
Chapter 1

Representations

1.1 Representations of Groups and Algebras

A representation of a group G on a finite-dimensional complex vector space V
is a group homomorphism ρ : G → GL(V ). If G has some additional structure
like topological space, complex variety or a real manifold, we ask that ρ is a
corresponding morphism: a continuous map, a polynomial map or a smooth
map.

A representation of a finitely generated complex algebra A on a finite dimensional
complex vector space v is an algebra morphism ρ : A → End(V ). We say that
such a map gives V the structure of an A-module. When there is little ambiguity
about the map ρ, we sometimes call V itself a representation of A. For any
element x ∈ A, v ∈ V we will shorten ρ(x)v to x · v or xv.

A morphism φ between two representations ρV and ρW is a vector space map
φ : V → W such that the following diagram is commutative

V
φ //

ρV (x)
��

W

ρW (x)
��

V
φ // W.

In short we can also write φ(xv) = xφ(v). morphism is also sometimes called an
A-linear map. The set of A-linear maps is denoted by HomA(V,W )

A subrepresentation of V is a subspace W such that x·W ⊂ W forall x ∈ A. Note
that a morphism maps subrepresentations to subrepresentations so in particular
for any morphism φ the spaces Kerφ and Imφ are subrepresentations.
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CHAPTER 1. REPRESENTATIONS

A representation V is called simple if its only subrepresentations are 0 and V .
This is equivalent to saying that ρV is a surjective algebra morphism. If V
and W are representations we can construct new representations from them:
the direct sum V ⊕ W = {(v, w)|v ∈ V,w ∈ W} has a componentwise action
x(v, w) = (xv, xw). A representation that is not isomorphic to the direct sum of
two non-trivial representations is called indecomposable. If a representation is a
direct sum of simple representations it is called semisimple. The decomposition
of a semisimple into simple components is unique up to a permutation of the
factors.

Homomorphisms between (semi)simple representations can be described easily
using Schur’s Lemma

Lemma 1.1 (Schur). Let S and T be simple representations then

HomG(S, T ) =

{

0 if S 6= T

C if S = T

Corollary 1.2. If V ∼= S⊕e11 ⊕ · · · ⊕S⊕ek
k and W ∼= V ∼= S⊕f11 ⊕ · · · ⊕S⊕fk

k where
some of the e and f ′s can be zero. then

HomG(V,W ) = Matf1×e1(C)⊕ · · · ⊕Matfk×ek
(C).

To every representation ρV we can associate its character. This is the composition
of ρV with the trace map Tr : End(V )→ C.

χV : Tr ◦ ρV .

χV is an element of A∗ and it is invariant under isomorphism: ρV ∼= ρW ⇒ χV =
χW . The main theorem of representation theory of finitely generated algebras
now states that the opposite is also true for semisimple representations.

Theorem 1.3. 1. If V and W are semisimple representations then V ∼= W if
and only if χV = χW .

2. V is not semisimple then there is a unique semisimple representation V S

such that χV = χV S .

The proof of this theorem is quite lengthy and in can be found in the course notes
on representation theory.

If G is a finite group then one can construct its group algebra. This is the complex
algebra with as basis the elements of the group and as multiplication the linear
extension of the multiplication of the group. We will now have a closer look at
the representations of these group algebras.
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CHAPTER 1. REPRESENTATIONS

If we’re considering only group representations we can construct even more new
representations:

• The tensor product V ⊗W = Span(vi ⊗ wj|(vi), (wj) are bases for V, W)
has as action x(v ⊗ w) = gv ⊗ gw.

• The dual space V ∗ = {f : V → C|f is linear} has a contragradient action:
(g · f)v = f(g−1 · v).

• The space of linear maps Hom(V,W ) can be identified with V ∗ ⊗W and
hence the action is (g · f)v = g · (f(g−1 · v)). Note that this means that the
elements of HomA(V,W ) are in fact the maps that are invariant under the
action of A.

The characters of the representations are elements of CG∗. This is a finite di-
mensional vector space with dual basis g∗, g ∈ G. On this space we can put an
hermitian product such that 〈g∗, h∗〉 = δgh/|G|.

The representation theory of finite groups can be summarized as

Theorem 1.4. Let G be a finite group then we have that

1. Every representation is semisimple.

2. A representation V is simple if and only if 〈χV , χV 〉 = 1

3. The number of isomorphism classes simple representations is the same as
the number of conjugacy classes in G.

4. The characters of simple representations form an orthonormal basis for the
subspace of class functions is CG∗.

5. If S is simple then 〈χV , S〉 is the multiplicity of S inside V .

6. V is completely determined by its character χV .

7. CG ∼= EndS1 ⊕ · · ·EndSk ∼= MatdimS1 ⊕ · · · ⊕MatdimSk
.

Note a group (not necessarily finite) for which (1) holds is called a reductive group.
Other examples of reductive groups are GLn, SLn, SOn and finite products of
these groups.
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CHAPTER 1. REPRESENTATIONS

