The Koszul Property of Algebras Associated to Matroids

Jason McCullough
(joint work with Matt Mastroeni and Irena Peeva)
November 23, 2023
44th Annual Japan Symposium on Commutative Algebra
lowa State University

Outline

1. Koszul Algebras
2. Matroids and Lattices
3. Orlik-Solomon Algebras
4. Graded Möbius Algebras
5. Chow Rings of Matroids

Outline

1. Koszul Algebras
2. Matroids and Lattices
3. Orlik-Solomon Algebras
4. Graded Möbius Algebras
5. Chow Rings of Matroids

Notation

- \mathbb{K} a field
- $V=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ an n-dimensional \mathbb{K}-vector space
- $T=\bigoplus_{i=0}^{\infty} V^{\otimes i}$ the tensor algebra V over \mathbb{K}
- $I \subseteq T$ an ideal generated by g quadrics
- $R=T / I$: such \mathbb{K}-algebras are called quadratic

Koszul Algebras

Let $R_{+}=\bigoplus_{i>0} R_{i}$.
R is a Koszul algebra if $R / R_{+} \cong \mathbb{K}$ has a linear free resolution over R.

Koszul Algebras

Let $R_{+}=\bigoplus_{i>0} R_{i}$.
R is a Koszul algebra if $R / R_{+} \cong \mathbb{K}$ has a linear free resolution over R.

Example

Let $R=\mathbb{K}[x, y] /(x, y)^{2}$. Then the minimal free resolution of \mathbb{K} is:

$$
\cdots \xrightarrow{\left(\begin{array}{ccccccccc}
x & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & x & y & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & x & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & x & x
\end{array}\right)} R(-2)^{4} \xrightarrow{\left(\begin{array}{cccc}
x & y & 0 & 0 \\
0 & 0 & x & y
\end{array}\right)} R(-1)^{2} \xrightarrow{(x y)} R
$$

Properties of Koszul Algebras

- Every Koszul algebra R corresponds to a quadratic dual algebra $R^{\text {! }}$ which is also Koszul.
- $\mathrm{P}_{R}(t)=\sum_{i} \beta_{i}^{R}(\mathbb{K}) t^{i}=\sum_{i}\left(\operatorname{dim}_{\mathbb{K}} R_{i}^{!}\right) t^{i}=\mathrm{H}_{R^{\prime}}(t)$
- $\mathrm{P}_{R}(t) \mathrm{H}_{R}(-t)=1$

Properties of Koszul Algebras

- Every Koszul algebra R corresponds to a quadratic dual algebra $R^{!}$ which is also Koszul.
- $\mathrm{P}_{R}(t)=\sum_{i} \beta_{i}^{R}(\mathbb{K}) t^{i}=\sum_{i}\left(\operatorname{dim}_{\mathbb{K}} R_{i}^{!}\right) t^{i}=\mathrm{H}_{R^{\prime}}(t)$
- $\mathrm{P}_{R}(t) \mathrm{H}_{R}(-t)=1$

Example

For $R=\mathbb{K}[x, y] /(x, y)^{2}$, we have $\mathrm{H}_{R}(t)=1+2 t$ so that:

$$
P_{R}(t)=\frac{1}{1-2 t}=1+2 t+4 t^{2}+8 t^{3}+\cdots
$$

Examples of Koszul Algebras

- Polynomial rings and exterior algebras
- Quotients by quadratic monomial ideals (Fröberg 1975)
- All high degree Veronese subrings of any standard graded algebra (Backelin 1986)
- Quadratic Gorenstein rings of regularity 2 (Conca, Rossi, Valla 2001)

How to Detect Koszulness

We say that R or I is G-quadratic if, after a suitable linear change of coordinates, the ideal $\varphi(I)$ has a Gröbner basis consisting of quadrics.

$$
\text { G-quadratic } \Longrightarrow \text { Koszul } \Longrightarrow \text { quadratic }
$$

How to Detect Koszulness

We say that R or I is G-quadratic if, after a suitable linear change of coordinates, the ideal $\varphi(I)$ has a Gröbner basis consisting of quadrics.

$$
\text { G-quadratic } \Longrightarrow \text { Koszul } \Longrightarrow \text { quadratic }
$$

Example

Neither converse is true:

$$
K[x, y, z] /\left(x^{2}-y z, y^{2}-x z, z^{2}-x y\right)
$$

is Koszul but not G-quadratic.

$$
K[x, y, z, w] /\left(x^{2}, y^{2}, x z+y w\right)
$$

is quadratic but not Koszul.

Outline

1. Koszul Algebras
2. Matroids and Lattices
3. Orlik-Solomon Algebras
4. Graded Möbius Algebras
5. Chow Rings of Matroids

Matroids

A matroid M is a pair (E, \mathcal{I}) where E is a finite set E and $\mathcal{I} \subseteq \mathcal{P}(E)$ satisfying:

- $\varnothing \in \mathcal{I}$.
- If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$,
- If $A, B \in \mathcal{I},|B|>|A|$, then $\exists b \in B \backslash A$ with $A \cup b \in \mathcal{I}$.

Matroids

A matroid M is a pair (E, \mathcal{I}) where E is a finite set E and $\mathcal{I} \subseteq \mathcal{P}(E)$ satisfying:

- $\varnothing \in \mathcal{I}$.
- If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$,
- If $A, B \in \mathcal{I},|B|>|A|$, then $\exists b \in B \backslash A$ with $A \cup b \in \mathcal{I}$.

