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Introduction

1. Let X" be the « dimensional Euclidean space Ε", the « dimensional
sphere S", or the « dimensional Lobachevskii space Λ".

A convex polytope PCX" bounded by hyperplanes / / ,·, i G  / , is said to
be a Coxeter polytope if for all /, /  G  / , i Φ j, the hyperplanes / / , and Hj are
disjoint or form a dihedral angle of π/ rijj, where «,y G Ζ and η,γ > 2. (We
have in mind a dihedral angle containing P.)

If Ρ is a Coxeter polytope, then the group Γ of motions of X" generated
by the reflections Λ, in the hyperplanes Hj is discrete, and Ρ is a fundamental
polytope for it. This means that the polytopes yP, y G  Γ, do not have
pairwise common interior points and cover X"; that is, they form a
tessellation for X". The relations

(1) / ??= !, (Λ,Λ, ) η" =  1

are defining relations for Γ. (If //,· and Hj are disjoint, we set n,y =  °°; in
this case there is no relation between R, and Rj.)
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Conversely, every discrete group Γ of motions of X" generated by
reflections in hyperplaces can be obtained in the manner just described.
Here Ρ can be taken as any of the convex polytopes into which X" is
partitioned by the mirrors of all the reflections belonging to Γ.

In what follows, "reflection" always means "reflection in a hyperplane"
and "reflection group" means "group generated by reflections". Discrete
reflection groups in Euclidean space (and thus on the sphere) have been
studied by Weyl [9] , Cartan [26] , [27] , and Coxeter [28] , [29] . In
particular, a complete classification was obtained. These groups are well
known and they plan an important part in the theory of semisimple Lie
groups [6] , [31] .

An abstract group Γ with generators /?,  and defining relations (1) is said
to be a Coxeter group. As Tits has proved ( [6] , [58] , [59]) , every finitely
generated Coxeter group can be represented as a group of projective maps
generated by reflections and acting discretely in some domain of projective
space. An algebraic description of all representations of this form has been
obtained by the author [12] , [13] .

However, among the "non Euclidean" Coxeter groups the hyperbolic ones
are of greatest interest, that is, those that can be represented as discrete
reflection groups in a Lobachevskii space; and among the hyperbolic groups
above all those whose fundamental polytopes have finite volume. This paper
is devoted to a study of these groups.

2. We call discrete reflection groups with fundamental polytopes of finite
volume crystallographic reflection groups (c.r.g. for short).

The c.r.g. in the Lobachevskii plane were described as long ago as 1882
by Poincare in a memoir on Fuchsian groups [52], and by von Dyck [23] .
The fundamental polytope of such a group may have an arbitrary number of
sides and angles π/ηι, ..., π/ηχ (where «,· is either <» or an integer > 2),
provided only that

Thus, it depends on k   3 independent parameters.
The Lobachevskii plane occupies an exceptional position. As follows

from the theorem on the strong rigidity of discrete subgroups of ΟηΛ([45],
[51]) , or from results of Andreev [2] (for bounded polytopes), a Coxeter
polytope of finite volume in a Lobachevskii space of dimension at least 3 is
determined by its dihedral angles. Therefore, there are at most countably
many c.r.g. in Lobachevskii spaces of dimension at least 3.

Up to 1965, only comparatively few examples of such groups were
known. These examples arose in the four following directions of research.
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1°. The tessellation of space by equal regular polytopes.
The group of symmetries of such a tessellation is a c.r.g. As a fundamental
polytope one can take a simplex with vertices at the centres of an increasing
sequence of faces of all dimensions of some tessellating polytope. All the
tessellations of Lobachevskii spaces by bounded equal regular polytopes were
found by Schlegel [63] in 1883, those by unbounded polytopes (but still of
finite volume) by Coxeter [30] in 1954 (see also [32]) .

2°. Homogeneous simplicial complexes.
In 1950, Lanner [33] investigated the simplicial complexes whose underlying
topological spaces are simply connected « dimensional manifolds and which
allow automorphism groups containing (combinatorial) reflections in all
(η ~ l) dimensional simplexes and acting simply transitively on the set of
« dimensional simplexes. He listed all such complexes and obtained
geometrical realizations of them in spaces of constant curvature. In
particular, he found all c.r.g. in Lobachevskii spaces whose fundamental
polytopes are bounded simplexes. There are seven such groups in A3 and
five in A4 (see Table 3 on p.60). Six of them are connected in the way
described above with tessellations into regular polytopes.

It is not difficult to list all c.r.g. in Lobachevskii spaces whose fundamental
polytopes are unbounded simplexes. There are some ten groups of this sort
in the spaces Λ", η > 3, the maximum value of η being 9 ( [6] , [10]) .

3°. Clifford Klein space forms.
The problem of classifying space forms was posed by Klein in 1880. These
forms are none other than Riemannian manifolds of the form Χ"/Γ, where
X" = E", Sn, or A", and Γ is a discrete group of motions with fixed point 
free action.. For a long time it was not known whether there exists compact
space forms of negative curvature of dimension at least 3. Apparently the
first examples of such manifolds were given in 1931 by Lobell [34] . His
starting point was the construction in three dimensional Lobachevskii space
of a 14 gon Ρ (similar to a dodecahedron but with hexagonal bases) with
dihedral right angles. The three dimensional manifolds found by Lobell are
spaces of the form Λ3/Γ, where Γ is a subgroup of finite index in the group
generated by reflections in the planes bounding P.

Two years later Weber and Seifert [8] constructed "the hyperbolic space
of the dodecahedron", which has since become more widely known. It can
also be obtained by forming the factor group of A3 by a subgroup of finite
index in a c.r.g., namely, a subgroup of index 120 in the symmetry group of
the tessellation of A3 into regular dodecahedra.

4°. Arithmetic groups.
In [61] Fricke, regarding the automorphism groups of indefinite ternary
integral quadratic forms as discrete groups of motions of the Lobachevskii
plane, showed that in certain cases they contain a subgroup of finite index
generated by reflections, and found fundamental polytopes of these groups.
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In 1892 Bianchi [7] applied Fricke's method to the groups PGL2(Am) Χ <τ>,
where Am is the ring of integers in the imaginary quadratic field
Km = Q( s/ ~m), the symbol X I denotes the semi direct product, and τ is
complex conjugation. Regarding these groups as discrete groups of motions
of three dimensional Lobachevskii space, he proved that for m < 19,
m Φ 14, 17 they contain a subgroup of finite index (1 or 2) generated by
reflections. He gave an explicit description of the fundamental polytopes of
the c.r.g. obtained in this way.

Examples of arithmetically defined c.r.g. in Λ3 are also in the monograph
[62] of Fricke and Klein. However, they are all commensurable with
Bianchi groups.

3. In 1965 1966 Makarov ([36]  [ 39] ) proposed certain geometric
constructions that open up unlimited possibilities for constructing new
examples of c.r.g. in Lobachevskii space Λ3, among them some that contain
elements of any given order, plane c.r.g., etc. These papers by Makarov and
the interest in a geometric construction of discrete groups of motions, which
stems from the problem whether discrete subgroups of semisimple Lie
groups are arithmetic, stimulated the development of a theory of c.r.g. in
Lobachevskii spaces.

F rom a geometric point of view the most important property of Coxeter
groups is that they are acute angled (for the definition see §2.1). In 1970
Andreev ( [2] , [3]) gave an exhaustive description of acute angled polytopes
of finite volume in three dimensional Lobachevskii space. He indicated
simple necessary and sufficient conditions under which there is in Λ3 a
convex polytope of finite volume with given dihedral angles not exceeding
π/ 2 (for example, fractions of π). In effect he obtained thereby a
classification of the c.r.g. in Λ3.

Since acute angled spherical polytopes not containing diametrically
opposite points are simplexes ( [27] , [28]) , for bounded acute angled
polytopes in Euclidean or Lobachevskii space the polyhedral angles at the
vertices are simplicial. Convex polytopes of this combinatorial structure are
said to be simple. The combinatorial type of a simple convex polytope is
said to be simple.

The following are the Andreev conditions for the existence in Λ3 of a
bounded acute angled polytope of given simple combinatorial type other
than a simplex or a triangular prism, with given dihedral angles:

1) if three faces meet at a vertex, then the sum of the dihedral angles
between them is greater than π ;

2) if three faces are pairwise adjacent, but not concurrent, then the sum
of the dihedral angles between them is less than π ;

3) if four faces are "cyclically" adjacent (like the side faces of a
quadrilateral prism), then the sum of the dihedral angles between them is
less than 2π (that is, not all of them are π/ 2).
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All of these conditions are in the form of (linear) inequalities. This is
explained by the fact that in Λ3 the number of degrees of freedom for a
simple convex polytope of given combinatorial structure is equal to the
number of its dihedral angles (that is, the number of edges). For simple
convex polytopes in the spaces A" with η ~> 4 the number of dihedral angles
can be larger than the number of degrees of freedom^1 \  Nevertheless, in
these cases there may exist Coxeter polytopes of given combinatorial type.
(In fact, the examples in §5.5 and §5.6 of this paper are of this type.)
Therefore, one cannot hope for a classification of c.r.g. in the A" for η > 4
of the same kind as there is for Λ3.

In unbounded acute angled polytopes of finite volume in Λ3 four faces
may meet in vertices at infinity. The Andreev conditions for such polytopes
(other than a simplex of a triangular prism) can be stated as follows:

1) if three faces, meet at a vertex, then the sum of the dihedral angles
between them is at least π ;

2) if four faces meet at a vertex, then the sum of the dihedral angles
between them is 2 π (that is, they are all π/ 2);

3) if three faces are pairwise adjacent but not concurrent at a vertex, then
the sum of the dihedral angles between them is less than π ;

4) if a face Γ\  is adjacent to faces Γ2 and Γ3, while Γ2 and Γ3 are not
adjacent, but have a common vertex not in Γ1 ; then the sum of the dihedral
angles formed by Γ\  with Γ2 and with Γ3 is less than π ;

5) if four faces are cyclically adjacent, but do not meet at a vertex, then
the sum of the dihedral angles between them is less than 2π (that is, they
are not all π/ 2).
4. The c.r.g. in Lobachevskii spaces and the groups commensurable with
them are a very special form of discrete groups of motions with fundamental
domains of finite volume. For example, in a Lobachevskii space of odd
dimension the discrete arithmetic groups connected with non commutative
algebraic extensions of Q are never commensurable with c.r.g. [10].
Moreover, for any η there are in A" infinitely many incommensurable
discrete arithmetic groups of motions with bounded fundamental d o m ain ^ ,
while for sufficiently large η there are no discrete reflection groups at all
with these properties. (This is proved in the present article.)

The construction of arbitrary discrete groups of motions of A" reduces in
principle to the construction of their fundamental polytopes, together with
generators for the group of motions that match pairwise with one another
the (n — 1 ) dimensional faces of the fundamental polytope. Poincare [52]
proved that all finitely generated Fuchsian groups, that is, discrete groups of

number of degrees of freedom of a simple convex m gon in Λ" is mn n(n+ l)/ 2.
(The subtrahend is the dimension of the group of motions.)
*2 *For example, the groups O\ fd, Ad) (see the notation under 6 of this Introduction),
when d is a squarefree integer Φ\ , Ad is the ring of integers of the quadratic field Q(VG O,

/ l \  ... + x2
n.
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motions of the Lobachevskii plane, can be obtained by this method. In his
memoir [53] on Kleinian groups he outlined a similar program for three 
dimensional Lobachevskii space.

