The symmetric group and its action on a ring of multivariate polynomials - with applications to Galois theory

Christian Roettger Joint work with John Gillespie

380 Carver Hall
Mathematics Department
lowa State University
https://math.iastate.edu/directory/christian~roettger/
September 9, 2023

Action of the symmetric group on multivariate polynomials I

Let \mathbb{S} be the ring of polynomials in n variables x_{1}, \ldots, x_{n} over a ground field K. The symmetric group $G=\operatorname{Sym}(n)$ acts on \mathbb{S} in the natural way. For any subgroup U of G, the polynomials invariant under U form a subring Fix $_{U}$. Let $\mathbb{B}=$ Fix $_{G}$ be the subring of symmetric polynomials invariant under all permutations in G. It is well-known that

$$
\mathbb{B}=K\left[e_{1}, \ldots, e_{n}\right]
$$

This is a polynomial ring in the elementary symmetric functions e_{1}, \ldots, e_{n} defined by

$$
\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)=x^{n}-e_{1} x^{n-1} \pm \ldots(-1)^{n} e_{n} .
$$

Clearly, \mathbb{S} is a \mathbb{B}-module.

Action of the symmetric group on multivariate polynomials II

Theorem
\mathbb{S} is a free \mathbb{B}-module of rank $n!$. The set of monomials

$$
B=\left\{x_{1}^{d_{1}} \cdots \cdots x_{n}^{d_{n}} \mid d_{i} \leq n-i, i=1, \ldots, n\right\}
$$

is a \mathbb{B}-basis of \mathbb{S}.

Group ring structure

Definition

The action of G on the ring \mathbb{S} is compatible with the \mathbb{B}-module structure:

$$
g \cdot(b s)=b(g \cdot s)
$$

for all $g \in G, b \in \mathbb{B}, s \in \mathbb{S}$. So \mathbb{S} is a module over the group ring $\mathbb{B}[G]$, which is the free \mathbb{B}-module over the formal basis G, extending the multiplication in G via the distributive law. So both \mathbb{S} and $\mathbb{B}[G]$ are free \mathbb{B}-modules of rank n !!
Conjecture \mathbb{S} and $\mathbb{B}[G]$ are isomorphic as $\mathbb{B}[G]$-modules.

Group ring structure

Definition

The action of G on the ring \mathbb{S} is compatible with the \mathbb{B}-module structure:

$$
g \cdot(b s)=b(g \cdot s)
$$

for all $g \in G, b \in \mathbb{B}, s \in \mathbb{S}$. So \mathbb{S} is a module over the group ring $\mathbb{B}[G]$, which is the free \mathbb{B}-module over the formal basis G, extending the multiplication in G via the distributive law. So both \mathbb{S} and $\mathbb{B}[G]$ are free \mathbb{B}-modules of rank $n!$!
Conjecture \mathbb{S} and $\mathbb{B}[G]$ are isomorphic as $\mathbb{B}[G]$-modules. Exercise for the reader Find two proofs why they are NOT isomorphic as rings for $n \geq 2$.

Group Algebra structure I

Here is some evidence for the conjecture.
Let $\overline{\mathbb{S}}, \overline{\mathbb{B}}$ be the fields of fractions of \mathbb{S} and \mathbb{B} respectively.
Theorem
As $\overline{\mathbb{B}}[G]$-module, $\overline{\mathbb{S}}$ is isomorphic to $\overline{\mathbb{B}}[G]$.
Proof.
The set of n ! monomials

$$
C=\left\{g \cdot \prod_{I=1}^{n} x_{i}^{i} \mid g \in G\right\}
$$

is linearly independent over $\overline{\mathbb{B}}$. Look at a $\overline{\mathbb{B}}$-linear combination. Without loss of generality, the coefficients can be assumed to be in \mathbb{B}. Split the coefficients up into their homogeneous components which are still symmetric.

Group Algebra structure II

We (think that we) can prove the conjecture with explicit computations for $n=3$.
Exercise for the reader Could it be that the set C of monomials even generates \mathbb{S} as a \mathbb{B}-module?

Galois Theory I

Take a polynomial $f(x)$ over K, with distinct roots $\alpha_{1}, \ldots \alpha_{n}$ generating the splitting field L / K. Then L / K is a Galois extension with a group U which embeds into G via its permutations of the roots. The evaluation $x_{1} \mapsto \alpha_{1}, x_{2} \mapsto \alpha_{2}, \ldots$ provides a surjective ring homomorphism from \mathbb{S} to L, and the preimage of K is Fix U_{U}. Finding generators of Fix X_{U} could give general formulas for determining whether a given polynomial f has a Galois group that is contained in U or not.
Here is how the Conjecture would help with determining Fixu.

Corollary

If the Conjecture is true, then Fixu is a free \mathbb{B}-module of rank [$G: U]$.

Proof.

Galois Theory II

Let ε be the idempotent associated to the trivial representation of U,

$$
\varepsilon=\frac{1}{|U|} \sum_{u \in U} u
$$

It is easy to see that Fixu is the image of \mathbb{S} under the $\mathbb{B}[U]$-homomorphism

$$
h: s \mapsto \varepsilon \cdot s
$$

Now we study the same multiplication by ε operating on $\mathbb{B}[G]$. The image of $\mathbb{B}[G]$ under this map is a free \mathbb{B}-module of rank [$G: U$] (any system of coset representatives of $U \backslash G$ is a basis). Given the conjecture, we conclude the same for the image of the original map h.

More Galois Theory I

Another consequence is the well-known theorem

Theorem

Let f be polynomial f of degree n over K, with distinct roots $\alpha_{1}, \ldots \alpha_{n}$ generating a Galois extension L/K. Define the discriminant \bar{D} of f as

$$
\bar{D}=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)
$$

The Galois group of f, viewed as subgroup of $\operatorname{Sym}(n)$, is contained in the alternating group $\operatorname{Alt}(n)$ iff the discriminant \bar{D} of f is a square in K.
This could be proven using the preimage D of \bar{D} in \mathbb{S},

$$
D=\prod_{i<j}\left(x_{i}-x_{j}\right)
$$

More Galois Theory II

It is not hard to show that Fix $_{\operatorname{Alt}(n)}=\mathbb{B}[D]$ (note that D^{2} is symmetric, hence in $\left.D^{2} \in \operatorname{Fix}_{\operatorname{Sym}(n)}=\mathbb{B}\right)$.

Conclusion

Open questions - Conjecture for $n>3$, algorithm for computing generators of Fixu......

Thank you! Questions??