Elements of \mathcal{I} are called independent sets.
Subsets $A \subseteq E$ with $A \notin \mathcal{I}$ are called dependent.
Minimal dependent sets are called circuits.

Matroids

A matroid M is a pair (E, \mathcal{I}) where E is a finite set E and $\mathcal{I} \subseteq \mathcal{P}(E)$ satisfying:

- $\varnothing \in \mathcal{I}$.
- If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$,
- If $A, B \in \mathcal{I},|B|>|A|$, then $\exists b \in B \backslash A$ with $A \cup b \in \mathcal{I}$.

Elements of \mathcal{I} are called independent sets.
Subsets $A \subseteq E$ with $A \notin \mathcal{I}$ are called dependent.
Minimal dependent sets are called circuits.
The uniform matroid $U_{r, n}$ is the $(r-1)$-skeleton of an ($n-1$)-simplex.

How to Make a Matroid: 1A. Sets of Vectors

A set of vectors $A=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$ defines a representable matroid $M(A)$ whose independent sets are subsets of linearly independent vectors in A.

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) \\
& M(A) \cong U_{2,4}
\end{aligned}
$$

How to Make a Matroid: 1B. Hyperplane arrangements

Dually, an arrangement of hyperplanes $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ in \mathbb{C}^{d} defines a representable matroid $M(\mathcal{A})$.
We assume \mathcal{A} is central and essential, i.e. $\bigcap_{i} H_{i}=\{0\}$.

How to Make a Matroid: 2. Graphs

Let $G=(V, E)$ be a graph. Define a subset $A \subset E$ to be independent if it contains no cycles. Then $M(G)=(E, \mathcal{I})$ is a matroid.

Circuits of $M(G)=$
$\{\{1,2,7\},\{3,4,8\},\{5,6,9\},\{7,8,9\},\{1,2,8,9\},\{3,4,7,9\}$,
$\{5,6,7,8\},\{1,2,5,6,8\},\{1,2,3,4,9\},\{3,4,5,6,7\},\{1,2,3,4,5,6\}\}$.

All graphic matroids are representable

$M(G)=M(A)$ is representable.

All graphic matroids are representable

$M(G)=M(A)$ is representable .
$U_{2,4}$ is representable but not graphic.

Are all matroids representable?

Consider the configuration of points in the projective plane from Pappus' Hexagon Theorem. This is a representation of the Pappus matroid.

Are all matroids representable?

No. The Non-Pappus matroid is not representable. (Any representable matroid would be subject to Pappus's Theorem, so $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ would be collinear.)

Most matroids are not representable

0\% of all matroids are representable. (Nelson 2018)
Thus matroids are much more general than graphs, vector configuration, or hyperplane arrangements.

Rank and Flats

If M is a matroid with ground set E and $F \subseteq E$:

- The rank of F is

$$
\operatorname{rk}(F)=\max \{|X| \mid X \subseteq F, X \text { independent }\} .
$$

- The closure of F is

$$
\mathrm{cl}(F)=\{x \in E \mid \operatorname{rk}(F \cup\{x\})=\operatorname{rk}(F)\} .
$$

- F is a flat if $\mathrm{cl}(F)=F$.

The Lattice of Flats - Running Example 1

The set of all flats ordered by inclusion forms a lattice $\mathcal{L}(M)$ graded by the ranks of flats.

$\mathcal{L}\left(U_{2,4}\right)$

The Lattice of Flats - Running Example 2

For $\mathcal{A}=\left\{H_{1}=V(x), H_{2}=V(y), H_{3}=V(x-y), H_{4}=V(z)\right\}$ in \mathbb{C}^{3} below, its lattice of flats $\mathcal{L}(\mathcal{A})$ is

The Lattice of Flats - Running Example 3

$$
\mathcal{L}(M(G)):
$$

$1234789 \overparen{12357} \widehat{12367}$ 12457 $1246712567891345813468135691456923458 \quad 23468 \quad 23569245693456789$

Geometric Lattices

A geometric lattice \mathcal{L} is

- graded : There is a function rk: $\mathcal{L} \rightarrow \mathbb{N}$ such that $x>y \Rightarrow \operatorname{rk}(x)>\operatorname{rk}(y)$ and if x covers y then $\operatorname{rk}(x)=\operatorname{rk}(y)+1$.
- semimodular: $\operatorname{rk}(x)+\operatorname{rk}(y) \geq \operatorname{rk}(x \vee y)+\operatorname{rk}(x \wedge y)$ for all $x, y \in \mathcal{L}$.
- atomic : Every $x \in \mathcal{L}$ is a join of atoms (covers of $\hat{0}$).

Write $\mathcal{L}_{i}=\{x \in \mathcal{L} \mid \operatorname{rk}(x)=i\}$.

Geometric Lattices vs. Matroids

Theorem (Garrett Birkhoff 1935)

There is a bijection between the set of finite geometric lattices and the set of simple matroids.

A matroid is simple if it has no circuits of size 1 (loops) or 2 (parallel elements).