1.2 Finite Subgroups of SL2

In the rest of this chapter we will apply the theory to the case where V is a two-
dimensional representation of a finite group. First of all we do not have to consider
all finite groups. The quotient only depends on the image of ρV : G → GL(V ).
So we only have to consider finite subgroups of GL2. We can do even better
as we only need to determine these subgroups up to conjugation, we can bring
them into a standard form: every finite subgroup of GL2 can be conjugated to a
subgroup of U2. To prove this we can define a hermitian form on V as follows:

〈v, w〉 :=
∑

g∈G

(g · v)(g · w)†

The action of G keeps this form invariant 〈hv, hw〉 :=
∑

g∈G
(gh · v)(gh · w)† =

〈v, w〉, so if we choose an orthonormal basis for this form G will act as unitary
matrices according to this basis. Because U2 = U1 × SU2, G can also be written
as the product of as subgroup of U1 and a subgroup of SU2. The subgroups of
U1 are the cyclic groups Zn, so we will now look at finite subgroups of SU2 which
are also the finite subgroups of SL2.

Theorem 1.5. Every finite subgroup of SU2 can be conjugated to one of the
following groups:

Cn a cyclic group of order n generated by
[

e2π/n 0
0 e−2π/n

]

Dn The binary dihedral group of order 4n generated by
[

e2π/n 0
0 e−2π/n

]

and [ 0 i
i o ].

T The binary tetrahedral group.

O The binary octahedral group.

I The binary icosahedral group.

Proof. The group SU2 can be mapped onto SO3(R). Embed R
3 in Mat2(C) as

the subspace of traceless antihermitian matrices H

R [ 1 0
0 −1 ] + R [ 0 i

i 0 ] + R [ 0 1
−1 0 ] .

On this subspace we can put a scalar product 〈A,B〉 := Tr(AB†) SU2 acts on this
subspace by conjugation and the conjugation respects the scalar product: 〈U ·
A,U · B〉 = Tr(UAU−1(UBU−1)†) = Tr(UAU−1(UBU−1)†) = Tr(UAB†U−1) =
Tr(AB†). Therefore the action of SU2 on H factors through the orthogonal group
of 〈, 〉. As SU2 is connected the image of SU2 will be contained in SO3.
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One can check that the kernel of this map is {1,−1} ⊂ SU2 and as the real
dimension of SU2 and SO3(R) are both 3 the map will be surjective. SU2 is
called the double cover of SO3.

Now we will show that any finite subgroup of SO3 is either a cyclic group Cn a
dihedral group Dn or one of the groups of a Platonic solid.

Let G now be a finite subgroup of SO3 with order n. The elements of G−{1} are
rotations so we can associate to each element its poles i.e. the intersection points
of the rotation axis with the unit sphere. Let P be the set of poles of elements
of G. Every pole is mapped to a pole under the action of G. So we can partition
P into orbits of G. To every pole p we can associate mp, the number of rotations
with this pole. Note that poles in the same orbit have the same mp. It is also
the order of the subgroup of G that fixes p.

The n − 1 non-trivial rotations in G consist of m − 1 rotations for each pair of
poles. That is 1

2
(m− 1)n

/
m for each orbit. Hence n− 1 = 1

2
n(
∑ (m−1)

m
) where the

summation is over the orbits Since m ≥ 2 we have (m − 1)/m > 1/2 and so we
can only have 2 of 3 orbits if G is non-trivial.

1. The case of two orbits. Suppose these have n/m1 and n/m2 elements. Then
2/n = 1/m1 +1/m2 implies n/m1 = n/m2 = 1 and we have two orbits with
one pole in each. This is the case when G is a cyclic group Cn generated
by rotation by 2π/n.

⋆

⋆

2. The case of three orbits. Then 1 + 2/n = 1/m1 + 1/m2 + 1/m3 so one of
the mi = 2. Take m3 = 2 so 1/m1 + 1/m2 = 1/2 + 2/n. There are only a
few possibilities:

• m1 = 2,m2 = m,n = 2m (This is the dihedral case G = D2n =
〈X,Y, Z|X2 = Y m = Z2 = XY Z = 1〉)
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• m1 = 3,m2 = 3, n = 12 (This is the symmetry group of the tetrahe-
dron, G = T = 〈X,Y, Z|X3 = Y 3 = Z2 = XY Z = 1〉)
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• m1 = 3,m2 = 4, n = 24 (This is the symmetry group of the cube,
G = O = 〈X,Y, Z|X3 = Y 4 = Z2 = XY Z = 1〉)
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• m1 = 3,m2 = 5, n = 60 (This is the symmetry group of the dodecahe-
dron G = I = 〈X,Y, Z|X3 = Y 3 = Z2 = XY Z = 1〉)
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Now let G̃ be a subgroup of SU2. If G̃ has an even number of elements then
it contains −1, because this is the only element in SU2 of order 2. This means
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that G̃ is the inverse image of a finite subgroup of SO3, these are called the
binary dihedral, tetrahedral, etc. groups, note that binary cyclic is again cyclic.
These groups can be expressed in generators and relations by introducing a new
generator T that commutes with all others and T 2 = 1, the relations of the
original group are then put equal to T instead of one.

