
The Koszul Property of Algebras Associated
to Matroids

Jason McCullough

(joint work with Matt Mastroeni and Irena Peeva)

November 23, 2023
44th Annual Japan Symposium on Commutative Algebra

Iowa State University

1



Outline

1. Koszul Algebras

2. Matroids and Lattices

3. Orlik-Solomon Algebras

4. Graded Möbius Algebras

5. Chow Rings of Matroids

2



Outline

1. Koszul Algebras

2. Matroids and Lattices

3. Orlik-Solomon Algebras

4. Graded Möbius Algebras

5. Chow Rings of Matroids

3



Notation

• K a field

• V = 〈x1, . . . , xn〉 an n-dimensional K-vector space

• T =
⊕∞

i=0 V
⊗i the tensor algebra V over K

• I ⊆ T an ideal generated by g quadrics

• R = T/I : such K-algebras are called quadratic
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Koszul Algebras

Let R+ =
⊕

i>0 Ri .

R is a Koszul algebra if R/R+
∼= K has a linear free resolution over R.

Example

Let R = K[x , y ]/(x , y)2. Then the minimal free resolution of K is:

· · · R(−2)4 R(−1)2 R

 x y 0 0 0 0 0 0
0 0 x y 0 0 0 0
0 0 0 0 x y 0 0
0 0 0 0 0 0 x y

 (
x y 0 0
0 0 x y

)
( x y )
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Properties of Koszul Algebras

• Every Koszul algebra R corresponds to a quadratic dual algebra R !

which is also Koszul.

• PR(t) =
∑
i

βR
i (K)t i =

∑
i

(dimK R !
i )t

i = HR !(t)

• PR(t) HR(−t) = 1

Example

For R = K[x , y ]/(x , y)2, we have HR(t) = 1 + 2t so that:

PR(t) =
1

1− 2t
= 1 + 2t + 4t2 + 8t3 + · · ·
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Examples of Koszul Algebras

• Polynomial rings and exterior algebras

• Quotients by quadratic monomial ideals (Fröberg 1975)

• All high degree Veronese subrings of any standard graded algebra
(Backelin 1986)

• Quadratic Gorenstein rings of regularity 2 (Conca, Rossi, Valla 2001)
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How to Detect Koszulness

We say that R or I is G-quadratic if, after a suitable linear change of
coordinates, the ideal ϕ(I ) has a Gröbner basis consisting of quadrics.

G-quadratic =⇒ Koszul =⇒ quadratic

Example
Neither converse is true:

K [x , y , z ]/(x2 − yz , y2 − xz , z2 − xy)

is Koszul but not G-quadratic.

K [x , y , z ,w ]/(x2, y2, xz + yw)

is quadratic but not Koszul.
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Matroids

A matroid M is a pair (E , I) where E is a finite set E and I ⊆ P(E )

satisfying:

• ∅ ∈ I.
• If A ∈ I and B ⊆ A, then B ∈ I,
• If A,B ∈ I, |B| > |A|, then ∃b ∈ B r A with A ∪ b ∈ I.

Elements of I are called independent sets.
Subsets A ⊆ E with A /∈ I are called dependent.
Minimal dependent sets are called circuits.

The uniform matroid Ur ,n is the (r − 1)-skeleton of an (n − 1)-simplex.
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How to Make a Matroid: 1A. Sets of Vectors

A set of vectors A = {v1, v2, . . . , vn} defines a representable matroid
M(A) whose independent sets are subsets of linearly independent vectors
in A.

x

y

v1

v2v3 v4
A =

(
1 0 −1 1
0 1 1 1

)

M(A) ∼= U2,4

11



How to Make a Matroid: 1B. Hyperplane arrangements

Dually, an arrangement of hyperplanes A = {H1, . . . ,Hn} in Cd defines a
representable matroid M(A).
We assume A is central and essential, i.e.

⋂
i Hi = {0}.

x

y = 0
x = 0

z = 0

x = y

y

z

A =

1 0 1 0
0 1 −1 0
0 0 0 1


M(A) = M(A)
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How to Make a Matroid: 2. Graphs

Let G = (V ,E ) be a graph. Define a subset A ⊂ E to be independent if
it contains no cycles. Then M(G ) = (E , I) is a matroid.