Outline

1. Koszul Algebras
2. Matroids and Lattices
3. Orlik-Solomon Algebras
4. Graded Möbius Algebras
5. Chow Rings of Matroids

Orlik-Solomon Algebras - Algebraic Definition

Let $M=(E, \mathcal{I})$ be a matroid and $\mathcal{L}=\mathcal{L}(M)$ is lattice of flats, where $E=\{1, \ldots, n\}$. The Orlik-Solomon Algebra of M is

$$
\operatorname{OS}(M)=\frac{\bigwedge_{\mathbb{K}}\left\langle e_{1}, \ldots, e_{n}\right\rangle}{\left(\partial\left(e_{C}\right) \mid C \subseteq E \text { is a circuit }\right)},
$$

where $e_{C}=\prod_{i \in C} e_{i}$ and

$$
\partial\left(\prod_{i=1}^{t} e_{j_{i}}\right)=\sum_{i=1}^{t}(-1)^{i} e_{j_{1}} \cdots \widehat{e_{j_{i}}} \cdots e_{j_{t}}
$$

Orlik-Solomon Algebras - Geometric Definition

Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be a complex hyperplane arrangement in \mathbb{C}^{d}. Let $M_{\mathcal{A}}=\mathbb{C}^{d} \backslash \bigcup_{i=1}^{n} H_{i}$ be the complement.

Theorem (Orlik-Solomon 1980)

The cohomology ring of $M_{\mathcal{A}}$ is

$$
H^{*}\left(M_{\mathcal{A}} ; \mathbb{K}\right) \cong \operatorname{OS}(M(\mathcal{A}))
$$

where $M(\mathcal{A})$ is the associated matroid. In particular, $H^{*}\left(M_{\mathcal{A}} ; \mathbb{K}\right)$ depends only on the intersection lattice.

Orlik-Solomon Algebras - Running Example 1

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) \\
& M(A) \cong U_{2,4}
\end{aligned}
$$

Orlik-Solomon Algebras - Running Example 1

$$
\begin{aligned}
& A=\left(\begin{array}{cccc}
1 & 0 & -1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) \\
& M(A) \cong U_{2,4}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{OS}\left(U_{2,4}\right) & =\frac{\bigwedge_{\mathbb{K}}\left\langle e_{1}, \ldots, e_{4}\right\rangle}{\left(\partial\left(e_{123}\right), \partial\left(e_{124}\right), \partial\left(e_{134}\right), \partial\left(e_{234}\right)\right)} \\
& =\frac{\bigwedge_{\mathbb{K}}\left\langle e_{1}, \ldots, e_{4}\right\rangle}{\left(e_{1} e_{2}-e_{1} e_{3}+e_{2} e_{3}, e_{1} e_{2}-e_{1} e_{4}+e_{2} e_{4}, e_{1} e_{3}-e_{1} e_{4}+e_{3} e_{4}\right)} .
\end{aligned}
$$

Orlik-Solomon Algebras - Running Example 2

Orlik-Solomon Algebras - Running Example 2

$$
\begin{aligned}
\operatorname{OS}(\mathcal{A}) & =\frac{\bigwedge_{\mathbb{K}}\left\langle e_{1}, \ldots, e_{4}\right\rangle}{\left(\partial\left(e_{123}\right)\right)} \\
& =\frac{\bigwedge_{\mathbb{K}}\left\langle e_{1}, \ldots, e_{4}\right\rangle}{\left(e_{1} e_{2}-e_{1} e_{3}+e_{2} e_{3}\right)} .
\end{aligned}
$$

Orlik-Solomon Algebras - Running Example 3

Circuits of $M(G)=$ $\{\{1,2,7\},\{3,4,8\},\{5,6,9\},\{7,8,9\},\{1,2,8,9\},\{3,4,7,9\}$,
$\{5,6,7,8\},\{1,2,5,6,8\},\{1,2,3,4,9\},\{3,4,5,6,7\},\{1,2,3,4,5,6\}\}$.

$$
\begin{aligned}
\operatorname{OS}(M(G)) & =\frac{\bigwedge_{\mathbb{K}}\left\langle e_{1}, \ldots, e_{9}\right\rangle}{\left(\partial\left(e_{127}\right), \partial\left(e_{348}\right), \ldots, \partial\left(e_{123456}\right)\right)} \\
& =\frac{\bigwedge_{\mathbb{K}}\left\langle e_{1}, \ldots, e_{9}\right\rangle}{\left(\partial\left(e_{127}\right), \partial\left(e_{348}\right), \partial\left(e_{569}\right), \partial\left(e_{789}\right)\right)} .
\end{aligned}
$$

Gröbner bases of Orlik-Solomon Ideals

An element F in a geometric lattice \mathcal{L} is modular if

$$
\operatorname{rk}(F)+\operatorname{rk}(G)=\operatorname{rk}(F \vee G)+\operatorname{rk}(F \wedge G)
$$

for all $G \in \mathcal{L}$. A lattice is supersolvable if there is a saturated chain $\hat{0} \leq F_{1} \leq \cdots \leq F_{r-1} \leq \hat{1}$ of modular elements.

Theorem (Björner-Ziegler 1991, Peeva 2003)

Let M be a matroid with Orlik-Solomon algebra $\operatorname{OS}(M)=E / J$. Then the following are equivalent:

- $\mathcal{L}(M)$ is supersolvable.
- J has a quadratic Gröbner basis with respect to some monomial order.

Orlik-Solomon Ideals - Koszul Property

Corollary

If $\mathcal{L}(M)$ is supersolvable, then $\operatorname{OS}(M)$ is Koszul.
Remark: The converse is open.

Theorem (Papadima-Yuzvinsky 1999)

Let \mathcal{A} be a complex hyperplane arrangement with complement $M_{\mathcal{A}}$. Then $\operatorname{OS}(\mathcal{A})$ is Koszul if and only if $M_{\mathcal{A}}$ is a rational $K(\pi, 1)$-space.