Poincare's method was rigorously justified and generalized in various
directions by A.D. Aleksandrov [1] , Maskit [43], Seifert [24] , and other
mathematicians. However, in Lobachevskii spaces of dimension at least 3 it
has been applied successfully only to groups generated by reflections and
their subgroups of finite index (see, for example, [5] , [11], [67] , [68]) .
For groups generated by reflections it gives precisely the reduction to
Coxeter polytopes of which we talked under 1. As for the subgroups of
finite index, once a fundamental polytope of the whole group is known, the
construction of their fundamental polytopes reduces to a purely combinatorial
problem. In other cases the metric conditions imposed on the fundamental
polytope are usually so complicated, and the combinatorial conditions so
ambiguous, that the construction of the required polytopes seems an almost
hopeless task( 1) .

A more substantive application of Poincare's method to verify discreteness
and to find a fundamental domain of a group of motions was guessed from
other considerations, for example, within the framework of the ideas of
Thurston. Thus, in [60] it is mentioned that Riley has used this approach to
construct certain discrete groups of motions of A3 having a bounded
fundamental domain.

5. The first chapter of this paper is devoted to an algebraic description of
acute angled polytopes in Lobachevskii space. N amely, every such polytope
Ρ C A" is determined by its G ram matrix G(P). In §2 the existence
theorem for a polytope with given G ram matrix is proved. The combinatorial
structure of Ρ is described in terms of G(P) in §3, while in §4 criteria are
given for Ρ to be bounded and to have finite volume. These results are due
to the author ( [10] , [13] , [14]) . In essence they are theorems about
certain special systems of linear inequalities in a pseudo Euclidean vector
space En<1. The proofs are based on the Perron Frobenius theorem about
matrices with non negative entries.

In the second chapter the results obtained are applied to Coxeter
polytopes. In this case the language of Coxeter schemes allows us to reduce
matters to a calculation of determinants, and to visual work with graphs.
Various examples are adduced. In particular, we treat from this point of
view certain examples of bounded Coxeter polytopes in A4 and As constructed
by Makarov [40] . We describe examples of bounded Coxeter polytopes of
record dimension in A6 and A7, which are due to Bugaenko [71] , and we
discuss the classification of Coxeter simplicial prisms given by Kaplinskii [25] .

^Recen tly, Mostov [46] has made brilliant use of Poincare's method to construct
several discrete groups of motions of complex hyperbolic space. However, the technical
difficulties are so severe that from the beginning he was obliged to have recourse to a
computer.
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In §6 we show that in Lobachevskii space of dimension at least 62 there
are no bounded Coxeter polytopes. The more refined analysis in [18]
enables us to reduce the bound on the dimension to 30.

An essential part in the proof of this theorem is played by comparatively
recent results on the combinatorics of convex polytopes with simplicial faces
( [57] , [22]) , which by duality can be restated for simple polytopes. As
Nikulin has observed, it follows from these results that the average complexity
of the faces of given dimension of a simple polytope approaches that of the
cube as the dimension of the polytope increases. In [49] he used this
property as applied to three dimensional faces. In the present paper and in
[18] it is applied by two dimensional faces, for which it means that: for a
simple polytope of high dimension there must be in a certain sense many
quadrilateral and triangular two dimensional faces.

6. In this survey there are no results on problems of arithmeticity nor is
there an investigation of arithmetic discrete reflection groups in Lobachevskii
spaces. Therefore, we mention here the most important of these results,
which are due mainly to the author and to N ikulin.

Let Κ be a totally real field of algebraic numbers, and A its ring of
integers. A quadratic form

71

/  (x) =  2 atjXiXj (ai} = an 6 A)
i, 3= 0

is called admissible if it has signature (n, 1), and for every non identity
embedding σ : Κ  *•  R the quadratic form

i, ; = o

is positive definite. It is known that in this case the group O'(f, A) of
integral linear transformations preserving /  and mapping every connected
component of the cone {χ ζ R 7 l t l : /  (j·) < 0} onto itself is a discrete group
of motions of Lobachevskii space A" (in the model described in § 1.3 of this
paper). If Κ Φ Q, or Κ = Q but /  does not represent zero in Q, then a
fundamental domain in A" of this discrete group is bounded [69] ; in all
other cases it is unbounded but has finite volume.

We denote by Or(f, A) the subgroup of O'(f, A) generated by all
reflections contained in it. The form /  is said to be reflective if this
subgroup is of finite index.

In [48] and [49] N ikulin proved that the number of reflective forms is
finite up to proportionality and integral equivalence, for any fixed η and
fixed degree of K. In [17] and [18] the author proved that reflective forms
do not exist at all for η > 30. These results give hope for a classification of
all reflective forms.
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For Κ — Q it is proved in a sequence of papers [14]  [ 16] , [20] (see also
[44]) that a unimodular admissible quadratic form is reflective if and only if
k < 19, and fundamental polytopes are found for the c.r.g. thus obtained.
Similar work has been done for Κ = Q(\ / 5) by Bugaenko; in this case
reflectivity holds for η < 7 [71 ] .

We say that a c.r.g. Γ in Lobachevskii space Λ" is arithmetic if it is
contained (as a subgroup of finite index) in a group of the form O\ f, A),
where /  is an (automatically reflective) admissible quadratic form over a
totally real field K. In this situation we say that Κ is a defining field for Γ.

I t is proved in [10] that this definition is compatible with the general
definition of arithmetic discrete subgroups of semisimple Lie groups (see
[55] for example), and a criterion is given for a c.r.g. to be arithmetic in
terms of the G ram matrix of its fundamental polytope.

7. With every algebraic surface X of type K3 there is associated an intersection
form on its lattice of algebraic cycles. This is an even integral quadratic
form of signature (1, n), where n+ 1 < 20 is the dimension of the lattice of
algebraic cycles. Let fx be its opposite form of signature (n, 1). The group
of automorphisms of X can be described in terms of fx, up to a finite
central extension ( [54] , [50]) . In particular, it is finite if and only if the
groups O'(fx, Z) contains a subgroup of finite index generated by reflections
associated with integral vectors e such that fx(e) =  2. We call them
2 reflections and we call 2 reflective the integral quadratic forms of signature
(n, 1) whose automorphism group contains a subgroup of finite index
generated by 2 reflections.

It is clear that every 2 reflective form is reflective. The converse is false.
For example, odd unimodular forms of signature (n, 1) are reflective for
η < 19, but there are 2 reflective forms only for η < 15, η Φ 2, 10, 14.

It is easy to see that an odd form is 2 reflective if and only if the even
form canonically associated with it is 2 reflective. Therefore, in a study of
2 reflective forms we may restrict our attention to even forms.

In connection with the problem of classifying K3 surfaces with a finite
automorphism group, Nikulin ( [47] , [50]) has listed all 2 reflective even
integral quadratic forms of signature (n, 1) for η > 4. It turns out that
there are only finitely many of them and that they are all connected with
K3 surfaces in the manner described. The largest possible value of η for
them is 18.

Subsequently, the author succeeded in extending this classification to
η = 3, and Nikulin did the same for η — 2. In both these dimensions the
number of 2 reflective forms again turned out to be finite.

The theory of discrete reflection groups in Lobachevskii spaces enables us
to compute effectively the automorphism group of a surface X of type K3
also when fx is reflective, but not necessarily 2 reflective.
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CHAPTER I

ACUTE ANGLES POLYTOPES IN LOBACHEVSKII SPACES

§ 1 . The Gram matrix of a convex polytope

1. Let X" denote the « dimensional Euclidean space E", the « dimensional
sphere S", or the « dimensional Lobachevskii space A".

A convex polytope in X" is a subset of the form

(2) P =  Π H'u

where Hi is the closed half space bounded by the hyperplane Hh under the
assumptions that

1) Ρ contains a non empty open subset of X";
2) every bounded subset of it intersects only finitely many hyperplanes / / ,·.
It may always be assumed that none of the half spaces HJ contains the

intersection of all the others. In what follows we assume this without
special mention. Under this condition the half spaces HJ are uniquely
determined by P. We say that each of the Ht bounds the polytope P.

Throughout this paper we assume that I is a finite set. By 2), this holds
automatically for bounded convex polytopes.

A convex polytope in Euclidean or Lobachevskii space is bounded if and
only if it is the convex hull of finitely many points. In Lobachevskii space
there are unbounded convex polytopes of finite volume. A convex polytope
in Lobachevskii space of dimension greater than 1 has finite volume if and
only if it is the convex hull of finitely many ordinary points or points at
infinity.

A convex polytope is said to be non degenerate if its bounding hyperplanes
do not have a common ordinary point or (in the case of Lobachevskii
space) a point at infinity, and there is no hyperplane orthogonal to all of
them. Every convex polytope of finite volume in Euclidean or Lobachevskii
space is non degenerate.

2. Let Ρ be a convex polytope in Euclidean space E", expressed in the form
(2). For each /  Ε /  let ex denote the unit vector orthogonal to Ht and
starting at P. We define the Gram matrix of Ρ as that of the system of
vectors {et : i ζ 1} and denote it by G(P). This is a positive semidefinite
symmetric matrix with 1 's along the diagonal. For /  φ j the entry gi;  is the
negative of the cosine of the dihedral angle HJ Π HJ if //,  and H, intersect,
and  1 if they are parallel. If Ρ is non degenerate, then rk G(P) = n.

To define the Gram matrix of a spherical convex polytope we represent
S" by its natural embedding in Euclidean vector space En+l. Then every
convex polytope PCS" is the intersection of S" with a (uniquely determined)
convex polyhedral cone K(P)zz En+1. We define the Gram matrix of Ρ as
that of this cone (as a convex polytope in En+l) and again denote it by G(P).
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For /  φ j the entry gti is the negative of the cosine of the spherical dihedral
angle Ηϊ f) Hj. The matrix G(P) determines Ρ up to symmetry. The
polytope Ρ is non degenerate if and only if rk G(P) — n + 1.

The Gram matrix of a convex polytope in Lobachevskii space is defined
similarly. To do this we first describe the model of Lobachevskii space that
we shall use.

3. Let En'x be a pseudo Euclidean vector space of signature (n, 1). We
denote by C+ and C_ the connected components of the open cone

C =  {x £ £ V : (x, x) < 0}.

Let ΟηΛ be the group of orthogonal t ransformations^ of En<1 and Οη'Λ its
subgroup of index 2 consisting of the transformations that map each
connected component of C onto itself. Clearly, Onl =  Ο7'ιΛ X {1, —1 J.
Finally, let R + be the group of positive numbers acting on £">' by homothety.

With this notation, the « dimensional Lobachevskii space can be identified
with the quotient set C + / R + in such a way that motions are induced by
linear transformations in O'u , .

In this model the space Λ" is a domain in the manifold

PS»   (£ n + 1N {0}) / R + .