2

3

45

6

1 7

89

Circuits of M(G ) =
{{1, 2, 7}, {3, 4, 8}, {5, 6, 9}, {7, 8, 9}, {1, 2, 8, 9}, {3, 4, 7, 9},
{5, 6, 7, 8}, {1, 2, 5, 6, 8}, {1, 2, 3, 4, 9}, {3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6}}.
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All graphic matroids are representable

2

3

45

6

1 7

89
A =



1 1 0 0 0 0 0 0 0
−1 0 0 0 0 1 1 0 1
0 −1 1 0 0 0 −1 1 0
0 0 0 0 1 −1 0 0 0
0 0 0 1 −1 0 0 −1 −1
0 0 −1 −1 0 0 0 0 0


M(G ) = M(A) is representable.

U2,4 is representable but not graphic.
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Are all matroids representable?

Consider the configuration of points in the projective plane from Pappus’
Hexagon Theorem. This is a representation of the Pappus matroid.
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Are all matroids representable?

No. The Non-Pappus matroid is not representable. (Any representable
matroid would be subject to Pappus’s Theorem, so X,Y,Z would be
collinear.)

16



Most matroids are not representable

0% of all matroids are representable. (Nelson 2018)
Thus matroids are much more general than graphs, vector configuration,
or hyperplane arrangements.
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Rank and Flats

If M is a matroid with ground set E and F ⊆ E :

• The rank of F is

rk(F ) = max{|X | | X ⊆ F ,X independent}.

• The closure of F is

cl(F ) = {x ∈ E | rk(F ∪ {x}) = rk(F )}.

• F is a flat if cl(F ) = F .
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The Lattice of Flats - Running Example 1

The set of all flats ordered by inclusion forms a lattice L(M) graded by
the ranks of flats.

x

y

v1

v2v3 v4

1234

1 2 3 4

∅

L(U2,4)
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The Lattice of Flats - Running Example 2

For A = {H1 = V (x),H2 = V (y),H3 = V (x − y),H4 = V (z)} in C3

below, its lattice of flats L(A) is

x

y = 0
x = 0

z = 0

x = y

y

z
1234

123 14 24 34

1 2 3 4

∅

L(A)
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The Lattice of Flats - Running Example 3

2

3

45

6

1 7

89

L(M(G )) :

1 2 3 4 5 6 7 8 9

127 13 14 15 16 18 19 23 24 25 26 28 29 348 35 36 37 39 45 46 47 49 569 57 58 67 68 789

       

123478912357 12367 12457 12467125678913458 13468 13569 14569 23458 23468 23569 245693456789

123456789

∅
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Geometric Lattices

A geometric lattice L is

• graded : There is a function rk : L → N such that
x > y ⇒ rk(x) > rk(y) and if x covers y then rk(x) = rk(y) + 1.

• semimodular : rk(x) + rk(y) ≥ rk(x ∨ y) + rk(x ∧ y) for all
x , y ∈ L.

• atomic : Every x ∈ L is a join of atoms (covers of 0̂).

Write Li = {x ∈ L | rk(x) = i}.
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Geometric Lattices vs. Matroids

Theorem (Garrett Birkhoff 1935)
There is a bijection between the set of finite geometric lattices and the
set of simple matroids.

A matroid is simple if it has no circuits of size 1 (loops) or 2 (parallel
elements).
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Orlik-Solomon Algebras - Algebraic Definition

Let M = (E , I) be a matroid and L = L(M) is lattice of flats, where
E = {1, . . . , n}. The Orlik-Solomon Algebra of M is

OS(M) =

∧
K〈e1, . . . , en〉

(∂(eC ) | C ⊆ E is a circuit)
,

where eC =
∏

i∈C ei and

∂

(
t∏

i=1

eji

)
=

t∑
i=1

(−1)iej1 · · · êji · · · ejt .
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Orlik-Solomon Algebras - Geometric Definition

Let A = {H1, . . . ,Hn} be a complex hyperplane arrangement in Cd .
Let MA = Cd r

⋃n
i=1 Hi be the complement.