Orlik-Solomon Algebras - Graphic Matroids

Now let G be a simple graph with graphic matroid $M(G)$.

Theorem (Stanley 1972, Schenck-Suciu 2002)

The following are equivalent:

- $\operatorname{OS}(M(G))$ is quadratic.
- $\operatorname{OS}(M(G))$ has a quadratic Gröbner basis.
- $\operatorname{OS}(M(G))$ is Koszul.
- $\mathcal{L}(M(G))$ is supersolvable.
- G is chordal.

Orlik-Solomon Algebras - Running Example 1

Orlik-Solomon Algebras - Running Example 1

$$
\mathcal{L}\left(U_{2,4}\right)
$$

$$
\operatorname{OS}\left(U_{2,4}\right)=\frac{\bigwedge_{\mathbb{K}}\left\langle e_{1}, \ldots, e_{4}\right\rangle}{J},
$$

where $J=\left(e_{1} e_{2}-e_{1} e_{3}+e_{2} e_{3}, e_{1} e_{2}-e_{1} e_{4}+e_{2} e_{4}, e_{1} e_{3}-e_{1} e_{4}+e_{3} e_{4}\right)$.
$i n_{<}(J)=\left(e_{1} e_{2}, e_{1} e_{3}, e_{2} e_{3}\right)$.
So $\operatorname{OS}\left(U_{2,4}\right)$ is Koszul.

Orlik-Solomon Algebras - Running Example 2

$$
\operatorname{OS}(\mathcal{A})=\frac{\bigwedge_{\mathbb{K}}\left\langle e_{1}, \ldots, e_{4}\right\rangle}{J}
$$

where $J=\left(e_{1} e_{2}-e_{1} e_{3}+e_{2} e_{3}\right)$ and $i n_{<}(J)=\left(e_{1} e_{2}\right)$.
So $\operatorname{OS}(\mathcal{A})$ is Koszul.

Orlik-Solomon Algebras - Running Example 3

$$
\mathrm{OS}(M(G))=\frac{\bigwedge_{\mathbb{K}}\left\langle e_{1}, \ldots, e_{9}\right\rangle}{J}
$$

where $J=\left(\partial\left(e_{127}\right), \partial\left(e_{348}\right), \partial\left(e_{569}\right), \partial\left(e_{789}\right)\right)$ and $i n_{<}(J)=\left(e_{1} e_{2}, e_{3} e_{4}, e_{5} e_{6}, e_{7} e_{8}\right)(G$ is chordal!)
So $\operatorname{OS}(M(G))$ is Koszul.

Outline

1. Koszul Algebras

2. Matroids and Lattices
3. Orlik-Solomon Algebras
4. Graded Möbius Algebras
5. Chow Rings of Matroids

Graded Möbius Algebras - Algebraic Definition

Let M be a simple matroid with finite ground set E.
The graded Möbius algebra of M is the commutative ring

$$
\operatorname{GM}(M)=\bigoplus_{F \in \mathcal{L}(M)} \mathbb{K} y_{F}
$$

with multiplication

$$
y_{F} y_{G}=\left\{\begin{array}{cl}
y_{F \vee G}, & \text { if } \operatorname{rk}(F \vee G)=\mathrm{rk} F+\mathrm{rk} G \\
0, & \text { otherwise } .
\end{array}\right.
$$

In particular, $H F_{G M(M)}(i)=\# \mathcal{L}(M)_{i}$.
$\mathcal{L}(M)$ graded + atomic $\Rightarrow \mathrm{GM}(M)$ is standard graded.

Graded Möbius Algebras - Geometric Definition

Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be a complex hyperplane arrangement in \mathbb{C}^{d}.
Let $\psi: \mathbb{C}^{d} \hookrightarrow \prod_{H \in \mathcal{A}} \mathbb{C}^{d} / H=\prod_{H \in \mathcal{A}} \mathbb{C}^{1} \hookrightarrow \prod_{H \in \mathcal{A}} \mathbb{P}_{\mathbb{C}}^{1}=\prod_{i=1}^{n} \mathbb{P}_{\mathbb{C}}^{1}$.
Let $S_{\mathcal{A}}$ be the image of Ψ with closure $\overline{S_{\mathcal{A}}}$ called the Schubert variety of \mathcal{A}.

Theorem (Huh, Wang 2017)

The cohomology ring of $\overline{S_{\mathcal{A}}}$ is

$$
H^{2 *}\left(\overline{S_{\mathcal{A}}} ; \mathbb{K}\right) \cong \mathrm{GM}(M(\mathcal{A}))
$$

Graded Möbius Algebras - Presentation

Proposition (Mastroeni-M-Peeva 2023)

Let M be a simple matroid. Let L be the ideal generated by all binomials $y_{C \backslash i}-y_{C \backslash j}$ for all circuits C of M and all $i, j \in C$. Then:

$$
Q=\left(y_{i}^{2} \mid i \in E\right)+\left(y_{C \backslash i}-y_{C \backslash j} \mid C \text { is a circuit of } M, i, j \in C\right) \text {, }
$$

and the generators of the latter ideal are a Gröbner basis for Q with respect to every lex ordering for any ordering of the elements of E.
(If $C=\left\{i_{1}, \ldots, i_{t}\right\}$, then $y C \backslash i_{k}=y_{i_{1}} y_{i_{2}} \cdots \widehat{y_{i_{k}}} \cdots y_{i_{t}}$.)

