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1. Koszul Algebras



K a field

e V = (x1,...,%,) an n-dimensional K-vector space
o T=@P;2, V¥ the tensor algebra V over K

e /| C T an ideal generated by g quadrics

R = T/I : such K-algebras are called quadratic



Koszul Algebras

Let Ry = @, Ri-

R is a Koszul algebra if R/R; = K has a linear free resolution over R.



Koszul Algebras

Let R+ = ®i>0 R,'.

R is a Koszul algebra if R/R; = K has a linear free resolution over R.

Let R = K[x, y]/(x,y)?. Then the minimal free resolution of K is:

(3523) (xy)

R(-1)?



Properties of Koszul Algebras

e Every Koszul algebra R corresponds to a quadratic dual algebra R'
which is also Koszul.

o Pg(t) = ZB,-R(]K)t" = (dimg R)t' = Hg(t)

1

o Pr(t)Hgr(—t)=1



Properties of Koszul Algebras

e Every Koszul algebra R corresponds to a quadratic dual algebra R'
which is also Koszul.

o Pg(t) = Zﬁﬁ(K)t" = (dimg R)t' = Hg(t)

1

o Pr(t)Hgr(—t)=1

For R = K[x, y]/(x,y)?, we have Hg(t) = 1 + 2t so that:

1
PR(t)=m=1+2t+4t2+8t3+"‘



Examples of Koszul Algebras

e Polynomial rings and exterior algebras
e Quotients by quadratic monomial ideals (Fréberg 1975)

e All high degree Veronese subrings of any standard graded algebra
(Backelin 1986)

e Quadratic Gorenstein rings of regularity 2 (Conca, Rossi, Valla 2001)



How to Detect Koszulness

We say that R or | is G-quadratic if, after a suitable linear change of
coordinates, the ideal ¢(/) has a Grébner basis consisting of quadrics.

G-quadratic = Koszul = quadratic



How to Detect Koszulness

We say that R or | is G-quadratic if, after a suitable linear change of
coordinates, the ideal ¢(/) has a Grébner basis consisting of quadrics.

G-quadratic = Koszul = quadratic

Neither converse is true:
Klx,y,z]/(x* = yz,y? — xz, 2> — xy)
is Koszul but not G-quadratic.
Klx,y,z,w]/(x?, y? xz + yw)

is quadratic but not Koszul.



2. Matroids and Lattices



A matroid M is a pair (E,Z) where E is a finite set E and Z C P(E)
satisfying:

e JeT.
e IfAcZ and BC A, then BeZ,
e If A, B€eZ, |B|>|A] then3be B~ Awith AUbeT.
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A matroid M is a pair (E,Z) where E is a finite set E and Z C P(E)
satisfying:

e Jel.

e IfAcZ and BC A, then BeZ,

o IfAB€T, |B|>|Althen 3be B~ Awith AUb € T.
Elements of 7 are called independent sets.

Subsets A C E with A ¢ 7 are called dependent.
Minimal dependent sets are called circuits.
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A matroid M is a pair (E,Z) where E is a finite set E and Z C P(E)
satisfying:

e Jel.

e IfAcZ and BC A, then BeZ,

o IfAB€T, |B|>|Althen 3be B~ Awith AUb € T.
Elements of 7 are called independent sets.

Subsets A C E with A ¢ 7 are called dependent.
Minimal dependent sets are called circuits.

The uniform matroid U, , is the (r — 1)-skeleton of an (n — 1)-simplex.
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How to Make a Matroid: 1A. Sets of Vectors

A set of vectors A = {v1,Va,...,v,} defines a representable matroid
M(A) whose independent sets are subsets of linearly independent vectors
in A.

V3 \%} V. 1 —
L 4 A 0 1 1
01 1 1

Vi

M(A) = U274
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How to Make a Matroid: 1B. Hyperplane arrangements

Dually, an arrangement of hyperplanes A = {Hj,...,H,} in C9 defines a
representable matroid M(A).