• the binary dihedral case G = D̃4n = 〈X,Y, Z|X2 = Y m = Z2 = XY Z =
T, T 2 = 1〉

• the binary tetrahedral case G = T̃ = 〈X,Y, Z|X3 = Y 3 = Z2 = XY Z =
T, T 2 = 1〉

• the binary octahedral case G = Õ = 〈X,Y, Z|X3 = Y 4 = Z2 = XY Z =
T, T 2 = 1〉

• the binary dodecahedral case G = I = 〈X,Y, Z|X3 = Y 3 = Z2 = XY Z =
T, T 2 = 1〉

If G̃ has an odd number of elements then it is isomorphic to its image which must
be cyclic.

1.3 Character tables and McKay Quivers

We will now determine the character tables of these subgroups of SL2. We will
need these to determine the rings of invariants C[V ]G. In order to do this more
easily we will associate also to each group a combinatorial object: The McKay
quiver. This is a directed graph of which the vertices correspond to the simple
representations of G and the number of arrows from Si to SJ is the multiplic-
ity of Sj inside V ⊗ Si. Inside the vertices we will put the dimension of the
representations.

• Cn is a cyclic group generated by g. It has n simple one-dimensional rep-
resentations corresponding to the n roots of 1. χSk

(g) = e2kπi/n. V =
S1 ⊕ Sn−1 and Si ⊗ Sj = Si+j where the sum is modulo n. The McKay
quiver looks like:

��������1
++

vv

��������1kk

����������1

66

��

#o = n ��������1

SS

vv��������1

SS

��������1

66
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The other groups are products of C2 and subgroups of SO3 so their characters
are also products of characters of those groups and characters χS0 , χS1 .

• The binary dihedral group can be rewritten as 〈g, s|g2n = 1, s2 = gn, gs =
sg−1〉. The one-dimensional representations must map g 7→ ǫ and s 7→
±
√
ǫn with ǫ = ±1, therefore there are 4 one-dimensional representations.

We will denote these representations by σ±± where the lower index is the
sign of g and the upper the sign of s.

For every 0 ≤ k ≤ n one can define the two-dimensional representation

ρi : g 7→
(

eπk/n 0
0 e−πk/n

)

, s 7→
(

0 ik

ik 0

)

.

Using the characters one can check that ρ0 = σ+
+ ⊕ σ−+ and ρn = σ+

− ⊕ σ−+,
all the other representations are simple and non-isomorphic. As 4n = 4 ·
12 + (n− 1) · 22 we now know all simple representations.

The tensor products of these representations are given by

ρ1 ⊗ ρj = ρi−1 ⊕ ρi+1

ρ1 ⊗ σ±+ = ρ1

ρ1 ⊗ σ±− = ρn−1

This makes our McKay quiver look like

��������1

��

��������1

vv��������2
''

vv

VV

��������2gg
'' ��������2gg

'' ��������2gg

66

����������1

66

��������1

VV

• The binary tetrahedral group 〈X,Y, Z|X3 = Y 3 = Z2 = XY Z = T, T 2 =
1〉 has 3 one-dimensional representations mapping Z, T to 1 andX to e2πk/3,
denote these by σk. The simple two-dimensional representations look like
ρi := σi ⊗ ρV where ρV is the standard representation. Finally the 3-
dimensional representation τ coming from the symmetries of the tetrahe-
dron is also simple. There are no more simple representations because

24 = 3 · 12 + 3 · 22 + 33.

the formulas for the tensor products are

ρi ⊗ ρV = σi ⊕ τ
τ ⊗ ρV = ρV ⊕ ρ1 ⊕ ρ2.
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So the character table is

σ0 1 1 1 1 1 1 1
σ1 1 e2π/3 e−2π/3 e2π/3 1 e−2π/3 1
σ2 1 e−2π/3 e2π/3 e−2π/3 1 e2π/3 1
ρ0 2 −1 −1 1 −2 1 0
ρ1 2 −e−2π/3 −e2π/3 e−2π/3 −2 e2π/3 0
ρ2 2 −e2π/3 −e−2π/3 e2π/3 −2 e−2π/3 0
τ 3 0 0 0 3 0 −1

and the McKay quiver looks like

��������1

����������2

��

GG

��������1
'' ��������2

''
gg ��������3

''
gg

GG

��������2
''

gg ��������1gg

• The binary octahedral group 〈X,Y, Z|X3 = Y 4 = Z2 = XY Z = T, T 2 = 1〉
has 2 one-dimensional representations mapping X,T to 1 and Y to (−1)k,
denote these by σk. The standard representation ρV and its tensor product
with σ1 give two simple 2-dimensional representations. The same holds
for the 3-dimensional representation τ coming from the symmetries of the
octahedron. We denote these four representations by ρi = ρV ⊗ σi, τi =
τ ⊗ σi.