Graded Möbius Algebras - Presentation

Proposition (Mastroeni-M-Peeva 2023)

Let M be a simple matroid. Let L be the ideal generated by all binomials $y_{C \backslash i}-y_{C \backslash j}$ for all circuits C of M and all $i, j \in C$. Then:

$$
Q=\left(y_{i}^{2} \mid i \in E\right)+\left(y_{C \backslash i}-y_{C \backslash j} \mid C \text { is a circuit of } M, i, j \in C\right) \text {, }
$$

and the generators of the latter ideal are a Gröbner basis for Q with respect to every lex ordering for any ordering of the elements of E. (If $C=\left\{i_{1}, \ldots, i_{t}\right\}$, then $y C \backslash i_{k}=y_{i_{1}} y_{i_{2}} \cdots \widehat{y_{i_{k}}} \cdots y_{i_{t}}$.)

See related result of Maeno-Numata 2011.

Graded Möbius Algebras - Quadracity

Let M be a simple matroid. M is:

- C-chordal if for every circuit C of M of size at least four there is an element $e \in E$ and circuits A, B of M such that $A \cap B=\{e\}$ and $C=(A \backslash e) \sqcup(B \backslash e)$.
- T-chordal if for every circuit C of M of size at least four there is an element $w \in E \backslash C$ and elements $u, v \in C$ such that $\{u, v, w\}$ is a circuit.

Graded Möbius Algebras - Quadracity

Theorem (Mastroeni-M-Peeva 2023)
 Let M be a simple matroid. Then

M is C-chordal $\Rightarrow \mathrm{GM}(M)$ is quadratic $\Rightarrow M$ is T-chordal.

Graded Möbius Algebras - Quadracity

Theorem (Mastroeni-M-Peeva 2023)
 Let M be a simple matroid. Then

$$
M \text { is C-chordal } \Rightarrow \mathrm{GM}(M) \text { is quadratic } \Rightarrow M \text { is } T \text {-chordal. }
$$

Remark: Neither converse is true.

Graded Möbius Algebras - Quadracity

Theorem (Mastroeni-M-Peeva 2023)

Let M be a simple matroid. Then

$$
M \text { is } C \text {-chordal } \Rightarrow \mathrm{GM}(M) \text { is quadratic } \Rightarrow M \text { is } T \text {-chordal. }
$$

Remark: Neither converse is true.

Corollary (Mastroeni-M-Peeva 2023)

Let G be a simple graph. Then
G is chordal $\Longleftrightarrow \mathrm{GM}(M(G))$ is quadratic.

Graded Möbius Algebras - Running Example 1

Graded Möbius Algebras - Running Example 1

$$
\mathcal{L}\left(U_{2,4}\right)
$$

$$
\mathrm{GM}\left(U_{2,4}\right)=\frac{\mathbb{K}\left[y_{1}, \ldots, y_{4}\right]}{J}
$$

where $J=\left(y_{1}^{2}, y_{2}^{2}, y_{3}^{2}, y_{4}^{2}, y_{1} y_{2}-y_{1} y_{3}, y_{1} y_{3}-y_{2} y_{3}, \ldots, y_{2} y_{4}-y_{3} y_{4}\right)$. $i n_{<}(J)=\left(y_{1}^{2}, y_{2}^{2}, y_{3}^{2}, y_{4}^{2}, y_{1} y_{2}, y_{1} y_{3}, y_{1} y_{4}, y_{2} y_{3}, y_{2} y_{4}\right)$.
So $\operatorname{GM}\left(U_{2,4}\right)$ is Koszul.

Graded Möbius Algebras - Running Example 2

$$
\operatorname{GM}(\mathcal{A})=\frac{\mathbb{K}\left[y_{1}, \ldots, y_{4}\right]}{J}
$$

where $J=\left(y_{1}^{2}, y_{2}^{2}, y_{3}^{2}, y_{4}^{2}, y_{1} y_{2}-y_{1} y_{3}, y_{1} y_{3}-y_{2} y_{3}\right)$ and
$i n_{<}(J)=\left(y_{1}^{2}, y_{2}^{2}, y_{3}^{2}, y_{4}^{2}, y_{1} y_{2}, y_{1} y_{3}\right)$.
So $\operatorname{GM}(\mathcal{A})$ is Koszul.

Graded Möbius Algebras - Running Example 3

$$
\operatorname{GM}(M(G))=\frac{\mathbb{K}\left[y_{1}, \ldots, y_{9}\right]}{J}
$$

$$
J=\left(y_{1}^{2}, \ldots, y_{9}^{2}, y_{1} y_{2}-y_{1} y_{7}, y_{1} y_{7}-y_{2} y_{7}, \ldots, y_{7} y_{8}-y_{7} y_{9}, y_{7} y_{9}-y_{8} y_{9}\right) .
$$

Betti table of \mathbb{K} over $\operatorname{GM}(M(G))$:

	0	1	2	3	4
0	1	9	53	260	1,156
1	-	-	-	-	1

$\operatorname{GM}(M(G))$ is quadratic (G is chordal) but not Koszul.

Graded Möbius Algebras - Graphic Matroids

A graph G is strongly chordal if G is chordal and every cycle of even length $n \geq 6$ has an odd chord.

Theorem (Farber 1983)

The following are equivalent:

- G is strongly chordal.
- G is chordal and has no induced n-trampoline.

3-trampoline

4-trampoline

5-trampoline

Graded Möbius Algebras - Graphic Matroids

Theorem (Mastroeni-M-Peeva 2023)

Let G be a graph. If $\mathrm{GM}(M(G))$ is Koszul, then G is strongly chordal.
We conjecture that the converse holds.
It reduces to the following purely combinatorial statement.