The manifold PS" is diffeomorphic to the sphere, but carries no natural
spherical metric. Bearing in mind that it is a two sheeted cover of projective
space, we call it the projective sphere and apply the terminology of projective
geometry in relation to it.

The closure Λ" of Λ" in PS" is called its completion, and the points of
the boundary 3Λ" =  Λ" \Λ" are its points at infinity. (Points of the
projective sphere PS" not in C/R+  are sometimes called ideal points of Λ".)

We denote by π the canonical map

π : Ε11'1  +PSn

(which is not defined at zero).
The restriction of the scalar product in £"V  to any (k+ 1 ) dimensional

subspace U has the signature (k, 1), (k, 0), or (k+ 1, 0). Depending on
which of these cases holds, we describe U as hyperbolic, parabolic, or
elliptic, respectively. The same term is used for the corresponding
A: dimensional plane ir(U) in the projective sphere. We remark that the
orthogonal complement Ul to a hyperbolic (or parabolic, or elliptic)
subspace U is elliptic (or parabolic, or hyperbolic).

The planes of a Lobachevskii space in our model are the intersections
with Λ" of hyperbolic planes (of the same dimension) of the projective
sphere PS".

an orthogonal transformation of Ε' * we mean a linear map preserving the scalar
product of signature (n, 1) in this space.
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Every hyperplane of Λ" can be represented in the form

He =  {n(x) : x e C + , (x, e) = 0},

where e is a vector with positive scalar square. The closed half spaces
bounded by it are denoted by / / +  and HJ, so that

# ; =  {rt(x): x£C+, (x, e ) < 0}.

The mutual disposition of hyperplanes He and Hf under the condition
that (e, e) = (f, f) — 1 can be described as follows [70] . The hyperplanes
He and Hf intersect (are parallel or ultraparallel) if and only if \ {e, f)\  < 1
(or \ {e, f)\  = 1, or \ (e, / ) I > 1, respectively). If they intersect, then the
angle between them is determined by the formula

cosHeHf=\  (e, / ) | ;

if they are ultraparallel, then the distance between them is

cosh ρ (He, / / ,) =  | (e, / ) |.

The mutual disposition of half spaces H~ and Hj is determined by the sign
of (e, / ) . A negative sign indicates that one of the following three cases
holds:

1) He and Hf intersect, and the dihedral angle // f~fi Hr is acute;
2) H;=> / / ; and Ilj=> H;:
3) H e n/ / .r=  0 .

4. Let Ρ be a convex polytope in Lobachevskii space A", expressed in the
form (2). For every /  £ /  let et denote a vector in i t "· 1 such that

The system of vectors {e4 : i £ / } determines Ρ if it is known which of the
connected components of C is used for C+. In fact,

Ρ =  π (Κ Π C+) =  η(Κ) f] Λ",

where Κ — Κ(Ρ) is the convex polyhedral cone in En·1 given by

(3) A· =  {z g ΕηΛ : (χ, *ι ) < 0 for all

The Gram matrix of the polytope Ρ is by definition that of the system of
vectors {et : i £ / } and is denoted by G(P). By § 1.3, its entries g(/  for /  φ j
have the following meaning:

1) if \gij I < 1, then gtj is the negative of the cosine of the dihedral angle
HT η HJ 

2) if ĝ  < —1, then ĝ  is the negative of the hyperbolic cosine of the
distance between Ht and Hj. (The case gtj > 1 is impossible, since then
HJ D Hj or HJ D Hi)
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The polytope Ρ is non degenerate if and only if there is no vector in £ n . 1

orthogonal to all the vectors e,·, i E.I; in other words, if and only if the
e,·, i G  /  span E"*1. This is equivalent to rk G{P) — η = 1.

If G{P) is of rank η +  1, then it determines the system of vectors
{et : i £ / } up to an orthogonal transformation of En>*. Since the group of
motions of A" is a subgroup of index 2 in ΟηΛ, there are up to a motion at
most two non degenerate convex polytopes with a given G ram matrix. This
indeterminacy can occur only when the cone Κ intersects both connected
components of C.

5. We say that a non degenerate convex polytope Ρ C A" is decomposable
if it has a proper face Fo of some dimension that is orthogonal to every
hyperplane Ht not containing it. In this case the orthogonal projection onto
the plane of the face F o determines a fibration of Ρ into polyhedral cones
with vertices at points of Fo, so that all vertices of Ρ lie in Fo. Therefore,
every convex polytope of finite volume is indecomposable.

A system of vectors in En<1 is said to be decomposable if it can be split
into two mutually orthogonal subsystems.

It is easy to see that a polytope Ρ is decomposable if and only if the
system of vectors {et : i ζ 1} is decomposable. The latter in its turn is
equivalent to the condition that the Gram matrix G(P) can be split into a
direct sum of two principal submatrices (see §2.2).

§2. The existence theorem for an acute angled polytope with given
Gram matrix

1. In what follows we are interested in only those convex polytopes Ρ that
satisfy the following condition: if two hyperplanes Ht and Hj bounding the
given polytope intersect, then the dihedral angle HJ Π Hj does not exceed
π/ 2. In terms of G(P) this means that

gu<0 for ΐφ).

Allowing a certain abus de language, we call such polytopes acute angled.
We remark that according to a result of Andreev [4] , if the dihedral

angles for all (n — 2) dimensional faces of Ρ do not exceed π/ 2, then the
hyperplanes of its non adjacent (« — 1 ) dimensional faces do not intersect,
consequently, it satisfies the condition stated above. However, we do not
need this result.

2. We come now to some results on symmetric matrices with non positive
entries off the diagonal, among which there are, in particular, the Gram
matrices of convex polytopes with acute dihedral angles.

A square matrix A is said to be the direct sum of the (square) matrices
Αχ, Α2, ···, Ak if by some permutation of the rows and the same permutation
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of the columns it can be brought to the form

\  °*
In this case we write

A matrix that cannot be represented as a direct sum of two matrices is said
to be indecomposable. Every matrix can be represented uniquely as a direct
sum of indecomposable matrices, its so called {indecomposable) components.

Let A =  (αί;·) be an indecomposable symmetric matrix with non positive
entries off the diagonal. We denote by \ {A) the smallest eigenvalue of A,
and by δ(Α) the largest diagonal entry. Then A can be written in the form

A =  6(A)E — B,

where Β is an indecomposable symmetric matrix with non positive entries.
Applying the Perron Frobenius theorem to Β we find that

1) λ(/1) is a simple eigenvalue of A;
2) the corresponding eigenvector has positive coordinates.
The properties of A depend in the first place on the sign of λ(^4). If

λ(Α) > 0, then A is positive definite, hence is non degenerate. In this case
all the entries of A'1 are positive [21 ] . If λ(^4) =  0, A is positive semidefinite
and degenerate. However, since 0 is a simple eigenvalue, the rank of A in
this case is smaller by 1 than its order. The coefficients of a linear dependence
relation between the rows of A are none other than the coordinates of an
eigenvector corresponding to the zero eigenvalue, consequently, are positive.
Thus, every principal proper submatrix of A is positive definite.

A symmetric matrix with non positive entries off the diagonal whose
components are all positive definite and degenerate is called parabolic.

3. F rom the properties of positive semidefinite matrices with non positive
entries off the diagonal mentioned in 2 one obtains the following description
of acute angled polytopes in Euclidean space and on the sphere [28] .

Let A be a positive semidefinite matrix of rank η with l's on the diagonal
and non positive entries off it.

1) If A is non degenerate, then it is the G ram matrix of a simplicial cone
in E" defined up to a motion, and at the same time it is the Gram matrix
of a simplex in Sn~l that is likewise defined up to a motion;

2) if A is indecomposable and degenerate, then it is the G ram matrix of a
simplex in E", which is defined up to similarity.

Every acute angled polytope in Euclidean space is the direct product of a
number of simplexes (corresponding to the degenerate components of the
Gram matrix), a simplicial cone of some dimension (corresponding to the
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sum of its non degenerate components), and a Euclidean space of a certain
dimension. In particular, every bounded acute angled polytope in Euclidean
space is a direct sum of simplexes.

Every non degenerate spherical acute angled polytope is a simplex.
The G ram matrix of a non degenerate acute angled polytope in Lobachevskii

space Λ" is symmetric and of signature (n, 1) with l's along the diagonal
and non positive entries off it. The order of such a matrix can be arbitrarily
large (for fixed n). Therefore, we cannot hope for a relatively simple
description of the possible combinatorial types of acute angled polytopes in
Lobachevskii space. However, there is an existence and uniqueness theorem
for a polytope with given Gram matrix, but its proof (in essence, the
existence proof) requires a much more subtle analysis of linear inequalities
than in the Euclidean case. This theorem is the main result of this section.
Its proof will be given in the following sub sections.

4. Proposition 2.1. Let {et : i £ 1} be an indecomposable finite system of
vectors spanning E"'1 and such that (et, ef) < 0 for i Φ j . Then the cone Κ
defined by the linear inequalities (x, e() < 0 (/  G  I) contains a non empty
open subset of one of the connected components of C and does not contain
non zero vectors from the closure of the other component.

Proof. Let G =  (g,·,·) be the G ram matrix of the system of vectors {e, : i ζ / }.
By hypothesis, it is indecomposable. Let λ =  X(G) < 0 be the least
eigenvalue and ct > 0, /  G  / , the coordinates of a corresponding eigenvector.
We consider the vector

We have:

(v, et) =  V gijCj =  Xc,· «C 0 for all i ζ I.
ii

This means that υ is an interior point of K. At the same time,

(v, v) =  Ĵ ct(v, e i)< 0 ,
i

so that υ € C. Suppose, to be definite, that υ G  C+ ; then (v, x) > 0 for
3" 6C L\ {0}. However, for χ G  Κ

{υ, χ) =  2 C j ( e f , x)^0.
i

Thus, Κ Π C  = {0}.

5. Proposition 2.2. Let {et : i ξ_ 1} be a finite system of vectors in Er·1

such that

(e,, e , ) > 0 , (<?„ i , ) < 0 for ίφ).
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Suppose that the cone Κ defined by the inequalities (x, e,·) < 0 (i G / )
contains a non empty open subset of C+. Then the convex polytope
Ρ = π(Κ Π C + ) in A" is bounded by the hyperplanes H, =  Htl (j G  / ) , and
for every i G /  the orthogonal projection of Ρ on Hi is contained in P.

Proof. For /  G /  we denote by Ej the orthogonal complement to ej in En<
The orthogonal projection χ of the vector χ ζ Εη>1 on Ej is given by the
formula

If χ G  K, then for /  φ j

'n. l

hence, x' G  ίΓ.
Suppose now that ρ — π{χ) G  P. The orthogonal projection of ρ on the

hyperplane Hj = n(Ej Π C+) is the point ρ =  π(Λ:'), where χ ' is the
orthogonal projection of χ on Ej. By what was said above, p' G  P. Thus,
the orthogonal projection of Ρ on //,· lies in P. Since it contains a non 
empty open subset of Hj, this hyperplane bounds P.

We are now in a position to prove the main theorem of this section.

