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This talk is based on joint work with Luis Ferroni
“Lattice points in slices of prisms” (arXiv:2202.11808)
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The hypersimplex

The hypersimplex ∆k,n is defined by

∆k,n =

{
x ∈ [0, 1]n :

n∑
i=1

xi = k

}
.

It is of fundamental importance in

Matroid theory → uniform matroids.

Graph theory → the Johnshon graph.

Grassmannians → specifically TNN Grassmannian.

The theory of alcoved polytopes → triangulations.

Much more! (tropical geometry, coding theory, statistics of
permutations, etc.)
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Basic facts about the hypersimplex

Remark

The vertices of the hypersimplex ∆k,n are all the 0/1-vectors in Rn that
have exactly k ones.

In 1977 Stanley gave a combinatorial proof of the following fact

Theorem

The volume of the hypersimplex ∆k,n is

vol(∆k,n) =
1

(n− 1)!
A(n− 1, k − 1),

where A(n− 1, k − 1) = {σ ∈ Sn−1 having k − 1 descents}.

It follows from his proof that the hypersimplex admits a certain
unimodular triangulation.
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Lattice points → Ehrhart polynomials

A vast generalization of the volume is the Ehrhart polynomial. To each
polytope P ⊆ Rn associate the function

t 7→ #(tP ∩ Zn).

This happens to be a polynomial that we denote ehr(P, t). If d := dimP
and

ehr(P, t) = adt
d + ad−1t

d−1 + · · ·+ a1t+ a0,

then

ad = vol(P),

ad−1 =
1
2 vol(∂P),

a0 = 1.

a1, . . . , ad−2 can be negative in general. /
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h∗-polynomials

If we write the Ehrhart polynomial of a polytope P of dimension d in the
basis

(
t+d
d

)
,
(
t+d−1

d

)
, . . . ,

(
t
d

)
, namely

ehr(P, t) = h0

(
t+ d

d

)
+ h1

(
t+ d− 1

d

)
+ · · ·+ hd

(
t

d

)
,

Stanley showed in 1993 that all the coefficients hi are nonnegative integers

h∗(P, x) = h0 + h1x+ · · ·+ hdx
d.

Remark (Major problems)

Find conditions that h∗-polynomials of lattice polytopes must satisfy
(inequalities, for example).

Find combinatorial interpretations of the coefficients of the
h∗-polynomial, at least for particular families of polytopes.
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What about the hypersimplex?

Let W (ℓ, n,m+ 1) denote the number of permutations σ ∈ Sn that have
exactly m+ 1 cycles and “weight” ℓ (using some definition of weight).

Theorem (F. ’21)

Consider the hypersimplex ∆k,n. The coefficient of degree m of its
Ehrhart polynomial is given by

[tm] ehr(∆k,n, t) =
1

(n− 1)!

k−1∑
ℓ=0

W (ℓ, n,m+ 1)A(n− 1, k − ℓ− 1),

which in particular is positive.
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Ehrhart in another basis

Regarding the h∗-polynomial we have the following combinatorial
interpretation.

Theorem (Early ’17 - Kim ’20)

Consider the hypersimplex ∆k,n. The coefficient of degree m of its
h∗-polynomial is given by

[xm]h∗(∆k,n, x) = #

{
decorated ordered set partitions

of type (k, n) and winding number m

}
,
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What is a slice of a prism?

Definition

Let c = (c1, . . . , cn) ∈ Zn
>0. The rectangular prism Rc is defined as the

polytope
Rc = {x ∈ Rn : 0 ≤ xi ≤ ci for each i ∈ [n]}.

For each positive integer k, the k-th slice Rk,c is defined as:

Rk,c =

{
x ∈ Rc :

n∑
i=1

xi = k

}
.

Example (The basic example)

Consider c = (1, . . . , 1) ∈ Zn
>0. The k-th slice of Rc is precisely the

hypersimplex ∆k,n.
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Example

y

z

x

x+ y + z = 7 (0, 3, 4)
(3, 0, 4)

(6, 0, 1)

(6, 1, 0)

(4, 3, 0)

If you consider the 3-dimensional rectangular prism of sides 6, 3 and 4 and
you intersect it with the hyperplane x+ y + z = 7 you get the polytope on
the right.
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Fat slices

The preceding type of slice is what we informally call a “thin slice”.
Consider two nonnegative integers a < b and the polytope R′

a,b,c defined
by

R′
a,b,c :=

{
x ∈ Rc : a ≤

n∑
i=1

xi ≤ b

}
.

We say that this is a “fat slice” of the prism Rc.
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Example

y

z

x

y

z

x

Figure: R′
3,5,(4,3,2)
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Fat Slices

A fat slice can be easily converted into a thin slice while preserving the
Ehrhart polynomial.

Proposition

Let c = (c1, . . . , cn) ∈ Zn
>0 and 0 ≤ a < b. Then, the fat slice R′

a,b,c has
the same Ehrhart polynomial as the thin slice Rk,c′ where k = b and
c′ = (c, b− a) ∈ Zn+1

>0 .
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Basic properties of these polytopes

Remark

Slices of prisms are alcoved polytopes.

The edges of a slice of a prism are all parallel to some vector of the
form ei − ej . Hence, they are all generalized permutohedra or base
polymatroids.

They are all polypositroids.

Conjecture (F., Jochemko, Schröter ’21)

All positroids are Ehrhart positive.
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Algebras of Veronese type

Definition

Let c = (c1, . . . , cn) ∈ Zn
>0 and k > 0. The algebra of Veronese type

V (c, k) is defined as the the graded algebra over a field F generated by all
the monomials xα1

1 · · ·xαn
n such that α1 + · · ·+ αn = k and αi ≤ ci for all

i.