Conjecture

Is a graph G strongly chordal if and only if there is a total order \prec on the edges of G with the property that for every cycle C of size at least four in G and every edge $e \in C \backslash \min _{\prec} C$, there is a chord c of C and edges $a, b \in C \backslash e$ such that $T=\{a, b, c\}$ is a 3 -cycle with $\min _{\prec} T \neq c$?

Outline

1. Koszul Algebras
2. Matroids and Lattices
3. Orlik-Solomon Algebras
4. Graded Möbius Algebras
5. Chow Rings of Matroids

Chow Rings of Matroids - Algebraic Definition

The Chow ring of a matroid M is the (commutative) ring:

$$
\underline{\mathrm{CH}}(M)=\frac{\mathbb{K}\left[x_{F} \mid F \in \mathcal{L} \backslash\{\varnothing\}\right]}{\left(x_{F} x_{F^{\prime}} \mid F, F \text { incomp }\right)+\left(\sum_{G \supseteq F} x_{G} \mid \text { rk } F=1\right)}
$$

Chow Rings of Matroids - Algebraic Definition

The Chow ring of a matroid M is the (commutative) ring:

$$
\underline{\mathrm{CH}}(M)=\frac{\mathbb{K}\left[x_{F} \mid F \in \mathcal{L} \backslash\{\varnothing\}\right]}{\left(x_{F} x_{F^{\prime}} \mid F, F \text { incomp }\right)+\left(\sum_{G \supseteq F} x_{G} \mid \text { rk } F=1\right)}
$$

Remark: $\mathrm{CH}(M)$ is clearly standard graded and quadratic.

Chow Rings of Matroids - Geometric Definition

Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be a complex hyperplane arrangement in \mathbb{C}^{d}.
Let $\mathbb{P} \mathcal{A} \subseteq \mathbb{P}_{\mathbb{C}}^{d-1}$ be the projectivization with complement
$M_{\mathbb{P} \mathcal{A}}=\mathbb{P}_{\mathbb{C}}^{d-1} \backslash \bigcup_{i=1}^{n} \mathbb{P} H_{i}$.
Let

$$
\Phi: M_{\mathbb{P} \mathcal{A}} \rightarrow \mathbb{P}_{\mathbb{C}}^{d-1} \times \prod_{F \in \mathcal{L}(\mathcal{A}) \backslash \mathbb{C}^{d}} \mathbb{P}\left(\mathbb{C}^{d} / F\right)
$$

be the natural map with image $Y_{\mathbb{P} \mathcal{A}}$ with closure $\overline{Y_{\mathbb{P} \mathcal{A}}}$.
$\overline{Y_{\mathcal{A}}}$ is the (projectivized) wonderful compactification à la de Concini \& Procesi (1996).
Theorem (Feichtner-Yuzvinksky 2003)

$$
H^{2 *}\left(\overline{Y_{\mathcal{A}}} ; \mathbb{K}\right) \cong \underline{\mathrm{CH}}(M(\mathcal{A}))
$$

Chow Rings of Matroids - Running Example 1

$$
\frac{\frac{\mathrm{CH}\left(U_{2,4}\right)=}{\mathbb{K}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{1234}\right]}}{\left(x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{3}, x_{2} x_{4}, x_{3} x_{4}\right)+\left(x_{1}+x_{1234}, x_{2}+x_{1234}, x_{3}+x_{1234}, x_{4}+x_{1234}\right)}
$$

Hilbert series of $\mathrm{CH}\left(U_{2,4}\right)$ is $1+t$.

Chow Rings of Matroids - Running Example 2

$\underline{C H}(M(\mathcal{A}))=\frac{\mathbb{K}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{123}, x_{14}, x_{24}, x_{34}, x_{1234}\right]}{J}$,

Chow Rings of Matroids - Running Example 2

$\mathcal{L}(\mathcal{A})$
$\mathrm{CH}(M(\mathcal{A}))=\frac{\mathbb{K}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{123}, x_{14}, x_{24}, x_{34}, x_{1234}\right]}{J}$,
$J=\left(x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{3}, x_{2} x_{4}, x_{3} x_{4}, x_{1} x_{24}, x_{1} x_{34}, x_{2} x_{14}, x_{2} x_{34}, x_{3} x_{14}\right.$,
$x_{3} x_{24}, x_{4} x_{123}, x_{123} x_{14}, x_{123} x_{24}, x_{123} x_{34}, x_{14} x_{24}, x_{14}, x_{34}, x_{24} x_{34}$,
$x_{1}+x_{123}+x_{14}+x_{1234}, x_{2}+x_{123}+x_{24}+x_{1234}$,
$\left.x_{3}+x_{123}+x_{34}+x_{1234}, x_{4}+x_{14}+x_{24}+x_{34}+x_{1234}\right)$.
Hilbert series of $\mathrm{CH}(M(\mathcal{A}))$ is $1+5 t+t^{2}$.