The tensor product τ ⊗ ρV decomposes as a direct sum of ρV and a four-
dimensional simple representation ν. Finally we can construct another 2-
dimensional representation ̺ as a summand of ν ⊗ ρV = ̺⊕ τ0⊕ τ1. There
are no more simple representations because

48 = 2 · 12 + 3 · 22 + 2 · 33 + 42.

the formulas for the tensor products are

ρi ⊗ ρV = τi ⊕ σi
τi ⊗ ρV = ν ⊕ ρi
̺⊗ ρV = ν
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Giving a character table

σ0 1 1 1 1 1 1 1 1
σ1 1 1 1 1 −1 −1 −1 1
̺ 2 −1 −1 2 0 0 0 2

ρ0 2 −1 1 −2 0
√

2 −
√

2 0

ρ1 2 −1 1 −2 0 −
√

2
√

2 0
τ0 3 0 0 3 1 −1 −1 −1
τ1 3 0 0 3 −1 1 1 −1
ν 4 1 −1 −4 0 0 0 0

and a McKay quiver like

��������2

����������1
'' ��������2

''
gg ��������3

''
gg ��������4

''
gg

GG

��������3
''

gg ��������2
''

gg ��������1gg

• The binary icosahedral group Ĩ = 〈X,Y, Z|X3 = Y 5 = Z2 = XY Z =
T, T 2 = 1〉. Up to conjugation Ĩ/{1, T} can identified with A5 in 2 differ-
ent ways. A5 has only one one-dimensional representation: the trivial. It
has also 2 3-dimensional representations τ1, τ2 as symmetry groups of the
icosahedron identifying Y with a rotation over either π/5 or 2π/5. These
2 can be pulled back two two-dimensional representations σ1, σ2 of Ĩ using
the map SU2 → SO3. Out of these we can construct 2 four-dimensional
ν1, ν2, one 5-dimensional, µ, and one 6-dimensional, ζ, representations by
the equations.

ν1 ⊕ µ = τ1 ⊗ τ2
ν2 ⊕ ρ1 = ρ1 ⊗ τ1

ζ = ρ1 ⊗ τ2

This gives us the following Character table

σ 1 1 1 1 1 1 1 1 1

ρ1 2 −1 1 −2 0 1+
√

5
2

−1+
√

5
2

−1−
√

5
2

1−
√

5
2

ρ2 2 −1 1 −2 0 1−
√

5
2

−1−
√

5
2

−1+
√

5
2

1+
√

5
2

τ1 3 0 0 3 −1 1−
√

5
2

1−
√

5
2

1+
√

5
2

1+
√

5
2

τ2 3 0 0 3 −1 1+
√

5
2

1+
√

5
2

1−
√

5
2

1−
√

5
2

ν1 4 1 1 4 0 −1 −1 −1 −1
ν2 4 1 −1 −4 0 1 −1 −1 1
µ 5 −1 −1 5 1 0 0 0 0
ζ 6 0 0 −6 0 −1 1 1 −1
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and McKay Quiver

��������3

����������1
'' ��������2

''
gg ��������3

''
gg ��������4

''
gg ��������5

''
gg ��������6

GG

''
gg ��������4

''
gg ��������2gg
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1.4 GAP instruction sheet

1. GAP is case-sensitive and instructions end with a semicolon.

2. Assignments are done by :=, comparisons by =.

3. A list is given by [a, b, c], a list of natural numbers from one to 10 is written
as [1..10]. The ith item of a list l is l[i].

4. A matrix is given by a list of its rows: [[a11, a12], [a21, a22]].

5. The loops and conditional clauses are written as

(a) for variablein listdo instructionsod;

(b) while conditiondo instructionsod;

(c) if conditionthen instructionselse instructionsod;

6. a function is defined as:
name := function(variables)
local variables;
instructions;
return expression;
end;

7. Gap can work over different fields, the standard one is the field of rational
numbers. To define other numbers one can use the expressions E(n) and
ER(n) which stand for the expressions e2π/n = cos 2π/n + i sin 2π/n and√
n. These elements live in the field CF(n). To find square roots of other

elements one can use RootsOfUPol(F, p) (this gives a list of roots of the
polynomial p in the field F ), provided you take your field big enough.

To take roots of other numbers, one must use x := indeterminate(Rationals,"x");

pol := x^ 2 - x -1;

phi := RootsOfUPol(CF(5),p);

If one must take roots of elements that are not in the rationals one must take
instead of Rationals the field over which the coefficients of the minimal
polynomial are defined.

8. To define a group generated by matrices one can use the command
G := Group(matrix1,matrix2,· · · ); The character table can be constructed
by the command t := CharacterTable(G);. It can be displayed by Display(t);

and the characters of the simples can be put in a list by Irr(G).
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Chapter 2

Affine Quotients

2.1 Review of Algebraic Geometry

In algebraic geometry one studies the connections between algebraic varieties,
which are sets of solutions of polynomial equations, and complex algebras.

An affine variety is a subset X ⊂ C
n that is defined by a finite set of polynomial

equations.

X := {x ∈ C
n|f1(x) = 0, . . . , fk(x) = 0}

A morphism between two varieties X ∈ C
n an Y ∈ C

m is a map φ : X → Y
such that there exist a polynomial map Φ : C

n → C
m such that φ = Φ|X . Such

a morphism is an isomorphism if φ is invertible and φ−1 is also a morphism.

The affine varieties with their morphisms form a category which we will denote
by AffV.

We can consider C as a variety, so it makes sense to look at the morphisms from
a variety X to C, these maps are also called the regular functions on X. They are
closed under point wise addition and multiplication so they form a commutative
C-algebra: C[X].

This algebra can be described with generators and relations. To every variety
X ∈ C

n the set of polynomial functions that are zero on X form an ideal in
C[x1, · · · , xn]. If we divide out this ideal we get the ring of polynomial functions
on X.