Theorem 2.1. Let G = (g(j) be an indecomposable symmetric matrix of
signature (n, 1) with Vs along the diagonal and non positive entries off it.
Then there is a convex polytope Ρ in A" whose Gram matrix is G. The
polytope Ρ is uniquely determined up to a motion in A".

Proof. We assume that the rows and columns of G are indexed by the
elements of some set / . Let {et : i £ / } be a system of vectors in i?"»1 whose
Gram matrix is G, and let Κ be the convex polyhedral cone defined by the
inequalities (x, et) < 0 {i G  I). By Proposition 2.1, Κ contains a non empty
open subset of one of the connected components of C, and does not
intersect the other component. We may assume that Κ η C+ Φ φ. Then
Ρ — π(Κ (  C+ ) is a convex polytope in Λ". By Proposition 2.2, each of the
hyperplanes Ηt = Hei, i G / , bounds P. I t follows from this that the G ram

matrix is G.
Since Κ intersects only one of the connected components of C, Ρ is

uniquely determined up to a motion in Λ" (see § 1.4).
The fact that the G ram matrix of a convex polytope is indecomposable is

equivalent to the polytope itself being indecomposable (see §1.5). Therefore,
the theorem just proved gives an algebraic description of all indecomposable
acute angled polytopes in « dimensional Lobachevskii space.
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§3. Determination of the combinatorial structure of an acute angled
polytope from its Gram matrix

1. Let PCX" be a convex polytope presented in the form (2). (We recall
our assumption that none of the half spaces HJ contains the intersection of
the rest.) For every face F of Ρ we set

Hi).

We denote the set of all subsets of the form i(F) (including i(P) =  0 ) of /
by .f{P) and call it the complex of the polytope P. Under inclusion .f(P)
is a partially ordered set anti isomorphic to the partially ordered set of faces
of P. The codimension of F is the "height" of the element i(F) in . T(P),
that is, the greatest length of an ascending chain that can be formed from
elements less than i{F). Thus, the complex of a polytope carries within it
the whole information on its combinatorial structure.

We give two examples that are needed in what follows. The complex of
an « dimensional simplex in Euclidean space, and also of a bounded simplex in
Lobachevskii^1 > space, consists of all proper subsets of /  =  {1, 2, ..., η +  1}.
The complex of a direct product of a fc dimensional and an /  dimensional
simplex in Euclidean space E" (n = k+l) under a suitable numbering of the
in — l) dimensional faces consists of all subsets of /  =  {1, 2, . . ., η  f 2}
not containing any one of the subsets of Ix =  {1, 2, . . . k + 1} and of
I2 =  {k + 2, . . ., η + 2).

It turns out that if Ρ is an acute angled polytope in Lobachevskii space
(see §2.1), then the complex JF(P) has a simple description in terms of the
G ram matrix G(P) = G.

For each subset /  C /  we use the following notation:
Ej is the linear span of the vectors {ef j ζ / },
EJ =  Ej,
pj =  ρ η n(E t) =  ρ η ( η Η,),

Gj is the principal submatrix of G formed from the rows and colums
whose indices belong to J.

If J e .F(P), then P1 = F is that face of Ρ for which i(F) =  / .

Theorem 3.1. Let Ρ = [\  Hjcz Λ" be an acute angled polytope and
• ex

G = G(P) its Gram matrix. A subset J C. I lies in J?(P) if and only if the
matrix Gj is positive definite, and in that case

codim P1 =  | /  |,
where I/ I is the number of elements in J.

general, by a simplex in Λ" we mean the convex hull of n+ 1 ordinary points or
points at infinity not lying in a single hyperplane. Thus, a simplex always has finite
volume, but may be unbounded. In the latter case its complex does not contain certain
η element subsets of /  =  {1, 2, . . ., η +  1}.
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Proof. Suppose that /  =  i(F), where F is a face of P. Since ir(EJ) η Λ" is
the plane of F, it follows that EJ is a hyperbolic subspace of E"·1, while
Ej — (EJ)~ is elliptic. Consequently, Gj, which is the Gram matrix of the
system of vectors {ey. j 6 / }, is positive semidefinite. If it were degenerate,
there would be a non trivial linear dependence with non negative coefficients
between its rows, and hence also between the vectors e;  (see §2.2). In that
case certain of the inequalities (3) on the cone Κ would have to become
equalities, which is impossible, since this would mean that Ρ is contained in
a hyperplane. Thus, Gj is positive definite and the vectors e,·, /  £ / , form a
basis for Ey, in particular codim F — dim Ej = I/ I.

The reverse implication will be proved in the following section, but right
now we mention an important consequence of the part of the theorem
already proved.

A convex polytope is said to be simple if each of its faces of codimension
m is contained in exactly m faces of codimension 1.

Corollary. Every acute angled polytope is simple.

2. To complete the proof of Theorem 3.1 we use the following proposition,
which can be regarded as a generalization of Proposition 2.2.

Proposition 3.1. Let Ρ — ("| Hjcz Λ" be an acute angled polytope and

G — G(P) its Gram matrix. Further, let J C I be a subset such that the
matrix Gj is positive definite. We set I/ I =  m. Then PJ is a face of
codimension m of P, and the orthogonal projection of Ρ on the plane of this
face is contained in Ρ {and so in PJ).

Proof. Since Gj is a positive definite, the vectors ej, /  £ / , form a basis of
an m dimensional elliptic subspace. Consequently, E1 is a hyperbolic
subspace of codimension m, and UJ = n(EJ Π C+) is a plane of codimension
m in Λ".

The orthogonal projection χ of a vector χ   Εη<1 on the subspace EJ is
found by the formula

x' =  x _ 2 hJh{x, ej)eh,

where the hjh (j, k £ / ) are the entries of G j1. Since Gj is a positive
definite symmetric matrix with non positive entries off the diagonal, we see
that A ; h > 0 (see §2.2). Thus, if χ £  Κ, then for /  £ /

(*', «{) =  (*, e,)— S hjhgkl{x, e , ) < 0 ,
i, ktJ

hence x' £  K.
Suppose now that ρ = n(x) £  P. The orthogonal projection of ρ to the

plane UJ is ρ =  π (χ' ) , where χ is the orthogonal projection of χ to the
subspace EJ. By what was proved above, x' £  K, and this means that ρ £ Ρ .
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Thus, the orthogonal projection of Ρ on HJ lies in P. Since it contains a
non empty open subset of YlJ, we see that PJ = UJ Π Ρ is a face of
codimension m of P. This completes the proof of the proposition.

Combining this proposition with the part of Theorem 3.1 already
established, we obtain the following pretty geometric theorem, which also
has a simple geometric proof.

Corollary. The orthogonal projection of an acute angled polytope in
Lobachevskii space to the plane of any of its faces lies within that face.

(A similar theorem holds in Euclidean space and on the sphere.)

Conclusion of the proof of Theorem 3.1. Let /  C /  be a subset such that Gj
is positive definite. We set I/ I =  m. By Proposition 3.1, PJ = F is a face of
codimension m of P. By definition, i{F)^> J, but it was proved above that
| i.(F) | =  codim F; consequently, i(F) — J.

3. By a vertex at infinity of a convex polytope Ρ C A" we mean a point at
infinity of Λ" contained in the closure of Ρ and having the following
property: the intersection of Ρ with any sufficiently small horosphere with
centre at q is a bounded subset (a convex polytope) of the horosphere
regarded as an («— 1 ) dimensional Euclidean space.

In many circumstances, vertices at infinity play the same role as ordinary
vertices. For unbounded convex polytopes they are naturally included in
the picture of the combinatorial structure.

We give a more convenient characterization of vertices at infinity.
Let Ρ C A" be a converse polytope presented in the form (2). For every

point at infinity q = TT(U) £ Ρ we set
1 (?) =  {»€/: ? 6 #/} = {'6^·' (", et) = 0}.

We denote by Eq the orthogonal complement to the vector u in En>1. This is a
parabolic subspace, and the quotient space Eq = Eq/R is {n — 1 )-dimensional
Euclidean. We denote by fj (j   \ (q)) the image of e;  under the canonical
map Eq  > Eq.

Lemma 3.1. A point at infinity q £ Ρ is a vertex at infinity of Ρ if and
only if among the eFy, ;' ζ ((<• /), there are vectors spanning Eq and connected
by a linear dependence relation with positive coefficients.

Proof. In a small neighbourhood of q m PS" the polytope Ρ is the
intersection with Λ" of a polyhedral convex cone Tr(Kq) (with vertex at q),
where

Kq =  {χ ζ £ V: (χ, e;) ί ζ 0, for all /  £  i(q)}·

The horosphere Sq of Λ" with centre at q in the geometry of the projective
sphere PS" is an ellipsoid punctured at q and touching the boundary of A"
at this point. F or the intersection of ir(Kq) with Sq to be a bounded subset
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of this horosphere it is necessary and sufficient that the intersection of
ir(Kq) with the hyperplane ir(Eq) that touches the boundary of Λ" at q (and
also the horosphere Sq), is the single point q. In terms of En< * this means
that Kq r\Eq = Ru.

The latter is equivalent to the condition that the system of linear
inequalities

(x, i , ) < 0 , 7 £ . ( ?) ,

has only the zero solution in Eq. By a standard theorem on linear inequalities
(see, for example, [64]) this holds if and only if the ?,· satisfy the condition
of the lemma.

4. We denote by JF{P) the collection of subsets of /  obtained by adding to
. f (P)a\ \  subsets of the form i(q), where q is a vertex at infinity of P, and we
call it the extended complex of P.

For acute angled polytopes the extended complex can also be described
simply in terms of the Gram matrix.

Theorem 3.2. Let Ρ =  [}Ηϊοζ Λ" be a poly tope with acute dihedral angles,
it I

and G — G(P) its Gram matrix. A subset J C /  is of the form i(q), where q
is a vertex at infinity of P, if and only if Gj is a parabolic matrix (see §2.2)
of ran k n— 1.
Proof. Suppose that /  =  i(q), where q is a vertex at infinity. Then Gj is
the G ram matrix of the system of vectors {ef j 6 i(q)} of Euclidean space Eq

(see §2.3), consequently is positive semidefinite. By Lemma 3.1, this
system of vectors spans Eq. Thus, rk Gj = η — 1. The decomposition of Gj
into a direct sum of indecomposable matrices corresponds to the
decomposition of the system of vectors {e}: j £ ι(q)}into mutually orthogonal
subsystems, each of which is either linearly independent or connected by a
unique relation with positive coefficients. If at least one of these systems is
linearly independent, then the conditions of Lemma 3.1 cannot hold.
Therefore, all the components of Gj are degenerate. This completes the
"only i f assertion of the theorem.

5. The "if" assertion will be deduced from the following proposition, which
is of independent interest.

Proposition 3.2. Under the conditions of Theorem 3.2. let J C /  be a subset
such that Gj is parabolic. Let Cj > 0 (/  £ / ) be the coefficients of a linear
dependence relation between the rows of Gj. Then the rector

is non zero, isotropic, and orthogonal to all the vectors e, , j £ / , and

n(u) 6 P.
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Proof. That u is orthogonal to the vectors e,·, /  Ε / , and that it is isotropic
follow immediately from its definition. I t is also clear that (u, e,·) < 0 for
/  £  J. Thus, u Ε Κ.

