Towards

Generalisations of algebraic structures in differential geometry ((n): associative superalgebra generated by 2n odd elements θ^{α} , Ea (a=1, ..., n) modulo $\begin{bmatrix} \theta^{a}, \theta^{b} \end{bmatrix} = \begin{bmatrix} \mathsf{E}_{a}, \mathsf{E}_{b} \end{bmatrix} = 0, \quad \begin{bmatrix} \mathsf{E}_{a}, \theta^{b} \end{bmatrix} = \delta_{a}^{b}$ Lie superalgebras of Cartan type obtained as subalgebras of the commutator algebra of C(n): • $W(n) = \langle \theta^{a_1} \cdots \theta^{a_p} E_b \rangle$ S(n): subalgebra of W(n) consisting of traceless elements: $\mathrm{tr}\left(\theta^{\alpha_{1}}\cdots\theta^{\alpha_{p}}\mathsf{E}_{b}\right)=\left[\theta^{\alpha_{1}}\cdots\theta^{\alpha_{p}},\mathsf{E}_{b}\right]$

Z-grading:				
	degree	basis of W(n)	of sl(n(1)	
•	1	Ea	Ea	
	0	0°E6	$K^{a}_{b} = \theta^{a}E_{b}$	
	-1	θαθες	$F^{a} = \partial^{a} \partial^{b} E_{b}$	
		:		
	- n + 1	$\int \theta^{a_i} \cdots \theta^{a_n} E_b$		
Lie algebras appearing as subalgebras at degree zero:				
$W(n)_0 = g(n)$				
$S(n)_0 = s(n) = A_{n-1}$				
8 - 0 - 0 0 - 0 0 1 2 $n-1$				
Can be extended to a contragredient				
	Lie superalgebra $A(0, n-i) = S(n1i)$,			

Question Given any Kac-Moody algebra g and any contragredient Lie superalgebra extension B of g "by a grey vertex", what is the natural generalisation W of W(n)? Is there an underlying generalisation C of the Clifford algebra C(n)?

The extension can be characterised by an integral dominant weight $\lambda = \sum_{i=1}^{r} \lambda_i \Lambda_i$ where the λ_i are non-negative integers.

The grey vertex is connected to vertex j with λ_j lines.

As a g-module. B-1 = R(N). irreducible with highest weight N. Simplify: restrict to cases where g is finite (any simple finitedimensional Lie algebra) and $\lambda = \Lambda_j$ such that the corresponding Coxeter label is equal to one. ("pseudo-minuscule weight")

 $A_r: \bigcirc \bigcirc - \cdots - \bigcirc - \oslash$ $B_r: \bigcirc -\infty \longrightarrow 0$ C,: 0-0-... -0<=0 $D_r: \bigcirc - \circ - \circ - \circ - \circ$ E6: O-0-0-0

(No such λ for Eg, Fq, G2.)

The case
$$(g, \lambda) = (A_{n-1}, \Lambda_1)$$
:

$$\frac{degree}{degree} = basis of sl(n[1]):$$

$$\frac{1}{1} = E_n$$

$$0 = K^n b = \theta^n E_b$$

$$-1 = F^n = \theta^n \theta^b E_b$$
With $F^n = \theta^n$, the brachet in sl(n11)
differs from the commutator in C(n):

$$\begin{bmatrix} E_n, F^b \end{bmatrix} = -F^b E_n + \delta_n^b F^c E_c$$

$$\begin{bmatrix} E_n, F^b \end{bmatrix} = \delta_n^b$$
From gl(n11), with $K = F^n E_n$, we
can reconstruct the products $F^b E_n$
and $E_n F^b$ in C(n) by

$$F^b E_n = - [E_n, F^b] + \delta_n^b K$$

$$E_n F^b = [E_n, F^b] - \delta_n^b K + \delta_n^b$$

The general case
$$(g, \lambda)$$
:

$$\frac{degree}{degree} = \frac{basis of B}{modules} = \frac{g modules}{m}$$

$$\frac{1}{1} = \frac{E_{M}}{E_{M}} = \frac{R(\lambda)}{R(\lambda)}$$

$$\frac{0}{1} = \frac{T_{\alpha}, L}{F^{M}} = \frac{g \oplus C}{R(\lambda)}$$

$$\frac{-1}{m} = \frac{F^{M}}{m} = \frac{R(\lambda)}{m}$$

$$\frac{M = 1, ..., dim g}{m}$$

$$\frac{M = 1, ..., dim g}{m}$$

$$\frac{Grading element : [L, B_{k}] = k B_{k}}{g - invariant bilinear form:}$$

$$\frac{E_{M}, F^{N}}{E_{M}} = - \langle F^{N}, E_{M} \rangle = \delta_{M}^{N}$$

$$\frac{As a generalisation of C(\alpha), we}{want \alpha unital algebra with sub}$$