Chow Rings of Matroids - Running Example 3

$$
\begin{aligned}
& \operatorname{GM}(M(G))=\frac{\mathbb{K}\left[x_{1}, \ldots, x_{9}, x_{127}, x_{13}, \ldots, x_{123456789}\right]}{J} \\
& J=(3119 \text { quadratic monomials })+(9 \text { linear forms }) .
\end{aligned}
$$

Chow Rings of Matroids - Running Example 3

$$
\begin{aligned}
& \mathrm{GM}(M(G))=\frac{\mathbb{K}\left[x_{1}, \ldots, x_{9}, x_{127}, x_{13}, \ldots, x_{123456789}\right]}{J} \\
& J=(3119 \text { quadratic monomials })+(9 \text { linear forms })
\end{aligned}
$$

Hilbert series of $\mathrm{GM}(M(G))$ is $1+79 t+255 t^{2}+79 t^{3}+t^{4}$.

Chow Rings of Matroids - Running Example 3

$$
\begin{aligned}
& \mathrm{GM}(M(G))=\frac{\mathbb{K}\left[x_{1}, \ldots, x_{9}, x_{127}, x_{13}, \ldots, x_{123456789}\right]}{J} \\
& J=(3119 \text { quadratic monomials })+(9 \text { linear forms })
\end{aligned}
$$

Hilbert series of $\mathrm{GM}(M(G))$ is $1+79 t+255 t^{2}+79 t^{3}+t^{4}$. In general, $\operatorname{reg}(\operatorname{GM}(M(G)))=\operatorname{rk} M(G)-1=\# V-2$.

Augmented Chow Rings of Matroids - Algebraic Definition

The augmented Chow ring of a simple matroid M is the ring

$$
\mathrm{CH}(M):=\mathbb{K}\left[y_{i}, x_{F} \mid i \in E, F \in \mathcal{L}(M) \backslash\{E\}\right] /\left(I_{M}+J_{M}\right),
$$

where

$$
\begin{aligned}
& I_{M}=\left(y_{i}-\sum_{i \notin F} x_{F} \mid i \in E\right), \\
& J_{M}=\left(x_{F} x_{G} \mid F, G \text { incomparable }\right)+\left(y_{i} x_{F} \mid i \in E, i \notin F\right) .
\end{aligned}
$$

Proposition (Braden, Huh, Matherne, Proudfoot, Wang 2020)

- $\mathrm{GM}(M) \subset \mathrm{CH}(M)$,
- $\mathrm{CH}(M)=\underline{\mathrm{CH}}(M) \otimes_{\mathrm{GM}(M)} \mathbb{K}$.

Applications of Chow Rings of Matroids

Conjecture (Top Heavy Conjecture of Dowling and Wilson 1974)

For any geometric lattice \mathcal{L} of rank r and if $j \leq \frac{r}{2}$, then

$$
\left|\mathcal{L}_{j}\right| \leq\left|\mathcal{L}_{r-j}\right| .
$$

Theorem (Braden, Huh, Matherne, Proudfoot, Wang 2020)

The Top Heavy conjecture is true.
Proof relies on "Hodge theory" of matroids, which is a collection of properties of $\underline{\mathrm{CH}}(M)$ and $\mathrm{CH}(M)$ collectively known as the Kähler package.

The Kähler Package

A commutative graded Artinian K-algebra $A=\bigoplus_{i=0}^{d} A_{i}$ is said to have the Kähler package provided:

- Poincare Duality: There is a nondegenerate, bilinear pairing

$$
P: A_{i} \times A_{d-i} \rightarrow K
$$

- Lefschetz Property: There is a linear form $L \in A_{1}$ such that

$$
\begin{aligned}
A_{i} & \rightarrow A_{d-i} \\
x & \mapsto L^{d-2 i_{x}}
\end{aligned}
$$

is an isomorphism.

- Hodge-Riemann Relations: The symmetric bilinear form on A_{i} :

$$
(x, y) \mapsto(-1)^{i} P\left(x, L^{d-2 i} y\right)
$$

is positive definite on the kernel of $L^{d-2 i+1}$.

Algebraic properties of $\mathrm{CH}(M)$

Theorem (Adiprasito, Huh, Katz 2018, BHMPW 2020)

For any matroid $M, \underline{\mathrm{CH}}(M)$ and $\mathrm{CH}(M)$ have the Kähler package.

Algebraic properties of $\mathrm{CH}(M)$

Theorem (Adiprasito, Huh, Katz 2018, BHMPW 2020)

For any matroid $M, \mathrm{CH}(M)$ and $\mathrm{CH}(M)$ have the Kähler package.
So $\underline{\mathrm{CH}}(M)$ and $\mathrm{CH}(M)$ are nice commutative, graded, Artinian rings.

- They are Gorenstein: $\operatorname{dim}_{\mathbb{K}}\left(\underline{\mathrm{CH}}(M)_{i}\right)=\operatorname{dim}_{\mathbb{K}}\left(\underline{\mathrm{CH}}(M)_{d-i}\right)$
- They are quadratic:

$$
\underline{\mathrm{CH}}(M) \cong \mathbb{K}\left[z_{1}, \ldots, z_{n}\right] /(\text { homogeneous quadrics }) .
$$

Algebraic properties of $\mathrm{CH}(M)$

Theorem (Adiprasito, Huh, Katz 2018, BHMPW 2020)

For any matroid $M, \mathrm{CH}(M)$ and $\mathrm{CH}(M)$ have the Kähler package.
So $\underline{\mathrm{CH}}(M)$ and $\mathrm{CH}(M)$ are nice commutative, graded, Artinian rings.

- They are Gorenstein: $\operatorname{dim}_{\mathbb{K}}\left(\underline{\mathrm{CH}}(M)_{i}\right)=\operatorname{dim}_{\mathbb{K}}\left(\underline{\mathrm{CH}}(M)_{d-i}\right)$
- They are quadratic:

$$
\underline{\mathrm{CH}}(M) \cong \mathbb{K}\left[z_{1}, \ldots, z_{n}\right] /(\text { homogeneous quadrics }) .
$$

Question

Are $\mathrm{CH}(M)$ and $\mathrm{CH}(M)$ Koszul?