The vector u cannot be zero, since then the inequalities (x, ej) < 0 (/  ε / )
could be satisfied simultaneously only as equations, and Ρ would be
contained in a hyperplane. Nor can it lie in C_, since then we would have
(x, u)>0 for any χ Ε C+, while (x, u) = TJc}(x, β;)<ζ 0 for π(χ) € P.

Thus, π(«) Ε P.

Conclusion of the proof of Theorem 3.2. Suppose that the matrix Gj
satisfies the conditions of the theorem, and let u — u(J) be a vector
constructed as in Proposition 3.2. Then q — v(u) Ε Ρ, so that i(g) :=> J •

In the notation of Lemma 3.1, the Gram matrix of the system of vectors
{ey. j 6 / } is Gj. It follows from the properties of Gj that its rows, and
hence also the e}, /  Ε J, are connected by. a linear dependence relation with
positive coefficients, and that the rank of the system of vectors {ey. j ζ J} is
η — 1. Thus, q satisfies the conditions of Lemma 3.1, consequently, it is a
vertex at infinity of P.

We claim that i(q) = J. Since the vectors e,· with i ζ i(g) lie in Eq, the
matrix G\ (?) is positive semidefinite and r k G l ( g ) ^ η — 1. Every component
of Gj is contained in some component of G i( 9 ) , but since it is degenerate, it
must in fact be a component of G l ( 9 ) . Thus, every component of Gl(q) must
be contained in Gj, since otherwise rk Gj < η   1. Thus, i(q) = J.

§4. Criteria for an acute angled polytope to be bounded
and to have finite volume

1. Let Ρ be a non degenerate convex polytope in Λ", expressed in the form
(2). G enerally speaking, it is hard to establish whether Ρ is bounded, and if
it is not bounded whether it has finite volume.

For a theoretical investigation of this problem it is useful to consider the
"ideal" convex polytope

Ρ =  π(# )<=  PSn,

where Κ is the convex polyhedral cone given by the inequalities (3). We call
it the continuation of P. It is clear that

(4) Ρ = P f] Λ».
Since the vectors et, i Ε I, span En^, the cone Κ is strongly convex (that is,
it does not contain any one dimensional subspaces), consequently Ρ is the
convex hull of its vertex set and can be constructed combinatorially as a
bounded convex polytope in η dimensional Euclidean space.

The polytope Ρ is bounded (has finite volume, respectively) if and only if
Ρ =  Ρ (Ρ = P, respectively).
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The hyperplanes of the projective sphere bounding Ρ axe none other than
the continuations of the hyperplanes in Lobachevskii space bounding P, and
they are indexed by the same set / .

By (4), every face of Ρ is part of a face of Ρ of the same dimension.
Moreover, every vertex at infinity of Ρ is a vertex of P. Therefore,

A subset /  ζ jT (P) lies in _*"(/>) if and only if PJ Φ φ. It follows from
this that the complex .*"(/ *) is a segment of .~f"(P)in the sense that whenever
Ji 6 fiP), J* 6 S{P) and J2 C / , , then J2 ξ .i~(P). It follows from the
definition of a vertex at infinity that the extended complex jf(P) is a
segment of ,F{P).

Since Ρ is the convex hull if its vertex set, Ρ — Ρ (or Ρ =  Ρ) is equivalent
to jF (P ) =  .iF(P) (or to .F(P) = / "(/ >)).

In the next section we indicate some necessary and sufficient conditions
for a segment of the complex of a bounded convex polytope to be the
whole complex. Applying these conditions to the segments JF(P) and jr(P)

of jf(P), we obtain criteria for Ρ to be bounded and to have finite volume.

2. Let Q be a bounded convex polytope in « dimensional Euclidean or
Lobachevskii space.

To the vertices of Q there correspond elements of height η of .F{Q), and
to the edges elements of height η   1 (see §3.1). Since every face of Q
contains some vertex, the elements of height η are all the maximal elements
of S{Q)  Since every edge of Q contains exactly two vertices, every element
of height η   1 of . ^(Q) is majorized by exactly two maximal elements.

We say that maximal elements of ,~{Q) majorizing a single element of
height η   1 are adjacent. Since every pair of vertices of Q can be joined by
a polygonal path of edges, every pair of maximal elements of J~(Q) can be
joined by a sequence of maximal elements in which every term is adjacent
to the preceding one.

Proposition 4.1. Let Q be α bounded convex polytope in n dimensional
Euclidean or Lobachevskii space. A segment J of the complex .F(Q) is the
whole complex if and only if one of the following conditions is satisfied:

1) .7 contains at least one element of height n, and for every such element
and every element L of height n— 1 majorized by it ,)' contains another
element of height η majorizing L;

2) J is isomorphic as a partially ordered set to the complex of a certain
bounded convex polytope in n dimensional {Euclidean or Lobachevskii)
space.

Proof. The necessity of both conditions is clear. Let us prove their
sufficiency. If 1) is satisfied, then by what was said above .'j contains two
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maximal elements of S(Q), consequently, coincides with .F{Q). If 2) holds,
then so does 1), hence .7 — F

3. Applying Proposition 4.1 to the continuation of a convex polytope in
Lobachevskii space, we obtain the following result.

Proposition 4.2. Let Ρ be a non degenerate convex polytope in n dimensional
Lobachevskii space. Then Ρ is bounded {has finite volume, respectively) if
and only if any one of the following conditions holds:

1) Ρ contains at least one vertex {ordinary or at infinity) and for every
vertex {ordinary or at infinity) and every edge emanating from it there is
another vertex {ordinary or at infinity) of Ρ on that edge;

2) the complex Jf(P) {or JF{P)) is isomorphic as a partially ordered set to
the complex of some bounded η dimensional convex polytope.

In particular, boundedness (or finiteness of the volume) of Ρ depends only
( {

The first criterion is of an algorithmic nature, but it is not effective in
practice. The second can be applied successfully in cases when the
combinatorial structure of Ρ can be guessed.
4. There is another approach to investigating whether a polytope Ρ is
bounded or has finite volume.

For every subset /  C /  we set

KJ =  Kf\ EJ, PJ =  n(KJ)

(see the notation in §3.1).
Let us assume that Ρ is not bounded. Then ^F(P) φ ,t (P)  For every

(5) Ρ'φ0, PJ=0.
Let /  be minimal among the subsets of /  satisfying (5). Then it is also
minimal among the subsets for which PJ = 0.

Every minimal subset /  C /  for which PJ = 0 is called critical.
The preceding argument shows that if Ρ is not bounded there exists a

critical subset /  C /  such that PJ Φ 0. If it is bounded, then PJ =  PJ =  0
for every critical subset / .

Similarly, if Ρ has finite volume, then S (Ρ) Φ Jf(P), and for every
P

(6) PJ Φ 0, PJ is not a vertex at infinity, and PJ — 0. Every minimal
subset /  C /  satisfying (6) is critical. Therefore, there is a critical subset /
for which PJ Φ 0 and PJ is not a vertex at infinity of P. If Ρ has finite
volume, then for every critical subset /  either PJ — PJ =  0 or PJ is a vertex
at infinity.

We have thus proved the following proposition.
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Proposition 4.3. Let Ρ be a non degenerate convex poly tope in n dimensional
Lobachevskii space. Then Ρ is bounded (or has finite volume) if and only if
PJ =  Φ (PJ = φ or PJ is a vertex at infinity of P, respectively) for every
critical subset J C I.

5. When Ρ is an acute angled polytope, Proposition 4.3 can be used to
obtain more effective criteria for boundedness and for the volume to be
finite.

We note first of all that in this case the property of a subset /  C /  to be
critical depends only on the corresponding principal submatrix Gj of the
Gram matrix G = G(P). N amely, Theorem 3.1 shows that PJ Φ φ if and
only if Gj is positive definite. Therefore, a subset /  is critical if and only if
Gj is a minimal positive indefinite submatrix of G.

A symmetric matrix A with non positive entries off the diagonal is called
critical if it is not positive definite but every proper principal submatrix of it
is positive definite. A critical matrix is automatically indecomposable, since
otherwise every component of it would be positive definite, hence, so would
the matrix itself be. A critical matrix can be either degenerate and positive
semidefinite and degenerate, or non degenerate and indefinite with negative
index of inertia 1.

By what was said above, a subset /  C /  is critical if and only if Gj is
critical.

For every subset /  C /  we set

Ζ (J) =  {i 6 / : gt} =  0 for all /  € / } , N(J) = J U Z(J).

According to this definition, EZ(j) is an orthogonal subspace of Ej.
If / is a critical subset, then Gj is indecomposable and is either parabolic

or non-degenerate and indefinite. In the first case Ej is a parabolic subspace;
consequently, Εζυ<, is parabolic or elliptic and GZu) is positive semidefinite.
In the second case Ej is hyperbolic; consequently, EZ(J) is elliptic. Since
the vectors e,·, /  G  Z(J), cannot be connected by a non trivial linear dependence
relation with non negative coefficients, Gzv> is positive definite in this case.

Lemma 4.1. Suppose that J C I, L C Z(J), and the matrix GL is positive
definite. Then PJ = φ whenever PJ;'L = 0 .

Proof. An induction on the number of components of GL reduces the proof
to the case when GL is indecomposable. The condition PJ L =  0 means
that between the vectors eh i G  /  there is a linear dependence relation
2 ciei =  0 in which c,· > 0 if /  £ /  U  L. Then for each /  G  L:
i

(  Σ ckgkl=  

where the inequality is strict for at least one /  (otherwise GL would be a
direct summand of G).
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By hypothesis, GL is positive definite. Let us assume that it is
indecomposable. Then all entries of the inverse matrix Gi1 are positive, and
from (7) it follows that ck > 0 for k G L. Thus, ct > 0 for all i <fc J, and
this means that PJ =  0. This completes the proof of the lemma.

Theorem 4.1. Let Ρ = {] Hj cz. An be an indecomposable acute angled

polytope and G — G(P) its Gram matrix. Then Ρ is bounded if and only if
Gj is indefinite for every critical subset of Gj and

(8) ΡΛ™= 0 .
Moreover, Ρ has finite volume if and only if for every critical subset J C I
either the preceding conditions hold or else G A (J) =  Gj θ GZ(j) is a parabolic

matrix of rank n  1. {In this case PN(J) is a vertex at infinity of P.)

Proof. We consider the conditions of Proposition 4.3 for some critical
A

subset / . If Gj is positive semidefinite, then PJ 5 n(u), where u = u(J) is
the isotropic vector constructed as in Proposition 3.2. Of the two conditions
of Proposition 4.3, only the second can be satisfied in this case: "PJ is a
vertex at infinity". By Theorem 3.2, the latter holds if and only if Gj is a
direct summand of the parabolic matrix GL {L D J) of rank η   1. Here
automatically L — N(J), since G N ( / ) is positive semidefinite and GL cannot
be a direct summand of it.

If Gj is indefinite, then PJ is contained in the elliptic plane ir(EJ) on the
projective sphere, therefore cannot be a vertex at infinity of P. Consequently,
of the two conditions of Proposition 4.3 only the first can hold in this case:
"P ·7 =  <£>", whereas by Lemma 4.1 this is equivalent to "pm» =  0 " . This
completes the proof of the theorem.

