of a
finite-dimensional simple Lie algebra is graded isomorphic to a TGWA if and only if 

 is the annihilator of a completely pointed simple weight module. We studied the
super analog of these questions in [23].
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2.5. The category of weight modules

Assume from now on that  is commutative. A finitely generated -module is a
weight module with respect to the subalgebra  if

Simple weight modules over TGWAs have been studied in [29][28][12][15][16].
There is a further important notion, that of weight modules with no inner breaks, first
introduced in [29], which I generalized in [12] and reinterpreted in [15]. A weight
module  has no inner breaks if  for every  where 
is the radical of the gradation form a certain graded subquotient  of .

In [12], I classified all simple weight modules without inner breaks over an
arbitrary TGWA.

In [15] I found a connection between the representation theory of a class of
TGWAs and two-dimensional lattice models. The algebras depend on two
polynomials that must satisfy the binary consistency equation, which I re-
interpreted as a quantization of the ice rule (local current conservation) in statistical
mechanics. Solutions can accordingly be expressed in terms of multisets of higher
spin vertex configurations on a twisted cylinder. I obtained a complete classification
of all simple weight modules by proving that none of them have any inner breaks,
and described their support geometrically. I also described the center of these
TGWAs, which involves a remarkable analog of the Casimir operator.

In the paper [16], we provide a combinatorial way to compute the signature of the
unique indefinite inner product on any simple weight modules over the TGWAs
from [15]. In particular this gives a concrete way to determine which simple weight
modules are unitarizable.

2.5.1. Future work
The classification of simple weight modules is still open, in the general case. As the
rank two case showed, it is most interesting in cases where the support has discrete
geometric interpretation. Therefore I am interested in the category of weight
modules primarily in the cases when one expects a nice description of simple
modules to be possible. For example when  is replaced by the ring of entire
functions in the complex plane. I believe the Grothendieck ring of the category (see
below) will be especially interesting in this case and it should relate even more

R A

R

V = V , V =
m∈MaxSpec(R)

⨁ m m {v ∈ V ∣ mv = 0}

V J V =m m 0 m ∈ MaxSpec(R) Jm

Cm A

R

9



intimately to the combinatorial properties of the six vertex model.

2.6. Tensor products and Grothendieck rings
Fix an algebra  and an -tuple  of commuting automorphism of 

. For each -tuple  of central regular elements of , let  be
the TGWA associated with . In the paper [21] we proved that there are
algebra maps  of TGWAs which can be assembled into a
bialgebra, analogous to Zelevinsky's Hopf algebras and in more recent work by
Khovanov [24] and many others. This equips the complexified Grothendieck group
of the category of weight modules with the structure of an algebra. We computed
presentations of this algebra in serveral cases. In particular, indecomposable weight
modules can be broken down into a tensor product of modules over simpler
algebras (the Weyl algebra). For example, any indecomposable object of category 
of  can be written as a tensor product of at most two Weyl algebra modules.

2.6.1. Future work
I plan to apply the tensor product structure to describe indecomposable modules
more generally, and investigate other situations where this approach may be used.

3. Noncommutative invariant theory

We say two (noncommutative) Ore domains are birationally equivalent if they have
isomorphic division rings of fractions.

Originally formulated in a special case by B. Feigin at RIMS in 1992, an Ore
domain  is said to satisfy the quantum Gelfand-Kirillov conjecture if it is birationally
equivalent to a quantum Weyl algebra over a purely transcendental field extension
of the base field. This is a -analog of the classical property of some enveloping
algebras conjectured by Gelfand and Kirillov in the 1960's.

A related notion, the -difference Noether problem for a group  acting on a
quantum Weyl algebra (or a quantum plane)  asks whether the subring of -
invariants, , is birationally equivalent to  (possibly with different deformation
parameters).

A quirk of the quantum algebra world is that the quantum plane 
 and quantum Weyl algebra 

 are actually birationally equivalent (in the  limit this is not true: one is
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It is known that finite W-algebras of type  satisfy the usual Gelfand-Kirillov
conjecture [8]. An open problem is to construct a -analog of finite W-algebras of
type  and to determine whether they satisfy the quantum Gelfand-Kirillov
conjecture.
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