C[X] := C[x1, . . . , xn]/(f |∀x ∈ X : f(x) = 0)

This algebra is finitely generated by the xi and it also has no nilpotent elements
because f(x)n = 0⇒ f(x) = 0.
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A morphism between varieties, φ : X → Y , will also give an algebra morphism
between the corresponding rings but the arrow will go in the opposite direction:

φ∗ : C[Y ]→ C[X] : g 7→ g ◦ φ.

On the other hand if R is a finitely generated commutative C-algebra without
nilpotent elements, by definition we will call this an affine algebra. The category
of affine algebras together with algebra morphisms will be denoted by AffA.

Every R ∈ AffA can be written as a quotient of a polynomial ring C[x1, . . . , xn]
with an ideal i. Because polynomial rings are Noetherian, i is finitely generated
by f.i. f1, . . . , fk. Therefore we can associate to R the variety V (R) in C

n defined
by the fi. Although this variety depends on the choice of generators of R and
i, one can prove that different choices will give isomorphic varieties. One can do
even more if ϕ : R → S is an algebra morphism and R = C[x1, . . . , xn]/i and
S = C[y1, · · · , ym]/j one can find polynomials g1, . . . , gn ∈ C[y1, · · · , ym] such
that gi + j = ϕ(xi) + j. These functions define a map G : C

m → C
n such that

G(V (S)) = V (R) so G|V (S) : V (S) → V (R) is a morphism of varieties. So an
algebra morphism gives rise to a morphism of varieties in the opposite direction.

The main theorem of algebraic geometry now states that the operations V (−)
and C[−] are each other’s inverses:

Theorem 2.1. The category AffV and the category AffA are anti-equivalent. So
working with affine varieties is actually the same as working with affine algebras
but all maps are reversed. The anti-equivalence is given by the contravariant
functors V (−) and C[−], so

C[V (R)] ∼= R and V (C[X]) ∼= X

One can also give a more intrinsic description of V (R). For every point p ∈ V (R)
on can look at the embedding p → V (R). From the algebraic point of view this
will give a map from R → C[p] = C, so points correspond to maps from R to C

which are determined by their kernels. As C is an algebraicly closed field these
kernels correspond to the maximal ideals of R. So we can also define V (R) as
the set of all maximal ideals of R.

This last definition only describes V (R) as a set. We want to give V (R) some
more structure. This can be done by introducing the Zariski Topology. This
topology can be defined by its closed sets: C ⊂ V (R) is closed if there is an ideal
c ⊳ R such that C = {m ∈ V (R)|c ⊂ m}. Now if R = C[x1, . . . , xn]/i we can
see c as generated by polynomials (ci) so the points in V (R) that lie on C are
exactly those for which the ci are zero. So closed sets are subset that correspond
to zeros of polynomial functions. Every closed set C will give us a morphism
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R → C[C] ∼= R/c which is a surjection. Conversely every surjection R → S will
give us an embedding of a closed subset V (S) in V (R).

Open functions on the other hand are unions of subsets for which certain poly-
nomials are nonzero. Contrarily to closed subsets, open subsets can not always
be considered as affine varieties. F.i. in C2 the complement of the origin is an
open subset but it isomorphic to an affine variety. Basic open sets which are
set on which one polynomial f does not vanish can be considered as the variety
corresponding to the ring R[1/f ]. This construction is called a localization

The Zariski topology is not the same as the ordinary complex topology on V (R) ⊂
C
n. The ordinary topology has lots more closed (open) sets. For instance a closed

ball with finite radius around a point is closed in the ordinary topology of C
n, but

not in the Zariski topology because the zeros of a polynomial form a hypersurface
in Cn and hypersurfaces never contain closed balls.

The translation table

Geometry Algebra
Affine Variety Affine Algebra

Morphism Algebra Morphism
Point Maximal Ideal

Closed Set Semiprime Ideal (i.e. fn ∈ i⇒ f ∈ i)
Intersection closed Sets Sum of ideals

Union of closed sets Intersection of ideals
Basic Open Set Localization of a function

Embedding of a closed subvariety Surjection
The image is dense Injection

Irreducible (open sets always intersect) No zero divisors
Connected does not contain idempotents
Dimension longest ascending chain of prime ideals

Tangent space in p (m/m2)∗

2.2 Quotients and rings of invariants

Suppose now we have a reductive group G and let Ω be the set of its simple
representations up to isomorphism. Let V be a finite dimensional representation
with dimension k. V can also be considered as a variety. for every point v ∈ V
we can define the orbit G · v := {g · v|g ∈ G}. Orbits never intersect so we can
partition V into its orbits. We will denote the set of all orbits by V/G.

A natural question one can ask if whether this set can also be given the structure
of an affine variety. In the case of finite groups it will be possible, but for general
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reductive groups there will be extra complications.

We can take a closer look at the problem by looking at the algebraic side of the
story. The ring of polynomial functions over V is R = C[V ] ∼= C[X1, . . . , Xk] is a
graded polynomial ring if we give the Xi degree 1.

On R we have an action of G:

G× C[V ]→ C[V ] : (g, f) 7→ g · f := f ◦ ρV (g−1).