Condition (8) seems hard to verify. However, it is necessarily satisfied if

(9) I N(J) I =  η +  1,

since then the vectors eit i G  TV(/ ) form a basis of E*1·1. In general, to check
the condition it is enough to analyse only part of the complex ^(P), which
is the smaller, the larger \N(f)\ .

In fact, with every subset L  6 &(P) we associate the "relative complexes"
<fL (Ρ),ψί(Ρ), and jF 1· (P), the parts of &(P), ~F{P), and &{P) consisting
of subsets containing L. The complexes JFL(P) and JFL(P) are naturally
isomorphic to JF(PL) and ^(PL). (However, generally speaking j?L(P) is not
isomorphic to .¥{PL), since a vertex at infinity in the face PL is not
necessarily a vertex at infinity o ff. ) The complexes JFL{P) and tpL(P) are
segments of ^L(P). The condition ^L(P) =  ^rL(P) (or ^FHP) ^
is equivalent to PL c=  Λ" (or PL cz Λ") .
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Suppose now that /  C /  is a critical subset such that Gj is indefinite. We
choose any /  Ε /  and set L  =  N(J)\{j}  Then L  6 ,F(P), and dim PL =
= n+ 1   \N(J)\ , If Ρ is bounded (or has finite volume), then PLc A" (or
PLcz A"). Conversely, if P* cz A", then ~PM> =  0 . Thus, the verification
of (8) can be replaced by a verification of the fact that ^L(P) — jfL(P) or
lfL{P) = jfL (P), and to do this Proposition 4.1 can be used (in a simpler
situation compared with that at the beginning).

6. A minimal infraction against finiteness of the volume for a non degenerate
convex polytope Ρ C Λ" is the existence of a vertex in Ρ not in Λ" but such
that every edge of Ρ emanating from it intersects Λ". We say that such a
vertex of Ρ is ideal.

Proposition 4.4. Let Ρ C A" be an indecomposable acute angled polytope
and q =  π(β) an ideal vertex of it. Then the hyperplane He of Λ" intersects
orthogonally all edges of Ρ whose continuations pass through q, and
Ρ' = Ρ Π He is also an indecomposable acute angled polytope.

We refer to the transition from Ρ to P' as the excision of the ideal vertex q.

Proof. With the system of vectors {e,·: i £  1} defining Ρ we associate the
vector e, normed so that (e, e) = 1. The condition n(e) Ε Ρ means that
(e, et) < 0. Since the eh i Ε / , span E"·1, the vector e cannot be orthogonal
to all of them, consequently, the system of vectors {et: i ζ I) [) {e} is
indecomposable. We denote its G ram matrix by G'. By Theorem 2.1, G' is
the Gram matrix of some acute angled polytope. This means that the
intersection P' = Ρ (] Η; contains a non empty open set, hence is a convex
polytope, and that the hyperplanes / / ,·, /  Ε / , and He bound this polytope.

Let /  be some edge of Ρ whose continuation passes through q. We set
/  =  ι (/ ). Then Gj is a positive definite matrix of degree η — 1. Since
(e, et) =  0 for all /  Ε / , the principal submatrix of G' obtained by adjoining
rows and columns corresponding to e is also positive definite. By Theorem 3.1,
there is a vertex of P' corresponding to it. This vertex is the intersection of
/  (and of the edge of Ρ that is the continuation of it) with He. The fact
that the continuation of /  passes through q = it(e) means that it is orthogonal
to He.

7. We give a sufficient condition for the continuations of η given
(n — 1 ) dimensional faces of a polytope Ρ to intersect in an ideal vertex.

A set of (n — 1 ) dimensional faces of Ρ is said to be connected if it cannot
be split into two non empty subsets such that any two faces lying in
different subsets are not adjacent. (For a simple polytope Ρ it is easy to see
that this is equivalent to the topological connectedness of the union of the
faces in the given set.)
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Proposition 4.5. Let Ρ =  f] Hja Λη be a non degenerate acute angled
it I

polytope and G = G(P) its Gram matrix. Let J C /  be a subset such that
1) 1/1 =  n;
2) Gj is an indefinite critical matrix;
3) the set of (n — 1 ) dimensional faces of Ρ whose indices do not lie in J is

connected.
Then the continuations of the (n— \ ) dimensional faces whose indices lie

in J intersect at an ideal vertex q of P, while the continuations of the other
faces do not pass through this vertex.

(This last property means that q is a simplicial vertex of P).
For the proof we need a property of indefinite critical matrices.

Lemma 4.2. Let A be an indefinite critical matrix. Then all entries of A'1

are negative.

Proof. Suppose that the order of A is m+\ . Then A can be regarded as
the Gram matrix of some basis («j, . . ., em + 1) of the pseudo Euclidean space
Em>1, and A~l is the Gram matrix of the dual basis (/ lt . . ., fm+x) of this
space. Since every proper principal submatrix of A is positive definite, for
any /  the subset E{ spanned by all the vectors (ex, . . ., em+ j) other than e,  is
elliptic. Since f{ is orthogonal to this subspace, (/}, / ,) < 0.

Next, the vectors  ft (/  =  1, ..., m+ 1) lie in the cone Κ defined by the
inequalities (x, e,·) < 0 (i = 1, ..., m+ 1). Proposition 2.1 shows that they
lie in a single connected component of the cone C =  {x £ i?7".1: [x, x) < 0}.
Consequently, (/ ,·, /}) < 0 for all /  and / , as required.

Proof of Proposition 4.5. Since Gj is indefinite and non degenerate, Ej is an
« dimensional hyperbolic subspace of i?".1. For /  £ / \ /  we denote by «,· the
orthogonal projection of e,  to a (one dimensional) subspace of EJ. The cone
KJ is determined in EJ by the inequalities (x, ut) < 0, ;' £ / \ / . Therefore,
the proof of the assertion reduces to proving that all the vectors u{,
i £ / \ / , are non zero and directed to the same side.

We have

(10) "i =  e £   V guhJheh,
3, htJ

where (hjk) =  Cj1. By the preceding lemma, hjk <C 0 for all /  and k.
Consequently,

( "« , « i ) =  ( "i , el) =  g i l   V
3 * At J

for all /, /  £ / \ / . In particular, (ut, ut) > 1, so that ut Φ 0. Hence,

(Uj, U,)2 =  (Ui, Ut) (U,, U,) > 1,
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that is, (ult U,) > 1 or (w,·, W;) <  1 . In view of (11), the latter case is
possible only if gu ^ — 1, that is, if the ( n   1 ) dimensional faces with
indices /  and /  are not adjacent. Thus, if there were vectors among the
uir i £  I\J, in different directions, then the set of (n — 1 ) dimensional faces
of Ρ with indices not belonging to /  would not be connected, contrary to
assumption.

8. By a simplicial prism in A" we mean a convex polytope of finite volume
whose closure in Λ" has the combinatorial type of a simplicial prism. We
call a simplicial prism straight if one of its bases is orthogonal to every
lateral face.

N ext, we define a simplex with k ideal vertices as a non degenerate
in + l) tope Ρ C A" such that all edges of its continuation Ρ (which is a
simplex) intersect Λ", and exactly k of the vertices of Ρ do not lie in Λ"
(and are thus ideal vertices of P).

Let Ρ be an acute angled simplex with a single ideal vertex q. If the
(n   l) dimensional face opposite q is not orthogonal to all the remaining
faces, then Ρ is indecomposable, and by Proposition 4.4 the vertex q can be
excised. Clearly, this yields a straight acute angled simplicial prism.

Proposition 4.6. Every straight acute angled simplicial prism in A" can be
obtained by excising the ideal vertex from a simplex with just one ideal
vertex. Every non straight acute angled simplicial prism can be obtained by
pasting together two straight simplicial prisms along congruent bases
orthogonal to the lateral faces.

n+ 2
Proof. Let Ρ =  ft H\  be an acute angled simplicial prism with bases

i =  l
f, =  P n Hn+1 and Ft =  Ρ ft Hn+2. Then P2 = ft Hi and P2 = f] Hi

ίφη + 2 ίφη+i
are simplexes with a single ideal vertex.

If F2 is orthogonal to all lateral faces, then Ρ can be obtained by excising
an ideal vertex from Px. If neither of the bases is orthogonal to the lateral
faces, then Ρ is the union of two straight prisms obtained by excising ideal
vertices from Px and P2 and having common bases orthogonal to the lateral
faces.

CHAPTER II

CRYSTALLOGRAPHIC REFLECTION GROUPS IN LOBACHEVSKII SPACES

§5. The language of Coxeter schemes.
Construction of crystallographic reflection groups

1. The theory of acute angled polytopes presented in the first chapter
assumes a particularly convenient form when couched in the language of
Coxeter schemes.
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A one dimensional simplicial complex is called a graph, and a subgraph of
any graph is a subcomplex that contains together with any two adjacent
vertices the edge joining them. F urther, we define a scheme as a graph in
which to every edge a positive weight is attached. (Sometimes we speak of
an edge of zero weight, meaning by this the absence of the edge.) A
subscheme of a scheme is a subgraph in which every edge carries the same
weight as in the whole scheme. The number of edges of a scheme S is called
its order and is denoted by I Si.

Let S be a scheme of order η with vertices vx, ..., vn. We form the
symmetric matrix (a,·,·) of degree η in which the diagonal entries are all 1,
and atj for i Φ j is the weight of the edge v{Oj taken with the minus sign if vt

and Vj are adjacent, and 0 otherwise. We denote this matrix, which is
defined up to an equal permutation of the rows and columns, by A(S). I t is
indecomposable if and only if 5 is connected.

A scheme S is said to be elliptic if A(S) is: positive definite, parabolic if
A(S) is parabolic (see §2.2) and hyperbolic if A(S) has index of inertia  1 .
The rank (or determinant) of 5 is that of A(S).

A Coxeter scheme is one in which the weight of every edge is either at
least 1 or is of the form cos ir/ m, where m is an integer at least 3. (We may
assume that the weight 0 corresponds to the value m = 1, and the weight 1
t o r n =  oo.)

G raphically, an edge of a Coxeter scheme can be depicted as follows:
if the weight is cos π/ m: an (m  2) fold line or a single line marked m;
if the weight is 1: a heavy line or a single line marked °°;
if the weight is greater than 1: a dotted line marked with the weight

(often the mark is omitted).
The number m~ 2 is called the multiplicity of an edge of weight cos π/ m.

The multiplicity of an edge of weight at least 1 is taken to be infinite.
2. The scheme S of an acute angled polytope Ρ is defined so that the G ram
matrix of Ρ is A(S). In other words, the vertices of S correspond to the
hyperplanes bounding P; two vertices are joined by an edge if the
corresponding hyperplanes are not orthogonal; the weight an edge is the
negative of the cosine of the angle between the hyperplanes if they intersect,
 1 if they are parallel, and the negative of the cosine of the distance
between them if they are ultraparallel (in the case of Lobachevskii space).