We assume A is central and essential, i.e. [, H; = {0}.

V4

/V 10 1 0
B A=l0 1 -1 0
=Y X =0 00 0 1

y=20

ST, e
%
X z=0
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How to Make a Matroid: 2. Graphs

Let G = (V, E) be a graph. Define a subset A C E to be independent if
it contains no cycles. Then M(G) = (E,Z) is a matroid.

S

Circuits of M(G) =
{{17 27 7}7 {37 4’ 8}’ {57 6’ 9}’ {7’ 87 9}’ {1’ 2’ 87 9}7 {3’ 47 77 9}7
{57 6’ 77 8}7 {1? 27 5’ 67 8}7 {17 27 3’ 47 9}7 {37 47 57 67 7}7 {17 27 3’ 47 5’ 6}}
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All graphic matroids are representable

1 1 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 1

1/ \2
a |0 11 0 0 0 -1 1 o0
g&/g\g "o o o o 1 -1 0 o0 o0
oo 0o 0 0 1 -1 0 0 -1 -1
0 0 -1 -1 0 0 0 0 O

M(G) = M(A) is representable.
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All graphic matroids are representable

1 1 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 1

1/ \2
a |0 11 0 0 0 -1 1 o0
g&/g\g "o o o o 1 -1 0 o0 o0
oo 0o 0 0 1 -1 0 0 -1 -1
0 0 -1 -1 0 0 0 0 O

M(G) = M(A) is representable.

U> 4 is representable but not graphic.
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Are all matroids representable?

Consider the configuration of points in the projective plane from Pappus’
Hexagon Theorem. This is a representation of the Pappus matroid.
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Are all matroids representable?

No. The Non-Pappus matroid is not representable. (Any representable
matroid would be subject to Pappus’s Theorem, so X,Y,Z would be
collinear.)
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Most matroids are not representable

0% of all matroids are representable. (Nelson 2018)
Thus matroids are much more general than graphs, vector configuration,
or hyperplane arrangements.
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Rank and Flats

If M is a matroid with ground set E and F C E:

e The rank of F is

rk(F) = max{|X| | X C F, X independent}.

e The closure of F is

cI(F) = {x € E | rk(F U {x}) = rk(F)}.

e Fisaflatifcl(F)=F.
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The Lattice of Flats - Running Example 1

The set of all flats ordered by inclusion forms a lattice £(M) graded by
the ranks of flats.

P AN
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The Lattice of Flats - Running Example 2

For A= {H; = V(x),Ha = V(y),Hs = V(x — y),Hs = V(2)} in C3
below, its lattice of flats £(.A) is

1234

/ZV 123 /14/ \24\ 34

20



The Lattice of Flats - Running Example 3

:/i\z
A

L(M(G)) :

123456789

1234780 72357 12367 12457 124671256760 13458 13468 13569 14560 23453 23468 23560 245603456789

21



Geometric Lattices

A geometric lattice L is

e graded : There is a function rk : £ — N such that
x >y = 1k(x) > rk(y) and if x covers y then rk(x) = rk(y) + 1.

e semimodular : rk(x) + rk(y) > rk(x V y) + rk(x A y) for all
x,y € L.

e atomic : Every x € £ is a join of atoms (covers of 0).

Write £; = {x € L | rk(x) = i}.

22



Geometric Lattices vs. Matroids

Theorem (Garrett Birkhoff 1935)

There is a bijection between the set of finite geometric lattices and the
set of simple matroids.

A matroid is simple if it has no circuits of size 1 (loops) or 2 (parallel
elements).



3. Orlik-Solomon Algebras

24



Orlik-Solomon Algebras - Algebraic Definition

Let M = (E,Z) be a matroid and £ = £L(M) is lattice of flats, where
E ={1,...,n}. The Orlik-Solomon Algebra of M is

B Nxler, ... en)
OS(M) = (O(ec) |KC é E is a circuit)’

where ec = [];c¢ & and

t
He,, =D ()le -
i=1
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Orlik-Solomon Algebras - Geometric Definition

Let A= {Hy,...,H,} be a complex hyperplane arrangement in C.
Let M4 = C? \ |J_, H; be the complement.