Theorem (Hibi and De Negri ’97)

There is an isomorphism between V (c, k) and the Ehrhart ring of Rk,c.

A consequence of the above result is that the Hilbert function of V (c, k)
coincides with ehr(Rk,c, t) and moreover, the numerator of the Hilbert
series is h∗(Rk,c, x).
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Weighted Permutations and Compatibility

Definition

A weighted permutation is a pair (σ,w) where σ ∈ Sn and w assigns
weight to the cycles of σ. The total weight of (σ,w) is the sum of the
weights w(c) of all cycles c of σ.

Example: (1 3 6)7(2 5)0(4)2.

Definition

Let c = (c1, . . . , cn) ∈ Zn
>0. A weighted permutation (σ,w) is said to be

c-compatible if for each cycle c of σ, we have

w(c) <
∑
i∈c

ci.
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Example

Let c = (2, 4, 6, 8), σ = (1 3)6(2 4)11.
Then (σ,w) is c-compatible because

w((1 3)) = 6 <
∑

i∈(1 3)

ci = 2 + 6 = 8

and
w((2 4)) = 11 <

∑
i∈(2 4)

ci = 4 + 8 = 12.

Also, the total weight is w(σ) = 6 + 11 = 17
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Ehrhart Polynomial for Slices of Prisms

Definition

We define W (ℓ, n,m+ 1, c) to be the number of c-compatible weighted
permutations (σ,w) where σ ∈ Sn has m+ 1 cycles and w(σ) = ℓ.

Theorem (F. and McGinnis ’22)

The coefficient of degree m of the Ehrhart polynomial for the prism slice
Rk,c is given by

[tm] ehr(Rk,c, t) =
1

(n− 1)!

k−1∑
ℓ=0

W (ℓ, n,m+ 1, c)A(m, k − ℓ− 1)

which in particular are positive.
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Flag Eulerian Numbers

Definition

Let c = (c1, . . . , cn) ∈ Zn
>0. A c-colored permutation on [n] is a pair

(σ, s) where σ ∈ Sn and s is a function s : [n] → Z≥0 such that
si := s(i) ≤ ci − 1 for each i. The set of all such c-colored permutations

is denoted by S
(c)
n

Definition

The set of descents of a c-colored permutation (σ, c) is given by

Des(σ, s) := {i ∈ [n− 1] : si > si+1 or si = si+1 and σi > σi+1} .

The flag descent number of a c-colored permutation (σ, s) ∈ S
(c)
n is

defined by

fdes(σ, s) := sn +
∑

i∈Des(σ,s)

ci+1.
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Flag Eulerian Numbers

Definition

Let c = (c1, . . . , cn). We define the flag Eulerian number A
(c)
n,k by

A
(c)
n,k := #

{
(σ, s) ∈ S(c)

n : fdes(σ, s) = k − 1
}
.

Theorem

The volume of the fat slice R′
k−1,k,c is given by

vol(R′
k−1,k,c) =

1

n!
A

(c)
n,k(n, k − 1)

Remark

The case that c = (r, . . . , r), reduces to a result by Han and Josuat-Vergès
(2016), and when r = 1 we recover Laplace’s result on hypersimplices.
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Ordered Set Partitions

Definition

A decorated ordered set partition of type (k, n) consists of a cyclically
ordered partition ξ of [n] and a function w : P (ξ) → Z≥0 such that∑

p∈P (ξ)

w(p) = k.

For a vector c = (c1, . . . , cn) ∈ Zn
>0, we say that a decorated ordered set

partition ξ is c-compatible if

w(p) <
∑
i∈p

ci

for all p ∈ P (ξ).
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Example

Let ξ be the following cyclically ordered partition of [8]

({1, 3, 6}, {2, 5}, {4, 7, 8}).

Let w be given by

w({1, 3, 6}) = 1, w({2, 5}) = 2, w({4, 7, 8}) = 4.

Then ξ and w make up a decorated ordered set partition of type (7, 8).
It is (2, 1, 4, 5, 2, 3, 1, 1)-compatible for instance because

w({1, 3, 6}) = 1 < 2 + 4 + 3 = 9, w({2, 5}) = 2 < 1 + 2 = 3.

w({4, 7, 8}) = 4 < 5 + 1 + 1 = 7.
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Winding Number

Let ξ and w again be given by

({1, 3, 6}, {2, 5}, {4, 7, 8})

and
w({1, 3, 6}) = 1, w({2, 5}) = 2, w({4, 7, 8}) = 4.

This decorated ordered set partition can be visualized as follows.

{1, 3, 6}
{2, 5}

{4, 7, 8}
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The h∗-coefficients

Definition

The winding number of a decorated ordered set partition of type (k, n) is
the integer m such that

mk = λ1 + · · ·+ λn

where λi is the clockwise distance from the set containing i to the set
containing i+ 1.

Theorem (F. and McGinnis ’22)

The coefficient of degree m of the h∗-polynomial for Rk,c is given by

[xm]h∗(Rk,c, x) = #

{
c-compatible decorated ordered set partitions

of type (k, n) and winding number m

}
,
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Two conjectures regarding roots

Conjecture (F. and McGinnis ’22)

All the complex roots of the polynomial

pn,m,c(x) =

∞∑
ℓ=0

W (ℓ, n,m+ 1, c)xℓ.

lie on the unit circle |z| = 1.

Conjecture (F. and McGinnis ’22)

The h∗-polynomial of a slice of a prism is always real-rooted. Moreover, if
c = (c1, . . . , cn) and c′ = (c1, . . . , cn−1, cn − 1, 1), then

h∗(Rk,c, x) ⪯ h∗(Rk,c′ , x)

namely, these two polynomials interlace.
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THANK YOU!
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