Towards
Generalisations of algebraic structures in differential geometry
$C(n)$: associative superalgebra generated by $2 n$ od elements $\theta^{a}, E_{a}(a=1, \ldots, n) \operatorname{modulo}$

$$
\left[\theta^{a}, \theta^{b}\right]=\left[E_{a}, E_{b}\right]=0,\left[E_{a}, \theta^{b}\right]=\delta_{a}^{b}
$$

Lie superalgebras of Cartan type obtained as subalgebras of the commutator algebra of $C(n)$:

- $W(n)=\left\langle\theta^{a_{1}} \ldots \theta^{a_{p}} E_{b}\right\rangle$
- $S(n)$: subalgebra of $W(n)$ consisting of traceless elements:

$$
\operatorname{tr}\left(\theta^{a_{1}} \ldots \theta^{a_{p}} E_{6}\right)=\left[\theta^{a_{1}} \ldots \theta^{a_{p}}, E_{b}\right]
$$

\mathbb{Z}-grading:
basis

degree	basis of $W(n)$	of sl(n\|1)
1	E_{a}	E_{a}
0	$\theta^{a} E_{b}$	$K^{a} b=\theta^{a} E_{b}$
-1	$\theta^{a} \theta^{b} E_{c}$	$F^{a}=\theta^{a} \theta^{b} E_{b}$
\vdots	\vdots	
$-n+1$	$\theta^{a_{1}} \ldots \theta^{a_{n}} E_{b}$	

Lie algebras appearing as subalgebras at degree zero:

$$
\begin{aligned}
& W(n)_{0}=g((n) \\
& S(n)_{0}=S\left((n)=A_{n-2}\right. \\
& \otimes-0-0-0 \quad \cdots \quad-0-1
\end{aligned}
$$

Can be extended to a contragredient Lie superalgebra $A(0, n-1)=s i(n \mid 1)$.

Question Given any Kac-Moody algebra g and any contragredient Lie superalgebra extension B of g "by a grey vertex", what is the natural generalisation W of $W(n)$? is there an underlying generalisation C of the Clifford algebra $C(n)$?

The extension can be characterised by an integral dominant weight $\lambda=\sum_{i=1}^{r} \lambda_{i} \Lambda_{i}$ where the λ_{i} are nonnegative integers.

The grey vertex is connected to vertex j with λ_{j} lines.

As a g-module. $B_{-1}=R(\lambda)$, irreducible with highest weight λ.

Simplify: restrict to cases where g is finite (any simple finitedimensional Lie algebra) and $\lambda=\Lambda_{j}$ such that the corresponding Coxeter label is equal to one. ("pseudo-minuscule weight")
$A_{r}:$ OO $\cdots \quad-0-0$
$B_{r}: ~ O-0-\cdots \rightarrow 0$
$C_{r}: 0-0-\cdots-0$
D_{r} :
E_{6} :

$E_{7}:$

(No such λ for E_{8}, F_{4}, G_{2}.)

The case $(g, \lambda)=\left(A_{n-1}, \Lambda_{1}\right):$
degree
1

0
---:
-1

With $F^{a}=\theta^{a}$, the bracket in $\sin (n \mid 1)$ differs from the commutator in $C(n)$:

$$
\begin{aligned}
& \left.\mathbb{[} E_{a}, F^{b}\right]=-F^{b} E_{a}+\delta_{a}^{b} F^{c} E_{c} \\
& {\left[E_{a}, F^{b}\right]=\delta_{a}^{b}}
\end{aligned}
$$

From gl(n|1), with $K=F^{a} E_{a}$, we can reconstruct the products $F^{{ }^{b}} E_{a}$ and $E_{a} F^{b}$ in $C(a)$ by

$$
\begin{aligned}
& F^{b} E_{a}=-\llbracket E_{a}, F^{b} \mathbb{]}+\delta_{a}^{b} K \\
& \left.E_{a} F^{b}=\llbracket E_{a}, F^{b}\right]-\delta_{a}^{b} K+\delta_{a}^{b}
\end{aligned}
$$

The general care (g, λ):

degree	basis of B	g-modules
\ldots	\ldots	\ldots
1	E_{M}	$\overline{R(\lambda)}$
0	$T_{\alpha} L$	$g \oplus \mathbb{C}$
-1	F^{M}	$R(\lambda)$
\ldots	\ldots	\ldots

$$
\binom{M=1, \ldots, \operatorname{dim} R(\lambda)}{\alpha=1, \ldots, \operatorname{dim} g}
$$

Grading element: $\left[L, B_{k}\right]=k B_{k}$ g-invariant bilinear form:

$$
\left\langle E_{M}, F^{N}\right\rangle=-\left\langle F^{N}, E_{M}\right\rangle=\delta_{M}^{N}
$$

As a generalisation of $C(n)$. we want a unital algebra with sub. spaces $B_{k}(k=0, \pm 1)$ such that

$$
\begin{aligned}
& F^{N} E_{M}=-\llbracket E_{M}, F^{N} \rrbracket-\delta_{M}{ }^{N} L \\
& E_{M} F^{N}=\llbracket E_{M}, F^{N} \rrbracket+\delta_{M}{ }^{N} L+\delta_{M}{ }^{N}
\end{aligned}
$$

\rightarrow and, in addition.

$$
\left[x_{0}, y \pm 1\right]=\llbracket x_{0}, y \pm 1 \rrbracket
$$

for $x_{0} \in B_{0}$ and $y_{ \pm 1} \in B_{ \pm 1}$.
The only case where there is an associative such algebra is $(g, \lambda)=\left(A_{n-1}, \Lambda_{1}\right)$. In all other cases, we need to restrict associativity!