Theorem (Orlik-Solomon 1980)
The cohomology ring of MA is

H∗(MA;K) ∼= OS(M(A)),

where M(A) is the associated matroid. In particular, H∗(MA;K)

depends only on the intersection lattice.
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Orlik-Solomon Algebras - Running Example 1

x

y

v1

v2v3 v4
A =

(
1 0 −1 1
0 1 1 1

)

M(A) ∼= U2,4

OS(U2,4) =

∧
K〈e1, . . . , e4〉

(∂(e123), ∂(e124), ∂(e134), ∂(e234))

=

∧
K〈e1, . . . , e4〉

(e1e2 − e1e3 + e2e3, e1e2 − e1e4 + e2e4, e1e3 − e1e4 + e3e4)
.
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Orlik-Solomon Algebras - Running Example 2

x

y = 0
x = 0

z = 0

x = y

y

z

A =
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0 0 0 1
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(e1e2 − e1e3 + e2e3)
.
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Orlik-Solomon Algebras - Running Example 3

2

3

45

6

1 7

89

Circuits of M(G ) =
{{1, 2, 7}, {3, 4, 8}, {5, 6, 9}, {7, 8, 9}, {1, 2, 8, 9}, {3, 4, 7, 9},
{5, 6, 7, 8}, {1, 2, 5, 6, 8}, {1, 2, 3, 4, 9}, {3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6}}.

OS(M(G )) =

∧
K〈e1, . . . , e9〉

(∂(e127), ∂(e348), . . . , ∂(e123456))

=

∧
K〈e1, . . . , e9〉

(∂(e127), ∂(e348), ∂(e569), ∂(e789))
.
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Gröbner bases of Orlik-Solomon Ideals

An element F in a geometric lattice L is modular if

rk(F ) + rk(G ) = rk(F ∨ G ) + rk(F ∧ G )

for all G ∈ L. A lattice is supersolvable if there is a saturated chain
0̂ ≤ F1 ≤ · · · ≤ Fr−1 ≤ 1̂ of modular elements.

Theorem (Björner-Ziegler 1991, Peeva 2003)
Let M be a matroid with Orlik-Solomon algebra OS(M) = E/J. Then
the following are equivalent:

• L(M) is supersolvable.

• J has a quadratic Gröbner basis with respect to some monomial order.
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Orlik-Solomon Ideals - Koszul Property

Corollary
If L(M) is supersolvable, then OS(M) is Koszul.

Remark: The converse is open.

Theorem (Papadima-Yuzvinsky 1999)
Let A be a complex hyperplane arrangement with complement MA.
Then OS(A) is Koszul if and only if MA is a rational K (π, 1)-space.
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Orlik-Solomon Algebras - Graphic Matroids

Now let G be a simple graph with graphic matroid M(G ).

Theorem (Stanley 1972, Schenck-Suciu 2002)
The following are equivalent:

• OS(M(G )) is quadratic.

• OS(M(G )) has a quadratic Gröbner basis.

• OS(M(G )) is Koszul.

• L(M(G )) is supersolvable.

• G is chordal.
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Orlik-Solomon Algebras - Running Example 1

x

y

v1

v2v3 v4

1234

1 2 3 4

∅

L(U2,4)

OS(U2,4) =

∧
K〈e1, . . . , e4〉

J
,

where J = (e1e2 − e1e3 + e2e3, e1e2 − e1e4 + e2e4, e1e3 − e1e4 + e3e4).
in<(J) = (e1e2, e1e3, e2e3).
So OS(U2,4) is Koszul.
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Orlik-Solomon Algebras - Running Example 2

x

y = 0
x = 0

z = 0

x = y

y

z
1234

123 14 24 34

1 2 3 4

∅

L(A)

OS(A) =

∧
K〈e1, . . . , e4〉

J
,

where J = (e1e2 − e1e3 + e2e3) and in<(J) = (e1e2).
So OS(A) is Koszul.
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Orlik-Solomon Algebras - Running Example 3

2

3

45

6

1 7

89

OS(M(G )) =

∧
K〈e1, . . . , e9〉

J
,

where J = (∂(e127), ∂(e348), ∂(e569), ∂(e789)) and
in<(J) = (e1e2, e3e4, e5e6, e7e8) (G is chordal!)
So OS(M(G )) is Koszul.
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Graded Möbius Algebras - Algebraic Definition

Let M be a simple matroid with finite ground set E .
The graded Möbius algebra of M is the commutative ring

GM(M) =
⊕

F∈L(M)

KyF

with multiplication

yF yG =

{
yF∨G , if rk(F ∨ G ) = rkF + rkG

0, otherwise.