$$spaces B_{L} (L = 0, \pm 1) such that$$

$$F^{N}E_{M} = -IE_{M}, F^{N}I - \delta_{M}^{N}L$$

$$\frac{B}{E_{M}}F^{N} = IE_{M}, F^{N}I + \delta_{M}^{N}L + \delta_{M}^{N}N$$

A and, in addition,

$$[x_0, y_{\pm 1}] = [x_0, y_{\pm 1}]$$

for $x_0 \in B_0$ and $y_{\pm 1} \in B_{\pm 1}$.
The only case where there is an
associative such algebra is
 $(g, \lambda) = (A_{n-1}, \Lambda_1)$. In all other cases
we need to restrict associativity!
In the general case, there is a
 \mathbb{Z} -araded algebra $\widetilde{C} = \widetilde{C} \oplus \widetilde{C}_{\pm} \oplus \widetilde{C}_{\pm}$

 \mathbb{Z} -graded algebra $\widetilde{C} = \widetilde{C}_{\bullet} \oplus \widetilde{C}_{\circ} \oplus \widetilde{C}$ such that

- $\tilde{C}_{\pm k} \simeq \cup (B_{\circ}) \otimes \tau^{k}(B_{\pm 1})$
- the relations above hold for $B_k \subseteq \tilde{C}_k (h=0, \pm i)$,
- (XY)Z = X(YZ) whenever X,Y $\in \tilde{C}_{0\pm}$ or Y, Z $\in \tilde{C}_{0\pm}$.

- $(\cup \otimes 1)(\vee \otimes Y) = \cup \vee \otimes Y$
- $(U \otimes X)(1 \otimes Y) = U \otimes XY$
- $(U, V \in U(B_0), X, Y \in T(B_{\pm}))$

Non-associativity:

 $(E_{a}F^{b})E_{c} - E_{a}(F^{b}E_{c}) =$ = $S_{a}^{b}E_{c} - K^{b}{}_{a}E_{c} - E_{a}K^{b}{}_{c} =$ = $-K^{b}{}_{a}E_{c} - K^{b}{}_{c}E_{a} =$ = $-F^{b}(E_{a}E_{c} + E_{c}E_{a})$

Can we get a generalised Clifford algebra C by factoring out from \tilde{C} the ideal generated by $\overline{R(2\lambda)} \subseteq \tilde{C}_2$, $R(2\lambda) \subseteq \tilde{C}_{-2}$?

There is furthermore a unique Z-graded Lie superalgebra W and a surjective homomorphism

 $\varphi: B_{-1}B_{0} \oplus B_{0} \oplus B_{1} \to W_{-1} \oplus W_{0} \oplus W_{1}$ such that

- W is nontrivial
- W is generated by W-1 & W0 & W1
- W is bitransitive: $(k \ge 0)$ $[W_{-1}, w_{k}] = 0 \implies w_{k} = 0$ $[W_{1}, w_{-k}] = 0 \implies W_{-k} = 0$
- $\Psi([\times_i, y_j]) = [\Psi(\times_i), \Psi(y_j)]$ for $i+j=0, \pm 1$ where $\times_i, y_j \in B_{-1}B_0 \oplus B_0 \oplus B_1 \subset \widetilde{C}$.

$$Ex[(g, \lambda) = (A_{n-1}, \Lambda_{1}):$$

$$B_{1} = \langle E_{a} \rangle$$

$$B_{0} = \langle F^{a} E_{b} \rangle$$

$$B_{.1}B_{0} = \langle F^{a} K^{b} c \rangle$$

$$Q \text{ must be injective on } B_{0} \oplus B_{1}$$

$$What is \qquad P(F^{a} F^{b} E_{c})?$$

$$[E_{a}, F^{b} K^{c} d] =$$

$$= [E_{a}, F^{b}] K^{c} d$$

$$- F^{b}[E_{a}, K^{c} d] =$$

$$= \delta_{a}^{b} K^{c} d - \delta_{a}^{c} F^{b} E_{d} =$$

$$= \delta_{a}^{b} K^{c} d - \delta_{a}^{c} K^{b} d$$
For bitransitivity, we need
$$P(F^{a} K^{b} c) = -P(F^{b} K^{a} c)$$

Set $\varphi(x) = \overline{x}$.

$$\begin{bmatrix} \overline{E}_{a}, \overline{E}_{b} \end{bmatrix}, \overline{F}^{c} \overline{K}^{d} e \end{bmatrix} =$$

$$= 2 \begin{bmatrix} \overline{E}_{(a)}, [\overline{E}_{b)}, \overline{F}^{c} \overline{K}^{d} e \end{bmatrix}] =$$

$$= 4 \delta_{(b} \begin{bmatrix} \overline{E}_{a}, \overline{K}^{d} \end{bmatrix} =$$

$$= 4 \delta_{(b} \begin{bmatrix} \overline{E}_{a}, \overline{K}^{d} \end{bmatrix} =$$

Bitransitivity gives $[\overline{E}_a, \overline{E}_b] = 0$, and the full structure of W(n).