Clearly, the scheme of a polytope Ρ is a Coxeter scheme if and only if Ρ
is a Coxeter polytope.

The specification of the scheme of a polytope is equivalent to that of its
Gram matrix; however, there are many graphical advantages when the Gram
matrix contains several zeros.

By §2.3, the schemes of spherical Coxeter polytopes and of polyhedral
Coxeter cones in Euclidean spaces are precisely the Coxeter schemes. The
connected elliptic Coxeter schemes are listed in Table 1, together with the
accepted designations.
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Table 1

Connected elliptic Coxeter schemes (the
suffix is the order)

Table 2

Connected parabolic Coxeter schemes (the
suffix is the rank)

The schemes of bounded Coxeter polytopes in Euclidean space are exactly
the parabolic Coxeter schemes. The connected parabolic Coxeter schemes
are listed in Table 2.

3. For Coxeter polytopes in Lobachevskii space the language of schemes
makes it possible to reduce the application of Theorems 3.1, 3.2, and 4.1,
and Propositions 4.2 and 4.5 to a simple visual procedure.

Let Ρ =  Π Ηΐ be an acute angled polytope in « dimensional

Lobachevskii space and S its scheme, so that A(S) = G is the G ram matrix
of P. The vertices of S are indexed in the natural way by the elements of / .
For any subset /  C /  we denote by Sj the subscheme of S formed from the
vertices whose indices lie i n / . Clearly, A(Sj) = Gj. Consequently, Gj is
positive definite (or parabolic) if and only if Sj is elliptic (or parabolic).



60 E.B. Vinberg

Therefore, when Ρ is a Coxeter polytope, the description of the complex
.F (P )an d the extended complex ]F(P) reduce by means of Theorems 3.1
and 3.2 to selecting in S subchemes from the known list, namely, the
subschemes whose connected components are all in Table 1, and the
subschemes of rank η   1 whose connected components are all in Table 2.
(We note that the rank of such a subscheme is equal to the difference
between its order and the number of connected components.)

I t follows from Theorem 2.1 and 3.1 that the Gram matrices of bounded
simplexes in Λ" are precisely the indefinite critical matrices of order η + 1
(see §4.5). These schemes are characterized by the fact that they are
neither elliptic nor parabolic, but all of their proper subschemes are elliptic.
The Coxeter schemes with these properties are easy to list. We shall call
them Lanner schemes after F . Lanner, who in 1950 first found all bounded
Coxeter simplexes in Lobachevskii spaces [33] . A list of the Lanner
schemes is given in Table 3. It is important to note that the orders of
Lanner schemes do not exceed 5, that is, bounded Coxeter simplexes in Λ"
exist only for η *ζ 4.

Table 3

orders

Lanner Schemes

schemes

ft
_1_

m
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We call two subschemes S\  and S2 of a scheme 5 orthogonal if no vertex
in Si is adjacent to any vertex in S2. F or any subset /  C /  the subscheme
ISJF(J) is maximal orthogonal to Sj.

Knowledge of the Lanner schemes and the preceding remarks makes it
possible to visualize the applications of Theorem 4.1 to Coxeter polytopes.

4. All simplicial Coxeter prisms in the spaces Λ" for η ~> 3 are listed in
Kaplinskii's paper [25]. He uses arguments that are essentially the same as
in our Proposition 4.6.

The problem reduces to an enumeration of the straight simplicial Coxeter
prisms, which in turn is equivalent to enumerating the Coxeter simplexes
with a single ideal vertex. Such simplexes exist only for η < 5. Their
schemes are characterized by the fact that discarding this vertex leaves a
Lanner scheme, while discarding any other vertices leaves an elliptic or a
connected parabolic scheme. In the classification of bounded prisms the last
case must be excluded. The schemes of the corresponding simplexes are
given in Table 4. (We note that the list in [25] is incomplete for η =  3.)

Table 4

Schemes of Coxeter simplexes with a single ideal vertex,
excision of which yields a bounded prism in Λ", η > 3

Schemes

π.

(2
1

η, ι« 3

+

+   f +   rr

Π
ό b

. 1 )



62 E.B. Vinberg

In [40] , Makarov constructed an infinite sequence of bounded Coxeter
polytopes in Λ4 and As. In the context of the present paper, these polytopes
can be conveniently described as follows.

The Coxeter schemes

give simplexes in Λ4 with two ideal vertices. Excision of these vertices
yields bounded Coxeter polytopes Ργ and P2 having each two 3 dimensional
simplicial faces orthogonal to all adjacent faces. The types of such faces for

On forming garlands out of any collection of copies of Pi and P2 applied
to simplicial faces of the same type, we obtain new Coxeter polytopes. The
garland depends not only on the chosen sequence of polytopes, but also on

the method of their applications to faces of the types o = o — Q = = = P and

ο—ii—υ—o , because these faces have symmetries that do not extend to

symmetries of the corresponding four dimensional polytope.
Similarly, the Coxeter schemes

«ι—m n 

(contained in Table 4) give simplexes in Λ5 with a single ideal vertex.
Excision of these vertices yields bounded simplicial prisms Pj and P2. The

bases orthogonal to the lateral faces have the type π—^ > —ο—ο—ο ·

The second base of the prism P2 forms an angle of π/ 4 with one of the
lateral faces and is orthogonal to the remaining ones. By applying to this
face a mirror image of P2, we obtain a Coxeter polytope Ρ having two

simplicial faces of type ο—= 3)—ο—ο——ο orthogonal to all adjacent faces.

By forming garlands of any collection of copies of Ρ and by adding copies of
Pi or P2 to its ends, or adding nothing, we obtain an infinite sequence of
Coxeter polytopes in Λ5.

5. I t can be shown that in all examples of bounded Coxeter polytopes in
Λ", η > 3, given above the number of degrees of freedom of a polytope of
given combinatorial type is equal to the number of dihedral angles. We give
next a more surprising example, where the number of degrees of freedom is
less than the number of dihedral angles.
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For any scheme S and any vertex υ of it we denote by S  ν the scheme
obtained from S by removing υ and the edges emanating from it.

A direct calculation verifies the following result.

Lemma 5.1. Suppose that an edge ViV2 of a scheme S splits it into two parts
S1 and S2 containing vx and v2, respectively. Then

det S — det ^  d e t S2 — c 2 d e t ^ — v^ de^S^  — v2),

where a is the weight of v1 v2.

We consider now the following Coxeter scheme of order 6:

8 v, vt 8
 ̂ O O ίΐ κ Ο Ο

The edge vxv2 splits it into two Lanner subschemes 5j and S2. By means of
Lemma 5.1 we find that det S = 0. The scheme S is not parabolic, but it

8 S
contains elliptic subschemes of order 4, for example, ο—ο ο—ο .
Consequently, 5 is a hyperbolic scheme of rank 5. By Theorem 2.1, it is
the scheme of a Coxeter polytope Ρ C Λ4.

Every subscheme of S containing neither of the Lanner subschemes «S\  and
S2 is elliptic. In view of Theorem 3.1, this means that the complex JF(P) is
isomorphic to the complex of a direct product of two triangles (see §3.1).
Applying Proposition 4.2, we obtain from this that Ρ is a bounded polytope
combinatorially isomorphic to the direct product of two triangles. The
number of degrees of freedom of this polytope is 4.6 10 =  14 (see the

footnote (1) on p.35), whereas the number of dihedral angles is (°) =  15.
N ext we consider the following Coxeter scheme of order 7:

The edge vxv2 splits it into two Lanner subschemes Si and S2. By means of
Lemma 5.1 we find that det S = 0. The scheme S is not parabolic, but

contains elliptic subschemes of order 5, for example ο—ο—ο  

Consequently 5 is a hyperbolic scheme of rank 6. I t is the scheme of a
Coxeter polytope Ρ C Λ5.
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Every subscheme of S containing neither of the Lanner subschemes Sl and
S2 and different from the Lanner subschemes

is elliptic. The subschemes L\ , L2, and L3 satisfy the conditions of
Proposition 4.5, so that there are ideal vertices qit q2, and q3 of Ρ
corresponding to them. The segment of jf(P) obtained by adding to .ί~(Ρ)
the subsets corresponding to these three ideal vertices is isomorphic to the
complex of the direct product of a tetrahedron and a triangle, hence, is the
whole of jf(P) (Proposition 4.1). Thus, Ρ is combinatorially isomorphic to
the direct product of a tetrahedron and a triangle, and all its faces except
the vertices qh q2, and q3 have non empty intersection with Λ5. Excising
these ideal vertices in accordance with Proposition 4.4, we obtain a bounded
Coxeter polytope P' C A5 having 10 four dimensional faces. The number of
degrees of freedom of this polytope is 5.10 15 =  35, while the number of
dihedral angles is {]) + 3 5 =  36.

The polytope P' has three simplicial four dimensional faces of type Lx, L2,
and L3 orthogonal to all adjacent faces. Applying various copies of P' to one
another according to simplicial faces of the same type, we can obtain
infinitely many tree like Coxeter polytopes. Among the pieces of this
construction set we can include the two Makarov prisms (see §5.4), each of
which has a four dimensional face of type L±  orthogonal to all adjacent faces.

6. The highest dimension of a Lobachevskii space for which bounded
Coxeter polytopes are known to exist is 7. Examples in Λ6 and Λ7 were
found by Bugaenko as fundamental polytopes P6 and Ρη of the reflection
subgroups in groups of integral linear transformations over the field Q(>/ 5)
preserving the quadratic form

2 °
for η — 6 and η = 1, respectively.

The schemes of these polytopes are:

That P6 and P7 are bounded is easy to prove by means of Theorem 4.1. For
both the schemes depicted have no parabolic subschemes, and (9) holds for
any of their Lanner subschemes.
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7. We now describe a general construction of unbounded Coxeter polytopes
of finite volume in Lobachevskii spaces.

Let Si and S2 be connected parabolic Coxeter schemes of rank n t and n2,
respectively. We consider the Coxeter scheme

•Si 3 ) ,

in which u is joined to exactly one vertex of each of the subschemes S^  and
S2. The edge uv2 splits it into two subschemes: the subscheme Τ obtained
by adjoining to 5  the vertex u, and S2 itself. Since T~u = Si and
det 5  =  det S2 =  0, we deduce from that from Lemma 5.1, applied to the
edge uv2 that det 5 = 0 . At the same time, S is not parabolic, but contains
the elliptic subscheme of order η = n1 + n2+ I obtained by excising υλ and v2.
Consequently, S is a hyperbolic scheme of rank η + 1 (and of order η + 2)
and is the scheme of a Coxeter polytope Ρ C A".

The subscheme S  u is parabolic of rank nx \  n2 — η — 1. By Theorem 3.2,
there corresponds to it a vertex q at infinity of P. The intersection of Ρ
with a small horosphere with centre at q is a convex polytope in
(n   1 ) dimensional Euclidean space whose scheme is S— u and which is
therefore the direct product of simplexes of dimensions nx and n2 with
schemes Sx and S2, respectively.

The polytope Ρ is a pyramid with vertex at q whose base lies in the
hyperplane of the projective sphere corresponding to the vertex u of S and
combinatorially constructed as the direct product of simplexes of dimensions
«! and n2. The vertices of Ρ lying in the bases of the pyramid correspond to
the subschemes of S obtained by removing one vertex each from 5 t and S2.