In particular, HFGM(M)(i) = #L(M)i .
L(M) graded + atomic ⇒ GM(M) is standard graded.
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Graded Möbius Algebras - Geometric Definition

Let A = {H1, . . . ,Hn} be a complex hyperplane arrangement in Cd .
Let Ψ : Cd ↪→

∏
H∈ACd/H =

∏
H∈A C1 ↪→

∏
H∈A P1

C =
∏n

i=1 P1
C.

Let SA be the image of Ψ with closure SA called the Schubert variety
of A.

Theorem (Huh, Wang 2017)

The cohomology ring of SA is

H2∗(SA;K) ∼= GM(M(A)).
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Graded Möbius Algebras - Presentation

Proposition (Mastroeni-M-Peeva 2023)

Let M be a simple matroid. Let L be the ideal generated by all
binomials yCri − yCrj for all circuits C of M and all i , j ∈ C . Then:

Q = (y2
i | i ∈ E ) + (yCri − yCrj | C is a circuit of M, i , j ∈ C ),

and the generators of the latter ideal are a Gröbner basis for Q with
respect to every lex ordering for any ordering of the elements of E .
(If C = {i1, . . . , it}, then yCrik = yi1yi2 · · · ŷik · · · yit .)

See related result of Maeno-Numata 2011.
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See related result of Maeno-Numata 2011.

39



Graded Möbius Algebras - Quadracity

Let M be a simple matroid. M is:

• C-chordal if for every circuit C of M of size at least four there is an
element e ∈ E and circuits A,B of M such that A ∩ B = {e} and
C = (Ar e) t (B r e).

• T-chordal if for every circuit C of M of size at least four there is an
element w ∈ E r C and elements u, v ∈ C such that {u, v ,w} is a
circuit.
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Graded Möbius Algebras - Quadracity

Theorem (Mastroeni-M-Peeva 2023)
Let M be a simple matroid. Then

M is C-chordal ⇒ GM(M) is quadratic ⇒ M is T-chordal.

Remark: Neither converse is true.

Corollary (Mastroeni-M-Peeva 2023)
Let G be a simple graph. Then

G is chordal ⇐⇒ GM(M(G )) is quadratic .
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Graded Möbius Algebras - Running Example 1

x

y

v1

v2v3 v4

1234

1 2 3 4

∅

L(U2,4)

GM(U2,4) =
K[y1, . . . , y4]

J
,

where J = (y2
1 , y

2
2 , y

2
3 , y

2
4 , y1y2 − y1y3, y1y3 − y2y3, . . . , y2y4 − y3y4).

in<(J) = (y2
1 , y

2
2 , y

2
3 , y

2
4 , y1y2, y1y3, y1y4, y2y3, y2y4).

So GM(U2,4) is Koszul.
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Graded Möbius Algebras - Running Example 2

x

y = 0
x = 0

z = 0

x = y

y

z
1234

123 14 24 34

1 2 3 4

∅

L(A)

GM(A) =
K[y1, . . . , y4]

J
,

where J = (y2
1 , y

2
2 , y

2
3 , y

2
4 , y1y2 − y1y3, y1y3 − y2y3) and

in<(J) = (y2
1 , y

2
2 , y

2
3 , y

2
4 , y1y2, y1y3).

So GM(A) is Koszul. 43



Graded Möbius Algebras - Running Example 3

2

3

45

6

1 7

89

GM(M(G )) =
K[y1, . . . , y9]

J

J = (y2
1 , . . . , y

2
9 , y1y2 − y1y7, y1y7 − y2y7, . . . , y7y8 − y7y9, y7y9 − y8y9).

Betti table of K over GM(M(G )):
0 1 2 3 4

0 1 9 53 260 1,156
1 – – – – 1

GM(M(G )) is quadratic (G is chordal) but not Koszul.
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Graded Möbius Algebras - Graphic Matroids

A graph G is strongly chordal if G is chordal and every cycle of even
length n ≥ 6 has an odd chord.

Theorem (Farber 1983)
The following are equivalent:

• G is strongly chordal.