Are quadratic Gorenstein rings always Koszul?

Mastroeni, Schenck, Stillman (2021)
$(3,8)$ dot: M, Seceleanu (2021)

Koszulness of Chow Rings

Conjecture (Dotsenko 2020)

The Chow ring of any matroid is Koszul.

Koszulness of Chow Rings

Conjecture (Dotsenko 2020)

The Chow ring of any matroid is Koszul.

Theorem (Mastroeni, M 2021)
$\mathrm{CH}(M)$ and $\mathrm{CH}(M)$ are Koszul for any matroid M.

Koszulness of Chow Rings

Conjecture (Dotsenko 2020)

The Chow ring of any matroid is Koszul.

Theorem (Mastroeni, M 2021)
$\mathrm{CH}(M)$ and $\mathrm{CH}(M)$ are Koszul for any matroid M.
Proof uses a Koszul filtration and the known (non-quadratic) Gröbner basis of Feichtner-Yuzvinsky.

Idea of the Proof

- If rk $M=1$, then $\underline{\mathrm{CH}}(M) \cong \mathbb{Q}$.
- If $\mathrm{rk} M=2$, then $\underline{\mathrm{CH}}(M) \cong \mathbb{Q}\left[x_{E}\right] /\left(x_{E}^{2}\right)$.
- In both cases, $\underline{\mathrm{CH}}(M)$ has a Koszul filtration.
- Use natural matroid operations (restriction and truncation) to inductively lift the filtration.

Rationality of Poincaré Series

Recall that R Koszul $\Longrightarrow P_{K}^{R}(t)=\frac{1}{H_{R}(-t)}$.

Rationality of Poincaré Series

Recall that R Koszul $\Longrightarrow P_{K}^{R}(t)=\frac{1}{H_{R}(-t)}$.
Corollary
For any matroid $\mathrm{CH}(M)$ has a rational Poincaré series.

Rationality of Poincaré Series

Recall that R Koszul $\Longrightarrow P_{K}^{R}(t)=\frac{1}{H_{R}(-t)}$.

Corollary

For any matroid $\mathrm{CH}(M)$ has a rational Poincaré series.

Example (Brgvad / Anick)

$R=\mathbb{K}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right] /\left(x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{4}^{2}, x_{5}^{2}, x_{1} x_{2}, x_{4} x_{5}, x_{1} x_{3}+x_{3} x_{4}+x_{2} x_{5}\right)$. Let $\widetilde{R}=R \ltimes \omega_{R}(-3)$ is quadratic, Artinian, and Gorenstein, but $P_{K}^{R}(t)$ is irrational.

Roots of the h-polynomial

Theorem (Reiner-Welker (2005))
If R is Koszul and Artinian, then $H_{R}(t)$ has a real root.

Roots of the h-polynomial

Theorem (Reiner-Welker (2005))
If R is Koszul and Artinian, then $H_{R}(t)$ has a real root.
If R is Gorenstein, it has 2 real roots.

Roots of the h-polynomial

Theorem (Reiner-Welker (2005))
If R is Koszul and Artinian, then $H_{R}(t)$ has a real root.
If R is Gorenstein, it has 2 real roots.
Conjecture (Huh)
$H_{C H(M)}(t)$ and $H_{C H(M)}(t)$ are real rooted.

Roots of the h-polynomial

Theorem (Reiner-Welker (2005))

If R is Koszul and Artinian, then $H_{R}(t)$ has a real root.
If R is Gorenstein, it has 2 real roots.
Conjecture (Huh)
$H_{\underline{C H}(M)}(t)$ and $H_{\mathrm{CH}(M)}(t)$ are real rooted.
Would imply that the coefficients of $H_{\underline{\mathrm{CH}}(M)}(t)=\sum_{i} h_{i} t^{i}$ are ultra-log concave; i.e $\left\{h_{i} /\binom{n}{i}\right\}$ is log-concave.

Roots of the h-polynomial

Theorem (Reiner-Welker (2005))

If R is Koszul and Artinian, then $H_{R}(t)$ has a real root.
If R is Gorenstein, it has 2 real roots.
Conjecture (Huh)
$H_{\underline{C H}(M)}(t)$ and $H_{C H(M)}(t)$ are real rooted.
Would imply that the coefficients of $H_{\underline{C H}(M)}(t)=\sum_{i} h_{i} t^{i}$ are ultra-log concave; i.e $\left\{h_{i} /\binom{n}{i}\right\}$ is log-concave.

See related work by Ferroni, Matherne, Stevens, and Vecchi (2022).

References

- Karim Adiprasito, June Huh, and Eric Katz. Hodge theory for combinatorial geometries. Ann. of Math. (2), 188(2):381-452, 2018.
- Tom Braden, June Huh, Jacob P. Matherne, Nicholas Proudfoot, and Botong Wang. Singular hodge theory for combinatorial geometries, 2020. arXiv.CO 2010.06088.
- Matthew Mastroeni, Jason McCullough. Chow Rings of Matroid are Koszul. Math. Ann. 387 (2023), no. 3-4, 1819-1851.
- Matthew Mastroeni, Jason McCullough, Irena Peeva. Koszul Graded Möbius Algebras. 2023. Preprint.