In the general case, there is a \mathbb{Z}-graded algebra $\tilde{C}=\tilde{C}_{-} \oplus \tilde{C}_{0} \oplus \tilde{C}_{+}$ such that

- $\tilde{C}_{ \pm k} \simeq U\left(B_{0}\right) \otimes T^{k}(B \pm 1)$
- the relations above hold for

$$
B_{k} \subseteq \tilde{C}_{k}(k=0, \pm 1)
$$

- $(X Y) Z=X(Y Z)$ whenever $X, Y \in \tilde{C}_{0 \pm}$ or $Y, Z \in \tilde{C}_{0 \pm}$.

$$
\begin{aligned}
& (U \otimes 1)(V \otimes Y)=U V \otimes Y \\
& (U \otimes X)(1 \otimes Y)=U \otimes X Y \\
& \left(U, V \in U\left(B_{0}\right), \quad X, Y \in T(B \pm 1)\right)
\end{aligned}
$$

Non-associativity:

$$
\begin{aligned}
& \left(E_{a} F^{b}\right) E_{c}-E_{a}\left(F^{b} E_{c}\right)= \\
& =\delta_{a}^{b} E_{c}-K^{b}{ }_{a} E_{c}-E_{a} K^{b}{ }_{c}= \\
& =-K^{b}{ }_{a} E_{c}-K^{b}{ }_{c} E_{a}= \\
& =-F^{b}\left(E_{a} E_{c}+E_{c} E_{a}\right)
\end{aligned}
$$

Can we get a generalised clifford algebra C by factoring out from \tilde{C} the ideal generated by

$$
\overline{R(2 \lambda)} \subseteq \hat{C}_{2}, \quad R(2 \lambda) \subseteq \tilde{C}_{-2} ?
$$

"Cartanification":
There is furthermore a unique \mathbb{Z}-graded Lie superalgebra W and a surjective homomorphism
$\varphi: B_{-1} B_{0} \oplus B_{0} \oplus B_{1} \rightarrow W_{-1} \oplus W_{0} \oplus W_{1}$ such that

- W is nontrivial
- W is generated by $W_{-1} \oplus W_{0} \oplus W_{1}$
- W is bitransitive: $(k \geqslant 0)$

$$
\begin{aligned}
& {\left[w_{-1}, w_{k}\right]=0 \Rightarrow w_{k}=0} \\
& {\left[w_{1}, w_{-k}\right]=0 \Rightarrow w_{-k}=0}
\end{aligned}
$$

- $\varphi\left(\left[x_{i}, y_{j}\right]\right)=\left[\varphi\left(x_{i}\right), \varphi\left(y_{j}\right)\right]$
for $i+j=0, \pm 1$ where

$$
x_{i}, y_{j} \in B_{1} B_{0} \oplus B_{0} \oplus B_{1} \subset \tilde{C}
$$

Ex) $(g, \lambda)=\left(A_{n-1}, \Lambda_{1}\right):$

$$
\begin{aligned}
B_{1} & =\left\langle E_{a}\right\rangle \\
B_{0} & =\left\langle F^{a} E_{b}\right\rangle \\
B_{-1} B_{0} & =\left\langle F^{a} K_{c}^{b}\right\rangle
\end{aligned}
$$

φ must be injective on $B_{0} \oplus B_{1}$. What is $\varphi\left(F^{a} F^{b} E_{c}\right)$?

$$
\begin{aligned}
& {\left[E_{a}, F^{b} K^{c} d\right]=} \\
& = \\
& {\left[E_{a}, F^{b}\right] K^{c} d} \\
& \\
& -F^{b}\left[E_{a}, K^{c} d\right]= \\
& = \\
& =\delta_{a}^{b} K^{c}{ }_{d}-\delta_{a}^{c} F^{b} E_{d}= \\
& = \\
& \delta_{a}^{b} K_{d}^{c}-\delta_{a}^{c} K^{b} d
\end{aligned}
$$

For bitransitivity, we need

$$
\varphi\left(F^{a} K^{b} c\right)=-\varphi\left(F^{b} K^{a} c\right)
$$

$\operatorname{Set} \varphi(x)=\bar{x}$.

$$
\begin{aligned}
& {\left[\left[\bar{E}_{a,} \bar{E}_{b}\right], \overline{F^{c} K^{d} e}\right]=} \\
& =2\left[\bar{E}_{(a,}\left[\bar{E}_{b)}, \overline{F^{c} K^{d} e}\right]\right]= \\
& =4 \delta_{(b}^{[c}\left[\bar{E}_{a)}, \overline{K^{d]} e}\right]= \\
& =4 \delta_{(b}^{[c} \delta_{a)}^{d]} \bar{K}_{e}=0
\end{aligned}
$$

Bitransitivity gives $\left[\bar{E}_{a}, \bar{E}_{b}\right]=0$, and the full structure of $W(n)$.