• G is chordal and has no induced n-trampoline.

3-trampoline 4-trampoline 5-trampoline
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Graded Möbius Algebras - Graphic Matroids

Theorem (Mastroeni-M-Peeva 2023)
Let G be a graph. If GM(M(G )) is Koszul, then G is strongly chordal.

We conjecture that the converse holds.
It reduces to the following purely combinatorial statement.

Conjecture
Is a graph G strongly chordal if and only if there is a total order ≺ on
the edges of G with the property that for every cycle C of size at least
four in G and every edge e ∈ C r min≺ C , there is a chord c of C and
edges a, b ∈ C r e such that T = {a, b, c} is a 3-cycle with
min≺ T 6= c?
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Outline

1. Koszul Algebras

2. Matroids and Lattices

3. Orlik-Solomon Algebras

4. Graded Möbius Algebras

5. Chow Rings of Matroids
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Chow Rings of Matroids - Algebraic Definition

The Chow ring of a matroid M is the (commutative) ring:

CH(M) =
K[xF | F ∈ Lr {∅}]

(xF xF ′ | F ,F incomp) + (
∑

G⊇F xG | rkF = 1)

Remark: CH(M) is clearly standard graded and quadratic.
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Chow Rings of Matroids - Geometric Definition

Let A = {H1, . . . ,Hn} be a complex hyperplane arrangement in Cd .
Let PA ⊆ Pd−1

C be the projectivization with complement
MPA = Pd−1

C r
⋃n

i=1 PHi .
Let

Φ : MPA → Pd−1
C ×

∏
F∈L(A)rCd

P(Cd/F )

be the natural map with image YPA with closure YPA.
YA is the (projectivized) wonderful compactification à la de Concini &
Procesi (1996).
Theorem (Feichtner-Yuzvinksky 2003)

H2∗(YA;K) ∼= CH(M(A)).
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Chow Rings of Matroids - Running Example 1

L(U2,4) :

1234

1 2 3 4

∅

CH(U2,4) =
K[x1, x2, x3, x4, x1234]

(x1x2, x1x3, x1x4, x2x3, x2x4, x3x4) + (x1 + x1234, x2 + x1234, x3 + x1234, x4 + x1234)

Hilbert series of CH(U2,4) is 1 + t.
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Chow Rings of Matroids - Running Example 2

x

y = 0
x = 0

z = 0

x = y

y

z
1234

123 14 24 34

1 2 3 4

∅

L(A)

CH(M(A)) =
K[x1, x2, x3, x4, x123, x14, x24, x34, x1234]

J
,

J = (x1x2, x1x3, x1x4, x2x3, x2x4, x3x4, x1x24, x1x34, x2x14, x2x34, x3x14,

x3x24, x4x123, x123x14, x123x24, x123x34, x14x24, x14, x34, x24x34,

x1 + x123 + x14 + x1234, x2 + x123 + x24 + x1234,

x3 + x123 + x34 + x1234, x4 + x14 + x24 + x34 + x1234).

Hilbert series of CH(M(A)) is 1 + 5t + t2.
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Chow Rings of Matroids - Running Example 3

2

3

45

6

1 7

89

GM(M(G )) =
K[x1, . . . , x9, x127, x13, . . . , x123456789]

J

J = (3119 quadratic monomials) + (9 linear forms).

Hilbert series of GM(M(G )) is 1 + 79t + 255t2 + 79t3 + t4.
In general, reg(GM(M(G ))) = rkM(G )− 1 = #V − 2.

52



Chow Rings of Matroids - Running Example 3

2

3

45

6

1 7

89

GM(M(G )) =
K[x1, . . . , x9, x127, x13, . . . , x123456789]

J

J = (3119 quadratic monomials) + (9 linear forms).

Hilbert series of GM(M(G )) is 1 + 79t + 255t2 + 79t3 + t4.

In general, reg(GM(M(G ))) = rkM(G )− 1 = #V − 2.

52



Chow Rings of Matroids - Running Example 3

2

3

45

6

1 7

89

GM(M(G )) =
K[x1, . . . , x9, x127, x13, . . . , x123456789]

J

J = (3119 quadratic monomials) + (9 linear forms).

Hilbert series of GM(M(G )) is 1 + 79t + 255t2 + 79t3 + t4.
In general, reg(GM(M(G ))) = rkM(G )− 1 = #V − 2.