Theorem (Orlik-Solomon 1980)

The cohomology ring of M 4 is
H*(M4; K) =2 OS(M(A)),

where M(A) is the associated matroid. In particular, H*(M_4; K)
depends only on the intersection lattice.



Orlik-Solomon Algebras - Running Example 1

y

V3 \% V. —
N 2 4 A 1 0 11
o1 1 1

Vi

~
4
X

M(A) 2 Us 4
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Orlik-Solomon Algebras - Running Example 1

y
SO CINC Lt o -1
01 1 1
y 1 x
M(A)%UQA
Nxler, ..., es)
OS(U: =
(Uz) (0(e123), O(€124), O(e134), O(€234))
/\K(ela"')e4>

(e162 — €163 + e263, €160 — €164 + 264, €163 — €164 + €364)
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Orlik-Solomon Algebras - Running Example 2

1 0 1 O
A=1]10 1 -1 0

X=y
x=0 00 0 1

) &7\>y M(A) = M(A)
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Orlik-Solomon Algebras - Running Example 2

) &7\>y M(A) = M(A)

~ Nkfer, ..., e)
08 = (0(e123))

/\K(ela coog e4>

(e162 — €163 + e263)
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Orlik-Solomon Algebras - Running Example 3

SV
Circuits of M(G) =

{{17 27 7}7 {37 47 8}7 {57 67 9}7 {77 87 9}7 {17 27 87 9}7 {37 47 77 9}7
{57 6’ 77 8}? {17 2’ 57 67 8}7 {17 27 3’ 47 9}7 {3? 4’ 57 67 7}7 {17 2’ 3’ 4) 57 6}}

B /\ <e]_,...,eg>
OS(M(G)) = (9(ew27), aéiys), ..., 0(e123456))
/\K<el’ ooy €9>

~ (0(e127), 0(e345), 0 eso), D ersa))
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Grobner bases of Orlik-Solomon Ideals

An element F in a geometric lattice £ is modular if
rk(F) + rk(G) = rk(F vV G) + rk(F A G)

for all G € L. A lattice is supersolvable if there is a saturated chain
0<F <---<F,_1 <1 of modular elements.

Theorem (Bjorner-Ziegler 1991, Peeva 2003)

Let M be a matroid with Orlik-Solomon algebra OS(M) = E/J. Then
the following are equivalent:

o L(M) is supersolvable.

e J has a quadratic Grébner basis with respect to some monomial order.

30



Orlik-Solomon Ideals - Koszul Property

Corollary

If L(M) is supersolvable, then OS(M) is Koszul.

Remark: The converse is open.

Theorem (Papadima-Yuzvinsky 1999)

Let A be a complex hyperplane arrangement with complement M 4.
Then OS(A) is Koszul if and only if M 4 is a rational K(m,1)-space.

31



Orlik-Solomon Algebras - Graphic Matroids

Now let G be a simple graph with graphic matroid M(G).

Theorem (Stanley 1972, Schenck-Suciu 2002)

The following are equivalent:

e OS(M(G)) is quadratic.

e OS(M(G)) has a quadratic Grébner basis.
OS(M(G)) is Koszul.

e L(M(G)) is supersolvable.

G is chordal.

32



Orlik-Solomon Algebras - Running Example 1

y

A AN
" \\g //

D
X
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Orlik-Solomon Algebras - Running Example 1

" 1234
N "VZ N 1 /2/ \3\ 4
—— x \\g//
L(Uz,4)

OS(U2’4) _ /\K(elaJ' ) e4> ,
where J = (e1& — e1e3 + exe3, €162 — €164 + €2e4, €163 — €184 + €3€1).
in<(J) = (er1e2, €163, &2€3).
So OS(Uz 4) is Koszul.
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Orlik-Solomon Algebras - Running Example 2