This action is linear and compatible with the algebra structure: g · f1f2 = (g ·
f1)(g · f2). As g · Xi :

∑

j ρV (g−1)ijXj is homogeneous of degree 1 the G-action
maps homogeneous elements of to homogeneous elements with the same degree.
This means that all homogeneous components Rκ are finite dimensional rational
representations of G.

We can decompose every Rκ as a direct sum of simple representations

Rκ =
⊕

ω∈Ω

W ω
κ with W ω

κ
∼= ω⊕eκω .

If we define then the isotopic components of R as Rω = ⊕κW ω
κ . Now we can

regroup the terms in the direct sum of our ring to obtain

R ∼=
∞
⊕

κ=0,ω∈Ω

W ω
κ =

⊕

ω∈Ω

Rω.

In words, the ring R is the direct sum of its isotopic components. Note also
that if α is a endomorphism of R as a G-representation then α will map isotopic
components inside themselves because of Schur’s lemma (try to prove this as an
exercise).

One isotopic component interests us specially: the isotopic component of the triv-
ial representation 1. This component consists of all functions that are invariant
under the G-action. It is not only a vector space but it is also a graded ring: the
ring of invariants S = RG = {f ∈ R|g · f = f} = ⊕κ∈NW

1
κ .

Consider a function f ∈ S. The map µf : R → R : x→ fx is an endomorphism
of R as a representation: µf (g · x) = f(g · x) = (g · f)(g · x) = g · fx = g · µfx.
So fRω ⊂ Rω for every ω. Put in another way we can say that all isotopic
components are S-modules.

We are now ready to prove the main theorem:

Theorem 2.2. If G is a reductive group and V a finite dimensional representation
then the ring of invariants S = C[V ]G is finitely generated.

16



CHAPTER 2. AFFINE QUOTIENTS

Proof. To prove that S is finitely generated we first prove that this ring is
noetherian. Suppose that

a1 ⊂ a2 ⊂ a3 ⊂ · · ·
is an ascending chain of ideals in S. Multiplying with R we obtain a chain of
ideals in R:

a1R ⊂ a2R ⊂ a3R ⊂ · · · .
This chain is stationary because R is a polynomial ring and hence noetherian.
Finally we show that aiR ∩ S = ai. Multiplication with ai maps the isotopic
components into themselves so

(aiR) ∩ S =

(

ai

⊕

ω∈Ω

Rω

)

∩ S =

(

⊕

ω∈Ω

aiR
ω

)

∩ S = aiR
1 = aiS = ai.

Now let S+ = ⊕κ≥1W
1
κ denote the ideal of S generated by all homogeneous

elements of nonzero degree. Because S is Noetherian, S+ is generated by a finite
number of homogeneous elements: S+ = f1S+ · · ·+frS. We will show that these
fi also generate S as a ring.

Now S = C + S+ so S+ = Cf1 + · · · + Cfr + S2
+, S2

+ =
∑

i,j Cfifj + S3
+ and by

induction
St+ =

∑

i1...it

Cfi1 · · · fit + St+1
+ .

So C[f1, . . . , fr] is a graded subalgebra of S and S = C +S+ = C[f1, . . . , fr] +St+
for every t. If we look at the degree d-part of this equation we see that

Sd = C[f1, . . . , fr]d + (St+)d.

Because St+ only contains elements of degree at least t, (St+)d = 0 if t > d. As
the equation holds for every t we can conclude that

Sd = C[f1, . . . , fr]d and thus S = C[f1, . . . , fr]

Now because S is finitely generated and does not have nilpotent elements, it
corresponds to a variety V (S) and the embedding S ⊂ R gives a

π : V (R)→ V (S) : m 7→ m ∩ S

The map π is a projection because if s is a maximal ideal in S then sR is not
equal to R because sR∩S = s 6= S. Therefore sR will be contained in a maximal
ideal m ⊳R (there may be more) so π(m) = s.

17
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Furthermore if m ⊳R then m∩S = g ·m∩S so points of V (R) in the same orbit
are mapped to the same point in V (S).

The reverse implication is however not true, points that are mapped to the same
point do not need to lie in the same orbit. Because π is a continuous map π−1(x)
must be a closed subset, so if there exists an orbit O that is not closed and
w = π(O) we know that π−1(w) must contain points outside O. Note that if G

is finite then this problem does not occur because all orbits contain only a finite
number of points and are hence closed.

The projection map π has a special property. Suppose ψ : V (R)→ X is a map to
another variety that is constant on orbits (ψ(gv) = ψ(v)) then the corresponding
ψ∗ : C[X] → R maps C[X] inside S. This means that we have a map τ from
V (S) to X such that ψ = τ ◦ π.

V (R)
ψ //

π

��

X

V (S)

∃τ

==
z

z
z

z
z

z
z

z

.

This means that π is the closest we can get to a quotient in the category of
varieties, therefore we will call π a categorical quotient and we will denote V (S)
by V//G.

Suppose that O1 and O2 are two closed disjoint orbits. These correspond to two
ideals o1, o2 ⊳R the fact that they are disjoint translates to o1 + o2 = R and the
fact that they are orbits to g · oi = oi. Their images under the projection must
also be disjoint because o1 ∩ S + o2 ∩ S = (o1 + o2) ∩ S = S. The inverse image
of a point in V//G contains at most one closed orbit. It also contains exactly one
closed orbit: let O be an orbit in π−1(p) with minimal dimension then this must
be closed because otherwise Ō \ O would consist of orbits of smaller dimension.