By restricting $B_{0}=g \oplus\langle L\rangle$ to g and $B_{-1} B_{0}$ to the maximal subspace $\left(B_{1}, B_{0}\right)_{g}$ such that $\left[B_{1},\left(B_{1}, B_{0}\right)_{g}\right] \subseteq g$ we get similarly a \mathbb{Z}-graded Lie superalgebra S, such that $S=S(n)$ for $(g, \lambda)=\left(A_{n-1}, \Lambda_{1}\right)$.

The Lie superalgebras W and S are called tensor hierarchy algebras!
Ex) $(g, \lambda)=\left(D_{r}, \Lambda_{1}\right)$:

$$
w=K(1 \mid 2 r) \quad S=H(2 r)
$$

Ex) $(g, \lambda)=\left(E_{r}, \wedge_{1}\right): \quad(r \leqslant 7)$

Both W and S infinite-dimensional!
In S. there is a symmetry around degree $(9-r) / 2$:

degree	$S\left(E_{7,} \Lambda_{1}\right)$	$B\left(E_{7,} \Lambda_{1}\right)$
\ldots	\ldots	\ldots
3	912	
2	133	
1	56	
0	133	
-1	912	
-2	13308645	$\left(\begin{array}{c}132 \\ 1336 \\ 133 \\ \hline\end{array}\right.$
136		
13		

Let W be the Weyl algebra on $2(\operatorname{dim} R(\lambda))$ even elements $P M, x^{N}$:

$$
\left[x^{M}, x^{N}\right]=\left[P_{M}, P_{N}\right]=0,\left[P_{M}, x^{N}\right]=\delta_{M}^{N}
$$

On the tensor product $\omega \otimes \widetilde{C}$, let d be an operator defined by $d x^{M}=F^{M}, \quad d E_{M}=P M, \quad d F^{M}=d P_{M}=0$ on the generators, and extend it so that it acts as a derivation on W, \tilde{C} and $W \tilde{C} \subseteq W \otimes \tilde{C}$.

Define a vector field as an element in the subspace
$\left\langle x^{M_{1}} \cdots x^{M_{p}} E_{N}\right\rangle$ of $\mathscr{W} \tilde{C}$.
For $(g, \lambda)=\left(A_{n-1}, \Lambda_{1}\right)$ we then get the ordinary Lie derivative of a vector field V with respect to a vector field U as a derived bracket:

$$
\begin{aligned}
& {[\partial U, V]=\left[\partial\left(U^{a} E_{a}\right), V^{b} E_{b}\right]=} \\
&= {\left[\partial U^{a} E_{a}+U^{a} \partial E_{a}, V^{b} E_{b}\right]=} \\
&= {\left[\partial_{c} U^{a} F^{c} E_{a}+U^{a} p_{a}, V^{b} E_{b}\right]=} \\
&= \partial_{c} U^{a} V^{b}\left[F^{c} E_{a,} E_{b}\right] \\
&+U^{a}\left[p_{a,} V^{b}\right] E_{b}= \\
&= \partial_{b} U^{a} V^{b} E_{a}+U^{a} \partial_{a} V^{b} E_{b} \\
&=\left(\partial_{a} U^{b} V^{a}+U^{a} \partial_{a} V^{b}\right) E_{b}
\end{aligned}
$$

In the case $(g, \lambda)=\left(E_{r}, \Lambda_{1}\right)$, the derived bracket $[d U, V]$ describes a generalised Lie derivative which unifies r of the ordinary differmorphisms in 21-dimensional supergravity with gauge transformations.

Tensor hierarchy algebras can be defined also when λ is not a pseudo-minuscule weight, and even when g is infinite-dimensional, by constructions different from the "cartanification" outlined here. In general W_{0} and W_{1} are then strictly bigger than B_{0} and B_{1} !

Outlook

- How can the "cartanification" be modified so that it gives the expected result also when g is infinite-dimensional?
- Does the generalised Clifford algebra C exist?

References
Cederwall, Palmuvist:

$$
\begin{aligned}
& 2309.14423,2207.12417, \\
& 2103.02476,1804.04377 \\
& 1802.05767 \text { (with Carbone), } \ldots \\
& P: 2507.08828,1305.0018
\end{aligned}
$$

Generalities about contragredient and Cartan-type Lie (super)algebras and constructions from local Lie (super) algebras: Kac 1968, 1977
Lie superalgebras $B(g, \lambda)$ in the context of supergravity:
Crammer, Julia, Lü, Pope 1998
Henry-Labordère, Julia, Paulot 2002 Henneaux, Julia, Levie 2010
Extended geometry: Hitchin, Hull, Waldram, Hohm, Samtleben, West, Berman. Cederwall. Kleinschmidt,...