1234

/ZV 123 /14/ \24\ 34

‘= | |
Y x=0

3
z&7\>y ’

X z=0 L(A)

OS(.A) = M’

where J = (e1e2 — ere3 + exe3) and in.(J) = (e1e2).
So OS(A) is Koszul.
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Orlik-Solomon Algebras - Running Example 3

SV

OS(M(G)) = Axler,- - @)

where J = (8(6127), (9(6343)7 8(6569),6(8739)) and
inc(J) = (e1e2, e3e4, 566, €7€8) (G is chordall)
So OS(M(G)) is Koszul.
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4. Graded Mobius Algebras

36



Graded Mobius Algebras - Algebraic Definition

Let M be a simple matroid with finite ground set E.
The graded Mdobius algebra of M is the commutative ring

GM(M)= & Kyr

FeL(M)
with multiplication

yrve, ifrk(FV G)=rkF+rkG
YFYG =

0, otherwise.

In particular, HFgmm) (i) = #L(M);.
L(M) graded + atomic = GM(M) is standard graded.

37



Graded Mobius Algebras - Geometric Definition

Let A= {Hy,...,H,} be a complex hyperplane arrangement in C.
Let W:CY — HHeA(Cd/H = [Tyea C = [Myea Pt =1, P2

Let S4 be the image of W with closure S4 called the Schubert variety
of A.

Theorem (Huh, Wang 2017)

The cohomology ring of S 4 is

H?*(S4; K) = GM(M(A)).

38



Graded Mobius Algebras - Presentation

Proposition (Mastroeni-M-Peeva 2023)

Let M be a simple matroid. Let L be the ideal generated by all
binomials yc< i — yc~ for all circuits C of M and all i,j € C. Then:

Q= (y?|i€E)+ (ycui—yc~j| Cis a circuit of M,i,j € C),

and the generators of the latter ideal are a Grébner basis for @ with
respect to every lex ordering for any ordering of the elements of E.

(If C={h,...,it}, then yci, = YuVin - Yi - Yic-)
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Graded Mobius Algebras - Presentation

Proposition (Mastroeni-M-Peeva 2023)

Let M be a simple matroid. Let L be the ideal generated by all
binomials yc< i — yc~ for all circuits C of M and all i,j € C. Then:

Q= (y?|i€E)+ (ycui—yc~j| Cis a circuit of M,i,j € C),

and the generators of the latter ideal are a Grébner basis for @ with
respect to every lex ordering for any ordering of the elements of E.

(If C={h,...,it}, then yci, = YuVin - Yi - Yic-)

See related result of Maeno-Numata 2011.
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Graded Mobius Algebras - Quadracity

Let M be a simple matroid. M is:

e C-chordal if for every circuit C of M of size at least four there is an
element e € E and circuits A, B of M such that AN B = {e} and
C=(Axe)U(B\e).

e T-chordal if for every circuit C of M of size at least four there is an
element w € E \ C and elements u, v € C such that {u,v,w} is a

circuit.

40



Graded Mobius Algebras - Quadracity

Theorem (Mastroeni-M-Peeva 2023)

Let M be a simple matroid. Then

M is C-chordal = GM(M) is quadratic = M is T-chordal.

41



Graded Mobius Algebras - Quadracity

Theorem (Mastroeni-M-Peeva 2023)

Let M be a simple matroid. Then

M is C-chordal = GM(M) is quadratic = M is T-chordal.

Remark: Neither converse is true.
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Graded Mobius Algebras - Quadracity

Theorem (Mastroeni-M-Peeva 2023)

Let M be a simple matroid. Then

M is C-chordal = GM(M) is quadratic = M is T-chordal.

Remark: Neither converse is true.