By restricting
$$B_0 = g \oplus \langle L \rangle$$
 to g
and B., Bo to the maximal subspace
(B., Bo)g such that [B,, (B., B.)g] $\subseteq g$
we get similarly a Z-graded
Lie superalgebra S, such that
 $S = S(n)$ for $(g, \lambda) = (A_{n-1}, \Lambda_1)$.

The Lie superalgebras W and S are
called tensor hierarchy algebras!

$$Ex[(g, \lambda) = (Dr, \Lambda_1):$$

$$W = K(1|2r) \quad S = H(2r)$$

$$Ex[(g, \lambda) = (Er, \Lambda_1): (r \leq 7)$$

$$or$$

$$or$$

$$or$$

$$or$$

$$or$$

$$or$$

$$r-1$$
Both W and S infinite-dimensional!
In S. there is a symmetry around
degree (9-r)/2:

$$\frac{degree}{S(E_7, \Lambda_1)} \quad B(E_7, \Lambda_1)$$

$$r.$$

$$g_{12}$$

$$g_{13}$$

$$g_{12}$$

$$g_{12}$$

$$g_{12}$$

$$g_{12}$$

$$g_{13}$$

$$g_{12}$$

$$g_{12}$$

$$g_{13}$$

$$g_{13$$

Let
$$\mathcal{W}$$
 be the Weyl algebra on
 $2(\dim R(\lambda))$ even elements pm, x^N :
 $[x^M, x^N] = [pm, pn] = 0, [pm, x^N] = \delta m^N$ =
On the tensor product $\mathcal{W} \otimes \tilde{C}$, let d be
an operator defined by
 $dx^M = F^M$, $dE_M = pm$, $dF^M = dpm = 0$ =
on the generators, and extend it so
that it acts as a derivation on
 \mathcal{W}, \tilde{C} and $\mathcal{W}\tilde{C} \subseteq \mathcal{W} \otimes \tilde{C}$.
Define a vector field as an
element in the subspace
 $\langle x^{M_1} \dots x^{M_p} E_N \rangle$ of $\mathcal{W} \otimes \tilde{C}$.

For $(g, \lambda) = (A_{n-1}, \Lambda_i)$ we then get the ordinary Lie derivative of a vector field V with respect to a vector field U as a derived brachet:

$$\begin{bmatrix} JU, V \end{bmatrix} = \begin{bmatrix} J(U^{A}E_{A}), V^{B}E_{B} \end{bmatrix} = \\ = \begin{bmatrix} JU^{A}E_{A} + U^{A}JE_{A}, V^{B}E_{B} \end{bmatrix} = \\ = \begin{bmatrix} J_{C}U^{A}F^{C}E_{A} + U^{A}P_{A}, V^{B}E_{B} \end{bmatrix} = \\ = J_{C}U^{A}V^{B}[F^{C}E_{A}, E_{B}] \\ + U^{A}[P_{A}, V^{B}]E_{B} = \\ = J_{B}U^{A}V^{B}E_{A} + U^{A}J_{A}V^{B}E_{B} \\ = (J_{A}U^{B}V^{A} + U^{A}J_{A}V^{B})E_{B} \end{bmatrix}$$

In the case $(q, \lambda) = (E_r, \Lambda_1)$, the derived bracket [dU, V] describes a generalised Lie derivative which unifies r of the ordinary diffeomorphisms in 11-dimensional supergravity with gauge transformations. Tensor hierarchy algebras can be defined also when λ is not a pseudo-minuscule weight, and even when g is infinite-dimensional, by constructions different from the "cartanification" outlined here.

In general Wo and Wy are then strictly bigger than Bo and By!

Outlook

- How can the "cartanification"
 be modified so that it gives
 the expected result also when
 g is infinite-dimensional ?
- Does the generalised Clifford algebra C exist ?

References

Cederwall, Palmhvist:

2309.14423, 2207.12417, 2103.02476, 1804.04377

1802.05767 (with Carbone), ...

P: 1507.08828, 1305.0018

Generalities about contragredient and Cartan-type Lie (super)algebras and constructions from local Lie (super)algebras: Kac 1968, 1977 Lie superalgebras B(g, λ) in the context of supergravity: Cremmer, Julia, Lü, Pope 1998 Henry-Labordère, Julia, Paulot 2002 Henneaux, Julia, Levie 2010

Extended geometry: Hitchin, Hull, Waldram, Hohm, Samtleben, West, Berman, Cederwall, Kleinschmidt,...