We can summarize all this in a theorem

Theorem 2.3. If V is a finite dimensional representation of a reductive group,
then there exists a unique variety V//G = V (C[V ]G) such that

1. The points are in one-to-one correspondence with the closed orbits in V .

2. The projection V → V//G is a categorical quotient.

3. If G is finite then as a set V//G = V/G.

18
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2.3 Kleinian singularities

In this section we will determine generators and relations for the rings of invari-
ants C[V ]G.

Theorem 2.4. Every Kleinian singularity is generated by three invariants.

Proof. In order to prove this we define a map ̺ : C[V ] → C[V ]G, the Reynolds
operator,

̺(f) =
1

|G|
∑

g∈G
f g.

This map is a projection ̺2 = ̺ and it is the identity operation on C[V ]G. So to
get a basis for the ring of invariants we can look at the set of images of all the
monomials in C[V ].

̺X iY j.

We will now consider the different types

An If g is the generator of the cyclic group then g ·X = ζX, g · Y = ζ−1Y with
ζ = e2π/k. Therefore

̺X iY j =
n
∑

k=1

gk ·X iY j

=
n
∑

k=1

ζk(i−j)X iY j

=

{

0 i 6= j mod n

nX iY j i = j mod n
.

From this one can deduce that all invariants are generated by Xn, Y n and
XY .

Dn The elements of this group can be written as

(

0 i
i 0

)l

slgk =

(

ζ 0
0 ζ−1

)k

1 ≤ k ≤ 2n, 1 ≤ l ≤ 4
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Therefore

̺X iY j =
2
∑

k=1

ngk ·X iY j + sgk ·X iY j

=
n
∑

k=1

ζk(i−j)(X iY j + ii+jXjY i)

=











0 i 6= j mod 2n or

X iY j − Y jX i i = j mod 2n and i is odd

X iY j + Y jX i i = j mod 2n and i is even

.

From this one can deduce that all invariants are generated by X2Y 2, XY (X2n−
Y 2n) and X2n + Y 2n.

E6 The group is generated by two matrices of order 6:

(

i+1
2
− i+1

2−i+1
2

−i+1
2

)

and

(

i+1
2

i+1
2

−−i+1
2

−i+1
2

)

Using calculations in GAP we can find 3 generators: XY (X4−Y 4), (X4−Y 4)2 +
16X4Y 4, (X4 + Y 4)3 − 36X4Y 4(X4 + Y 4).

E7 The group is generated by E6 and a matrix of order 8:

(√
2+
√

2i
2

0

0
√

2−
√

2i
2

)

Therefore we can express the invariants of E7 in terms of those of E6: (XY (X4−
Y 4))2, (X4 − Y 4)2 + 16X4Y 4, X17Y − 34X13Y 5 + 34X5Y 13 −XY 17.

E8 The group is generated by E7 and a matrix of order 10:

(√
2+
√

2i
2

0

0
√

2−
√

2i
2

)

Theorem 2.5. The ideal of relations between the 3 generators of the ring of
invariants is generated by one element. These relations are

An XY + Zn,

Dn Xn+1 −XY 2 + Z2,
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E6 X4 + Y 3 + Z2,

E7 X3Y + Y 3 + Z2,

E8 X5 + Y 3 + Z2.

Proof. The dimension of the quotient space must be two because the map C
2 →

V/G has finite fibers. If the ideal would be generated by more than one generator
C[X,Y, Z]/p, its corresponding variety would not be two-dimensional. The exact
relation can be easily deduced from the generators above.

To give you a flavor of what these quotient varieties look like, we include some
graphs of the real parts of the equations.

A6 D2 E6

E7 E8
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Chapter 3

Smash Products and

Preprojective Algebras

In this chapter we will associate several noncommutative algebras with these
Kleinian singularities

3.1 Cayley-Hamilton Algebras

From linear algebra we recall that every n×n-matrix A satisfies its characteristic
polynomial

χA(X) := det(A−X1)

the coefficients of this polynomial can be expressed as symmetric functions of the
eigenvalues of A, (λi)

χA(X) = Xn −
∑

i

λiX
n−1 + · · ·+ (−1)k

∑

i1<···<ik

λi1 · · ·λik + · · ·+ (−1)nλ1 · · ·λn.

We can rewrite these coefficients in function of the traces of the powers of A using
the expressions TrAk =

∑

i λ
k
i .

χA(X) = Xn − TrAXn−1 +
(TrX)2 − TrX2

2
+ · · · (∗)

In this way we have found an expression of the characteristic polynomial using
only traces.

Now we will expand this notion of characteristic polynomials to a broader class of
algebras. If A is a finitely generated algebra with finitely generated center Z(A)
then a trace function is a linear map A → Z(A) satisfying the conditions
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• ∀a, b ∈ A : Tr(ab) = Tr(ba),

• ∀a, b ∈ A : Tr(Tr(a)b) = Tr(a)Tr(b).