Corollary (Mastroeni-M-Peeva 2023)

Let G be a simple graph. Then

G is chordal < GM(M(G)) is quadratic .
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Graded Mobius Algebras - Running Example 1

Y 1234

P SRINANS
" \\g //

L(Uz4)

D
X
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Graded Mobius Algebras - Running Example 1

y 1234

b
> x \\g//

L(Uz4)

Ky, ...
GM(U2,4)=—[y1J y4]’

where J = (yZ,y3,y2, Y2, Y1Y2 — Y1Y3,Y1¥3 — Y2Y3, - -+ YoYa — Y3Y4).
inc(J) = (Y2, Y3, Y2, Y2, Y12, Y1Y3: Y14, Y2Y3, Yoya).
So GM(Us,4) is Koszul.
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Graded Mobius Algebras - Running Example 2

1234

/ ZV 123 /14/ \24\ 34

| |
/ x=0

o
1&7\% ’

X z=0 £(A)

K
GM(.A) _ [}/17 ,Y4]7
J
where J = (yZ,y3,y2,¥2,y1y2 — Y1¥3, y1y3 — Y2y3) and

in<(‘l) = (}’127}/227}/327)’37}’1}/2,}’1}/3)-
So GM(A) is Koszul. 43



Graded Mobius Algebras - Running Example 3
1{7\2
y9> A3
5 9, 9

J= (Y2, Y3 YIY2 — YAYT. Y1Y7 — VoY1, - -, Y1¥8 — Y7Y0, Y1Yo — Y& Ya).

o1 2 3 4
Betti table of K over GM(M(G)): 0|1 9 53 260 1,156
- - - - 1

GM(M(G)) is quadratic (G is chordal) but not Koszul.
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Graded Mobius Algebras - Graphic Matroids

A graph G is strongly chordal if G is chordal and every cycle of even
length n > 6 has an odd chord.

Theorem (Farber 1983)

The following are equivalent:

e G is strongly chordal.

e G is chordal and has no induced n-trampoline.

S & @

3-trampoline 4-trampoline 5-trampoline
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Graded Mobius Algebras - Graphic Matroids

Theorem (Mastroeni-M-Peeva 2023)

Let G be a graph. If GM(M(G)) is Koszul, then G is strongly chordal.

We conjecture that the converse holds.
It reduces to the following purely combinatorial statement.

Conjecture

Is a graph G strongly chordal if and only if there is a total order < on

the edges of G with the property that for every cycle C of size at least
four in G and every edge e € C ~. min C, there is a chord ¢ of C and
edges a,b € C \ e such that T = {a, b, c} is a 3-cycle with

ming T #c¢?
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5. Chow Rings of Matroids
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Chow Rings of Matroids - Algebraic Definition

The Chow ring of a matroid M is the (commutative) ring:

Kixr | F € L {@}]
(xexgr | F, F incomp) + (3 _gop X6 | rkF =1)

CH(M) =

48



Chow Rings of Matroids - Algebraic Definition

The Chow ring of a matroid M is the (commutative) ring:

Kixr | F € L {@}]
(xexgr | F, F incomp) + (3 _gop X6 | rkF =1)

CH(M) =

Remark: CH(M) is clearly standard graded and quadratic.

48



Chow Rings of Matroids - Geometric Definition

Let A= {Hy,...,H,} be a complex hyperplane arrangement in C.
Let PA C IF’(‘é_l be the projectivization with complement
Mpy = ng_l N U?:l PH,.
Let
o:Mea—»PET [ P(CYYF)
FEL(A)~CY

be the natural map with image Yp4 with closure Yp4.
Y4 is the (projectivized) wonderful compactification a la de Concini &
Procesi (1996).

