The symmetric group and its action on a ring of multivariate polynomials – with applications to Galois theory

> Christian Roettger Joint work with John Gillespie

380 Carver Hall Mathematics Department Iowa State University https://math.iastate.edu/directory/christian~roettger/

September 9, 2023

Action of the symmetric group on multivariate polynomials I

Let S be the ring of polynomials in n variables x_1, \ldots, x_n over a ground field K. The symmetric group G = Sym(n) acts on S in the natural way. For any subgroup U of G, the polynomials invariant under U form a subring Fix_U . Let $\mathbb{B} = Fix_G$ be the subring of symmetric polynomials invariant under all permutations in G. It is well-known that

$$\mathbb{B} = K[e_1, \ldots, e_n]$$

This is a polynomial ring in the *elementary symmetric functions* e_1, \ldots, e_n defined by

$$(x - x_1)(x - x_2) \dots (x - x_n) = x^n - e_1 x^{n-1} \pm \dots (-1)^n e_n$$

Clearly, \mathbb{S} is a \mathbb{B} -module.

Action of the symmetric group on multivariate polynomials II

Theorem

 \mathbb{S} is a free \mathbb{B} -module of rank n!. The set of monomials

$$B = \{x_1^{d_1} \cdot \cdots \cdot x_n^{d_n} | d_i \le n - i, i = 1, \dots, n\}$$

is a \mathbb{B} -basis of \mathbb{S} .

Group ring structure

Definition

The action of *G* on the ring \mathbb{S} is compatible with the \mathbb{B} -module structure:

$$g \cdot (bs) = b(g \cdot s)$$

for all $g \in G$, $b \in \mathbb{B}$, $s \in \mathbb{S}$. So \mathbb{S} is a module over the group ring $\mathbb{B}[G]$, which is the free \mathbb{B} -module over the formal basis G, extending the multiplication in G via the distributive law. So both \mathbb{S} and $\mathbb{B}[G]$ are free \mathbb{B} -modules of rank n!!

Conjecture S and $\mathbb{B}[G]$ are isomorphic as $\mathbb{B}[G]$ -modules.

Group ring structure

Definition

The action of *G* on the ring \mathbb{S} is compatible with the \mathbb{B} -module structure:

$$g \cdot (bs) = b(g \cdot s)$$

for all $g \in G$, $b \in \mathbb{B}$, $s \in \mathbb{S}$. So \mathbb{S} is a module over the group ring $\mathbb{B}[G]$, which is the free \mathbb{B} -module over the formal basis G, extending the multiplication in G via the distributive law. So both \mathbb{S} and $\mathbb{B}[G]$ are free \mathbb{B} -modules of rank n!!

Conjecture S and $\mathbb{B}[G]$ are isomorphic as $\mathbb{B}[G]$ -modules. **Exercise for the reader** Find two proofs why they are NOT isomorphic as rings for $n \ge 2$.

Group Algebra structure I

Here is some evidence for the conjecture. Let $\overline{\mathbb{S}}$, $\overline{\mathbb{B}}$ be the fields of fractions of \mathbb{S} and \mathbb{B} respectively.

Theorem As $\overline{\mathbb{B}}[G]$ -module, $\overline{\mathbb{S}}$ is isomorphic to $\overline{\mathbb{B}}[G]$.

Proof.

The set of n! monomials

$$C = \left\{ g \cdot \prod_{l=1}^n x_l^i | g \in G \right\}$$

is linearly independent over $\overline{\mathbb{B}}$. Look at a $\overline{\mathbb{B}}$ -linear combination. Without loss of generality, the coefficients can be assumed to be in \mathbb{B} . Split the coefficients up into their homogeneous components which are still symmetric.

Group Algebra structure II

We (think that we) can prove the conjecture with explicit computations for n = 3. **Exercise for the reader** Could it be that the set *C* of monomials even generates S as a \mathbb{B} -module?

Galois Theory I

Take a polynomial f(x) over K, with distinct roots $\alpha_1, \ldots, \alpha_n$ generating the splitting field L/K. Then L/K is a Galois extension with a group U which embeds into G via its permutations of the roots. The evaluation $x_1 \mapsto \alpha_1, x_2 \mapsto \alpha_2, \ldots$ provides a surjective ring homomorphism from \mathbb{S} to L, and the preimage of K is Fix_U . Finding generators of Fix_U could give general formulas for determining whether a given polynomial f has a Galois group that is contained in U or not.

Here is how the Conjecture would help with determining Fix_U .

Corollary

If the Conjecture is true, then Fix_U is a free \mathbb{B} -module of rank [G:U].

Proof.

Galois Theory II

Let ε be the idempotent associated to the trivial representation of U,

$$\varepsilon = \frac{1}{|U|} \sum_{u \in U} u.$$

It is easy to see that Fix_U is the image of \mathbb{S} under the $\mathbb{B}[U]$ -homomorphism

$$h: s \mapsto \varepsilon \cdot s.$$

Now we study the same multiplication by ε operating on $\mathbb{B}[G]$. The image of $\mathbb{B}[G]$ under this map is a free \mathbb{B} -module of rank [G : U] (any system of coset representatives of $U \setminus G$ is a basis). Given the conjecture, we conclude the same for the image of the original map h.

More Galois Theory I

Another consequence is the well-known theorem

Theorem

Let f be polynomial f of degree n over K, with distinct roots $\alpha_1, \ldots \alpha_n$ generating a Galois extension L/K. Define the discriminant \overline{D} of f as

$$\bar{D} = \prod_{i < j} (\alpha_i - \alpha_j)$$

The Galois group of f, viewed as subgroup of Sym(n), is contained in the alternating group Alt(n) iff the discriminant \overline{D} of f is a square in K.

This could be proven using the preimage D of \overline{D} in \mathbb{S} ,

$$D = \prod_{i < j} (x_i - x_j)$$

More Galois Theory II

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

It is not hard to show that $Fix_{Alt(n)} = \mathbb{B}[D]$ (note that D^2 is symmetric, hence in $D^2 \in Fix_{Sym(n)} = \mathbb{B}$).

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Open questions – Conjecture for n > 3, algorithm for computing generators of $Fix_U...$

Thank you! Questions??