52



Augmented Chow Rings of Matroids - Algebraic Definition

The augmented Chow ring of a simple matroid M is the ring

CH(M) := K[yi , xF | i ∈ E ,F ∈ L(M) r {E}]/(IM + JM),

where

IM = (yi −
∑

i /∈F xF | i ∈ E ),

JM = (xF xG | F ,G incomparable ) + (yixF | i ∈ E , i /∈ F ).

Proposition (Braden, Huh, Matherne, Proudfoot, Wang 2020)

• GM(M) ⊂ CH(M),

• CH(M) = CH(M)⊗GM(M) K.
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Applications of Chow Rings of Matroids

Conjecture (Top Heavy Conjecture of Dowling and Wilson 1974)
For any geometric lattice L of rank r and if j ≤ r

2 , then

|Lj | ≤ |Lr−j |.

Theorem (Braden, Huh, Matherne, Proudfoot, Wang 2020)
The Top Heavy conjecture is true.

Proof relies on “Hodge theory" of matroids, which is a collection of
properties of CH(M) and CH(M) collectively known as the Kähler
package.

54



The Kähler Package

A commutative graded Artinian K -algebra A =
⊕d

i=0 Ai is said to have
the Kähler package provided:

• Poincare Duality: There is a nondegenerate, bilinear pairing

P : Ai × Ad−i → K
• Lefschetz Property: There is a linear form L ∈ A1 such that

Ai → Ad−i

x 7→ Ld−2ix

is an isomorphism.

• Hodge-Riemann Relations: The symmetric bilinear form on Ai :

(x , y) 7→ (−1)iP(x , Ld−2iy)

is positive definite on the kernel of Ld−2i+1.
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Algebraic properties of CH(M)

Theorem (Adiprasito, Huh, Katz 2018, BHMPW 2020)
For any matroid M, CH(M) and CH(M) have the Kähler package.

So CH(M) and CH(M) are nice commutative, graded, Artinian rings.

• They are Gorenstein: dimK(CH(M)i ) = dimK(CH(M)d−i )

• They are quadratic:
CH(M) ∼= K[z1, . . . , zn]/(homogeneous quadrics).

Question
Are CH(M) and CH(M) Koszul?
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Are quadratic Gorenstein rings always Koszul?

codimension

regularity

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

Yes

No

Unknown

Mastroeni, Schenck, Stillman (2021)
(3,8) dot: M, Seceleanu (2021) 57



Koszulness of Chow Rings

Conjecture (Dotsenko 2020)
The Chow ring of any matroid is Koszul.

Theorem (Mastroeni, M 2021)
CH(M) and CH(M) are Koszul for any matroid M.

Proof uses a Koszul filtration and the known (non-quadratic) Gröbner
basis of Feichtner-Yuzvinsky.
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Idea of the Proof

• If rkM = 1, then CH(M) ∼= Q.

• If rkM = 2, then CH(M) ∼= Q[xE ]/(x2
E ).

• In both cases, CH(M) has a Koszul filtration.

• Use natural matroid operations (restriction and truncation) to
inductively lift the filtration.
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Rationality of Poincaré Series

Recall that R Koszul =⇒ PR
K (t) = 1

HR (−t) .

Corollary
For any matroid CH(M) has a rational Poincaré series.

Example (Bøgvad / Anick)

R = K[x1, x2, x3, x4, x5]/(x2
1 , x

2
2 , x

2
3 , x

2
4 , x

2
5 , x1x2, x4x5, x1x3+x3x4+x2x5).

Let R̃ = R n ωR(−3) is quadratic, Artinian, and Gorenstein, but PR
K (t)

is irrational.
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Roots of the h-polynomial

Theorem (Reiner-Welker (2005))
If R is Koszul and Artinian, then HR(t) has a real root.

If R is Gorenstein, it has 2 real roots.

Conjecture (Huh)
HCH(M)(t) and HCH(M)(t) are real rooted.

Would imply that the coefficients of HCH(M)(t) =
∑

i hi t
i are ultra-log

concave; i.e {hi/
(
n
i

)
} is log-concave.

See related work by Ferroni, Matherne, Stevens, and Vecchi (2022).
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