Theorem (Feichtner-Yuzvinksky 2003)

H?* (Y K) = CH(M(A)).
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Chow Rings of Matroids - Running Example 1

1234

L(Uz4) - 1 /2/ \3\ 4
\\@ //
CH(U2.4) =

K([x1, x2, X3, X4, X1234]
(x1x2, X1X3, X1Xa, X2X3, XoXa, X3Xa) + (X1 + X1234, X2 + X1234, X3 + X1234, Xa + X1234)

Hilbert series of CH(U»4) is 1 + t.
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Chow Rings of Matroids - Running Example 2

1234

- AN
123 14 24 34

| NS

-0 12 73 4
y=0 Y
%]
Ny
X z=0 ﬁ(A)

K[Xh X2, X3, X4, X123, X14, X24, X34, X1234
CH(M(A)) = : .
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Chow Rings of Matroids - Running Example 2

1234

- PAARN
123 14 24 34

PR
Y=o - N
s

C_H(M(A)) _ K[X17X27X37X47X12

X L(A)
3, X14, X24, X34, X1234]
J )

J= (X1X2, X1X3, X1 X4, X2X3, X2 X4, X3X4, X1 X24, X1 X34, X2X14, X2X34, X3X14,

X3X24, X4X123, X123X14, X123X24, X123X34, X14X24, X14, X34, X24X34,
X1 + X123 + X14 + X1234, X2 + X123 + X24 + X1234,
X3 + X123 + X34 + X1234, Xa + X14 + Xo4 + X34 + X1234).

Hilbert series of CH(M(.A)) is 1 + 5t + t2.
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Chow Rings of Matroids - Running Example 3

SV

Kxi, . ..
GM(M(G)) = B, ’X9aX127,j13,  X123456789]

J = (3119 quadratic monomials) + (9 linear forms).
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Chow Rings of Matroids - Running Example 3

SV

Kxi, . ..
GM(M(G)) = B, ’X97X127,j13,  X123456789]

J = (3119 quadratic monomials) + (9 linear forms).

Hilbert series of GM(M(G)) is 1 + 79t + 255¢% + 793 + t*.
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Chow Rings of Matroids - Running Example 3

SV

Kxi, . ..
GM(M(G)) = B, ’X97X127,j13,  X123456789]

J = (3119 quadratic monomials) + (9 linear forms).

Hilbert series of GM(M(G)) is 1 + 79t + 255¢% + 793 + t*.
In general, reg(GM(M(G))) =rk M(G) — 1 =#V —2.
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Augmented Chow Rings of Matroids - Algebraic Definition

The augmented Chow ring of a simple matroid M is the ring
CH(M) :=Kly;,xr | i € E,F € LIM)~{E}/(Im + Im),
where

IM=(yi—Z,~¢F xf | i € E),

Ju = (xrxg | F, G incomparable ) + (yixg | i € E,i ¢ F).

Proposition (Braden, Huh, Matherne, Proudfoot, Wang 2020)

e GM(M) C CH(M),
e CH(M) = CH(M) ®cm(m) K.
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Applications of Chow Rings of Matroids

Conjecture (Top Heavy Conjecture of Dowling and Wilson 1974)

For any geometric lattice L of rank r and if j < 5, then

1Ll < 1Lr—j]-
Theorem (Braden, Huh, Matherne, Proudfoot, Wang 2020)
The Top Heavy conjecture is true.

Proof relies on “Hodge theory" of matroids, which is a collection of
properties of CH(M) and CH(M) collectively known as the Kahler
package.



The Kadhler Package

A commutative graded Artinian K-algebra A = @7:0 A, is said to have
the Kahler package provided:

e Poincare Duality: There is a nondegenerate, bilinear pairing

P A,' X Ad_,' — K
e Lefschetz Property: There is a linear form L € A; such that

A,' — Ad_,'

X L97%x

is an isomorphism.

e Hodge-Riemann Relations: The symmetric bilinear form on A;:
(x,y) = (=1)'P(x, LY"?'y)

is positive definite on the kernel of L9241,

55



Algebraic properties of CH(M)

Theorem (Adiprasito, Huh, Katz 2018, BHMPW 2020)

For any matroid M, CH(M) and CH(M) have the Kahler package.



Algebraic properties of CH(M)

Theorem (Adiprasito, Huh, Katz 2018, BHMPW 2020)

For any matroid M, CH(M) and CH(M) have the Kahler package.