A —

If all the resulting subschemes are elliptic or parabolic, then Ρ cr A", hence,
Ρ has finite volume.

There are many schemes of the relevant form that satisfy this last
condition. Among them the scheme of highest order is

(in this case Sj and S2 are of type Es). It is the scheme of an unbounded
Coxeter polytope in 17 dimensional Lobachevskii space. Its closure can be
constructed combinatorially as a pyramid over a direct product of two
9 dimensional simplexes.

8. It is proved in [14] and [20] (see also [44]) that the reflection
subgroup of the group ΟηΛ(Ζ) of integral linear transformations preserving
the quadratic form

 *;+*;+ +  zl.
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has finite index for η < 19, and the fundamental polytopes Pn (2 < η < 19)
of these subgroups are determined there.

The schemes Ση of the Pn for 2 < « < 17 are given in Table 5.

Table 5

Schemes of fundamental polytopes of reflection subgroups of the groups 0n  1(Z )

When we look at these schemes, we see that the Pn for η < 9 are
simplexes. For 10 < η < 13 the Σ η belong to the type described in 7, and
the Pn are pyramids over direct products of two simplexes. The combinatorial
structure of the Pn for 14 < η < 17 does not lend itself to a simple verbal
description. That their volume is finite is established by means of
Theorem 4.1. Inspection shows that their schemes do not contain Lanner
subschemes and that every connected parabolic subscheme is contained (as a
connected component) in a parabolic subscheme of rank η   1.

The polytopes P ,s and ·Ρ]Β have a considerable more complicated structure:
the first has 37 and the second 50 faces of codimension 1. Their schemes
are described in [20] . That the volume of these polytopes is finite is
established by means of Theorem 4.1.
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§6. The non existence of discrete reflection groups with bounded
fundamental polytopes in higher dimensional Lobachevskii spaces

1. The classification problem for discrete reflection groups in Lobachevskii
spaces differs from those in Euclidean space and on the sphere principally in
that even bounded Coxeter polytopes in Lobachevskii space may have a
complicated combinatorial structure. To stydy them we need some
information on the combinatorial properties of convex polytopes.

At present the only known general combinatorial property of Coxeter
polytopes is that they are simple (see §3.1). Some results on the number of
faces of bounded simple polytopes are stated be low^ . They play a key role
in the proof of the main theorem in this section.

Let Ρ be a bounded « dimensional simple convex polytope. We denote by
ak (0 < k < n) the number of its k dimensional faces. Then

Σ «*(« *)*=  Σ M\
is called the combinatorial polynomial of P. Its coefficients have the following
properties:

(12) bh =  bn.h > 0 (k = 0, 1, . . ., n).

(The fact that bk = bn_k is known as the Dehn Sommerville equality; this
has been known for a long time [56] . The inequalities bk > 0 were proved
only recently [57] , [22]) .

We set m = [n/ 2]. By the Dehn Sommerville equalities, the numbers ak

can be expressed in terms of the coefficients bx, ..., bm of the combinatorial
polynomial as follows:

P= 0

where

ί bp for ρ φ γ,

for Ρ =  .

2. In his paper [49] Nikulin derives from (12) an upper bound for the
average number of /  dimensional faces of a fc dimensional face of an
« dimensional simple polytope for /  < k < (n+ \ )/ 2. We need only the
special case k =  2, /  =  0 of this bound.

a rule, these results are stated for simplicial polytopes, but by duality they carry
over automatically to simple polytopes.
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Proposition 6.1. The average number of vertices of a two dimensional face
of a bounded η dimensional simple convex polytope Ρ is less than

(" ' for even n,
n—2 J

4 n for odd n.
n — 1

Proof. We have

p ° p= 0
Since for ρ < w

the coefficients in the expression for a2 are decreasing, hence,
771

2 ( ™ ) Σ Sp for even n,
P= O

p= 0

The average number of vertices of a two dimensional face is ao/ a2 multiplied
by the number of two dimensional faces passing through each vertex of P,

that is, by ( 2 )•  Consequently, this number is less than

«<" *> for even n,
m \  η — /

)
4π

n — 1 for odd n.

F rom Proposition 6.1 it follows, in particular, that for η > 5 the polytope
Ρ always has at least one quadrilateral or triangular two dimensional face.

3. A planar angle of a polytope Ρ is a pair {A, F), where A is a vertex and
F a two dimensional face containing it. We say that {A, F) is a planar angle
at A and also a planar angle of F.

Proposition 6.2. Let Ρ be a bounded η dimensional simple convex polytope
and c a positive number. We assume that the planar angles of Ρ can be
endowed with weights in such a way that

(a) the sum σ(Α) of the weights of the planar angles at the vertex A does
not exceed en;
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(b) the sum a(F) of the weights of the planar angles of any two 
dimensional face is not less than 5   k, where k is the number of vertices of
this face.

Then η < 8 c + 6 .

Proof. Let κ =  (£ ) 0</α2 ^ e t n e average number of vertices of a two 
dimensional face of P. We estimate the sum a of the weights of all planar
angles in two ways. It follows from a) that

and from b) that

where a2,h is the number of k angled two dimensional faces. Combining
these inequalities we find that

(13) ^

By Proposition 6.1, κ < 4(re — i)l{n — 2) for even n, and from (13) we
obtain that

(14) η — 6 < 8c,

as required. F or odd η we have κ ·< An/ (η — 1), and from (13) we obtain
(n   \ )(n   5) < 8en; now (14) follows, since (n   1)(«   5) > n(n   6).

4. We claim that there are no bounded Coxeter polytopes in Lobachevskii
space of dimension at least 62. This leads to the following theorem.

Theorem 6.1. There are no discrete reflection groups with bounded
fundamental polytopes in Lobachevskii space of dimension at least 62.

The proof of this theorem is based on Proposition 6.2. By the same
method but technically in a much more complicated way the author has
proved in [18] that even in a Lobachevskii space of dimension at least 30
there are no bounded Coxeter polytopes.

5. Let Ρ be a bounded acute angled polytope in « dimensional Lobachevskii
space, and S its scheme (see §5.3). Since Ρ is indecomposable (see § 1.5),
S is a connected hyperbolic scheme. I t follows from Proposition 3.2 that it
contains no parabolic subschemes. We mention also that it cannot contain
two orthogonal hyperbolic subspaces (see §5.4), since then the negative of the
index of inertia of A(S) would be more than 1.

For every face F of Ρ we denote by SF the subscheme of S whose vertices
correspond to the (n — 1 ) dimensional faces containing F. This is an elliptic
scheme of order η — dim F.
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The scheme of a planar angle (A, F) of a polytope Ρ is the scheme SA

with two chosen "black" vertices corresponding to the (n — 1 ) dimensional
faces not containing F. This is an elliptic scheme of order n.

The star scheme of a face F of a polytope Ρ is the subscheme Sp of S
whose vertices correspond to the (n— 1 ) dimensional faces having common
points with F. We call the vertices of Sp that belong to SF "white", and
the remaining vertices "black". The black vertices correspond to the
(n — 1 ) dimensional faces that intersect F in faces of codimension 1 (in F).

In what follows we consider the star schemes of quadrilateral and
triangular two dimensional faces. We mention some of their properties.

Proposition 6.3. Let SF be the star scheme of a triangular two dimensional
face F of a polytope P. Then

1) removal from SF of any black vertex yields the scheme of one of the
planar angles of F;

2) every hyperbolic subscheme of SF contains all three black vertices.

Proof. 1) is obvious. Since the scheme of a planar angle is elliptic, 2)
follows from 1).

6. Proposition 6.4. Let S*F be the star scheme of a quadrilateral two 
dimensional face F of a polytope P. We divide the black vertices of Sp into
pairs in such a way that the vertices corresponding to opposite sides of F
correspond to a single pair. Then

1) removal from SF of any two black vertices in different pairs leaves the
scheme of one of the planar angles of F;

2) every hyperbolic subscheme of SF contains both the black vertices
from some pair;

3) removal from SF of the two black vertices in the same pair leaves a
hyperbolic scheme.

Proof. 1) is obvious; 2) follows from 1); 3) follows from the fact that the
(n — l) dimensional faces of Ρ corresponding to the white vertices of SF and
the two black vertices of the remaining pair have no common points.

7. We call a sequence of distinct vertices v0, υί} ..., vm of a graph in which
vh_! and vk are adjacent (k =  1, ..., m), together with the sequence of edges
VQVJ, VIVZ, . . ., ym_xym a path of length m joining v0 and vm. The length of
a shortest path joining two vertices is the distance between them. If two
vertices cannot be joined by a path, we take the distance between them to
be infinite.

Lemma 6.1. For every elliptic Coxeter scheme Τ of order η the number
f(T, c) of (unordered) pairs of vertices at a distance at most c is at most en.

Proof. If Γ is a disjoint union of schemes Tx and T2, then f(T, c) =
=  / (Γι, c) + f{T2, c). Therefore, we need prove the assertion only for
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connected schemes. Moreover, it is automatically true if η < 2c +  1, since
then the number of all pairs of vertices is not more than en.

Now let Γ be a connected elliptic scheme of order η > c+ 1. F or any
d < c the number of pairs of vertices at a distance d is η — d if the scheme is
linear, and is at most η — d+ 1 if it has a "shoot". In each case the number
is at most n, and the assertion follows.

8. Proof of Theorem 6.1. Let Ρ be a bounded Coxeter polytope in
« dimensional Lobachevskii space and S its scheme.

We attach weights to the planar angles οι Ρ as follows: the weight of a
planar angle is 1 if the black vertices in its scheme are at a distance of at
most 7, and 0 otherwise. We check that the hypotheses of Proposition 6.2
are satisfied with c = 7, which implies that η < 62.

Now a) follows from Lemma 6.1; b) needs checking for two dimensional
triangular and quadrilateral faces.

Let F be a two dimensional triangular face of P. It follows from
Proposition 6.3 that all three black vertices of SF are contained in some
Lanner subscheme L. Since L  is connected, it has at most one black vertex
seperating the other two. In other words, there are at least two black
vertices υ such that for each of them two other black vertices are contained
in a single connected component of the scheme L~v. Since \L — v\  < 4, the
distance between black vertices in L — ν is at most 3, and hence the same is
true of the scheme of the corresponding planar angle. Thus, we have shown
that o(F) > 2.

Suppose now that F is a two dimensional quadrilateral face of P. I t
follows from Proposition 6.4 that every pair of black vertices of SF is
contained in some Lanner subscheme not containing the black vertices of the
other pair. Let L  and Μ be the chosen Lanner subschemes. They cannot be
orthogonal, that is, they must either have a common vertex or be joined by
an edge. Since L  and Μ are connected schemes, we can find black vertices u
and υ from distinct pairs that can be joined in L  U  Μ by a path not
involving other black vertices. Since the number of white vertices of L  U  Μ
is at most 6, the length of this path is at most 7. Thus, the black vertices u
and υ lie in the scheme of the corresponding planar angle of F at a distance
of at most 7. Thus, we have shown that o(F) > 1.
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