So CH(M) and CH(M) are nice commutative, graded, Artinian rings.

e They are Gorenstein: dimg(CH(M);) = dimg(CH(M)q4—;)

e They are quadratic:
CH(M) 2 K|z, ..., z,]/(homogeneous quadrics).



Algebraic properties of CH(M)

Theorem (Adiprasito, Huh, Katz 2018, BHMPW 2020)

For any matroid M, CH(M) and CH(M) have the Kahler package.

So CH(M) and CH(M) are nice commutative, graded, Artinian rings.

e They are Gorenstein: dimg(CH(M);) = dimg(CH(M)q4—;)

e They are quadratic:
CH(M) 2 K|z, ..., z,]/(homogeneous quadrics).

Are CH(M) and CH(M) Koszul?



Are quadratic Gorenstein rings always Koszul?

(] 1 2 3 4 5 6 7 8 9 10 11 . .
codimension
0 4
1 o
2
3 OO0 OO0 @® VYes
a Fan W an W an W an )
AN NP R NV A O N
5 Fan W an W an W an ) o
AN NP R NV A
6 o000 © Unknown
7 fo W Wa
AN NP
8 fo W
AN
[} D
10
11
regularity

Mastroeni, Schenck, Stillman (2021)
(3,8) dot: M, Seceleanu (2021) 57



Koszulness of Chow Rings

Conjecture (Dotsenko 2020)

The Chow ring of any matroid is Koszul.



Koszulness of Chow Rings

Conjecture (Dotsenko 2020)

The Chow ring of any matroid is Koszul.

Theorem (Mastroeni, M 2021)

CH(M) and CH(M) are Koszul for any matroid M.



Koszulness of Chow Rings

Conjecture (Dotsenko 2020)

The Chow ring of any matroid is Koszul.

Theorem (Mastroeni, M 2021)

CH(M) and CH(M) are Koszul for any matroid M.

Proof uses a Koszul filtration and the known (non-quadratic) Grébner
basis of Feichtner-Yuzvinsky.



Idea of the Proof

If rk M =1, then CH(M) = Q.

If rk M =2, then CH(M) = Q[xg]/(x2).

In both cases, CH(M) has a Koszul filtration.

Use natural matroid operations (restriction and truncation) to
inductively lift the filtration.
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Rationality of Poincaré Series

Recall that R Koszul = PE(t) = HR(l_t).
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Rationality of Poincaré Series

Recall that R Koszul = PE(t) = HR(I_t).

Corollary

For any matroid CH(M) has a rational Poincaré series.
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Rationality of Poincaré Series

Recall that R Koszul = PE(t) = HR(I_t).

Corollary

For any matroid CH(M) has a rational Poincaré series.

R ZiK[lexzax&X47X5]/(X127X22,X327X3,X52,X1X2,X4X5,X1X3+X3X4+X2X5)-
Let R = R x wgr(—3) is quadratic, Artinian, and Gorenstein, but PZ(t)
is irrational.
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Roots of the h-polynomial

Theorem (Reiner-Welker (2005))

If R is Koszul and Artinian, then Hg(t) has a real root.
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Herimy(t) and Hewyomy(t) are real rooted.
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Roots of the h-polynomial

Theorem (Reiner-Welker (2005))

If R is Koszul and Artinian, then Hg(t) has a real root.

If R is Gorenstein, it has 2 real roots.

Conjecture (Huh)

Herimy(t) and Hewyomy(t) are real rooted.

Would imply that the coefficients of Hepowy(t) = 3, hit' are ultra-log
concave; i.e {h;/(7)} is log-concave.

61



Roots of the h-polynomial

Theorem (Reiner-Welker (2005))

If R is Koszul and Artinian, then Hg(t) has a real root.

If R is Gorenstein, it has 2 real roots.

Conjecture (Huh)

Herimy(t) and Hewyomy(t) are real rooted.

Would imply that the coefficients of Hepowy(t) = 3, hit' are ultra-log
concave; i.e {h;/(7)} is log-concave.

See related work by Ferroni, Matherne, Stevens, and Vecchi (2022).
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