For these algebras it makes sense to define a characteristic polynomial of order
n χna(X) ∈ Z(A)[X] using the expression (∗). Now we will call A a Cayley-
Hamilton Algebra of order n if and only if Tr1 = n and every element satisfies its
own characteristic polynomial of order n: χna(a) = 0.

A morphism between nth Cayley-Hamilton Algebras will be an algebra morphism
φ : A → B that commutes with the trace: TrB ◦ φ = φ ◦ TrA. We can use these
morphisms to turn the class of nth Cayley-Hamilton Algebras into a category:
CHn.

The importance of these Cayley-Hamilton Algebras is that the allow a nice gener-
alization of the algebra-geometry correspondence to non-commutative algebras.

CHn has an object of special importance: the matrix-algebra Mn = Matn×n(C).
We will call a morphism of A to Mn a trace preserving representation.

Let A be a CH-algebra defined by a finite number of generators and relations.
This means that we can write A as a quotient of a free algebra:

A ∼= C〈Y1, . . . , Yk〉/R with R = (r1, . . . , rl).

We will write the generators of A as yi := Yi mod R. We can also If A is
generated by y1, . . . , yk then we define we can associate to every trace preserving
representation ρ a point in C

n2k = (Mn)
k: (ρ(y1), . . . , ρ(yk)). The set of all points

corresponding to a trace preserving representation will be denoted by trepnA.

On the other hand if we have a k-tuple of matrices (A1 . . . , Ak) that satisfies the
relations r1, . . . , rk and the trace relations Trw(A1 . . . , Ak) = [Trw(yi)](A1 . . . , Ak)
we can construct a morphism

ρ : A→ Matn×n(C) : yi 7→ Ai

This implies that we can consider trepnA as the closed subset of C
n2k where the

functions

fmij : C
n2k → C : (A1 . . . , Ak) 7→ [rm(A1 . . . , Ak)]ij

twij : C
n2k → C : (A1 . . . , Ak) 7→ [Trw(yi)](A1 . . . , Ak)ij − Trw(A1 . . . , Ak)δij

are zero ([rm(A1 . . . , Ak)]ij is the coefficient on the ith and the jth column of the
matrix rm(A1 . . . , Ak)). However, the ideal nA generated by the fmij, twij is not
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necessarily semiprime, so it is not always that C[trepnA] ∼= C[Mk
n ]/nA but we

have that

C[trepnA] ∼= C[Mk
n ]/
√

nA with
√

nA = {a|∃ℓ : aℓ ∈ nA}.

So trepnA can be considered as a variety and as such it is independent of the
choice of generators of A. We will call it the representation variety of A. A will
be called reduced if nA =

√
nA.

On the other hand we can construct a Cayley-Hamilton Algebra for every closed
subset ofX ⊂ (Mn)

k closed under the GLn-action: Denote by M[Mk
n ] the subspace

of Mn ⊗ C[Mk
n ] all polynomial maps

φ : Mk
n →Mn such that φ(g · (M1, . . . ,Mk)) = gφ(M1, . . . ,Mk)g

−1.

This space is an algebra using the pointwise matrix multiplication and it has a
trace function (Trf)(M1, · · · ,Mk) = Trf(M1, · · · ,Mk). It is easy to check that
it is in fact a Cayley-Hamilton Algebra of order n.

For X we can define the subset nX = {φ ∈ M[Mk
n ]|∀x ∈ X : f(x) = 0} This

subset is in fact an ideal and TrnX ⊂ nX so

M[X] := M[Mk
n ]/nX

is also a Cayley-Hamilton Algebra of order n.

The expected generalization of the commutative setting would be thatX 7→M[X]
and A 7→ trepnA are inverses of each other giving an equivalence of categories
between CHn and GLn − AffV. This is only partly true

Theorem 3.1. For every reduced Cayley-Hamilton Algebra A, we have that

M[trepnA] ∼= A.

This means that reduced Cayley-Hamilton Algebras are completely described by
their representation variety.

The converse is not true: there are non-isomorphic GLn-varieties giving the same
CH-algebra. If A is not reduced the theorem still holds if we redefine M[trepnA]
as M[Mk

n ]/(Mn(nA) ∩M[Mk
n ]).

For the GLn-action on (Mn)
k we can construct the quotient π : (Mn)

k → (Mn)
k//GLn.

Note that if (M1, . . . ,Mk) ∈ trepnA then also g ∈ (M1, . . . ,Mk) ∈ trepnA and
one can check that two representations are in the same if and only if they are
isomorphic. It makes sense to look at π(trepnA) we will call this the quotient va-
riety of trepnA and we will denote it tissnA. C[tissnA] consist of all GLn-invariant
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polynomial functions from trepnA to C and it is easy to see that it classifies the
closed GLn-orbits in trepnA.

We have a nice description of this quotient

Theorem 3.2.

1. C[(Mn)
k]GLn is generated by functions of the form

(M1, ·,Mk) 7→ TrMi1 · · ·Mil .

where some of the ij may be the same and 0 > l > n2.

2. C[trepnA]GLn = Tr(A) or equivalently tissnA = V (Tr(A)).

3. The points of tissnA are in one to one correspondence with the semisimple
trace preserving representations of A.

We will omit the proofs of this theorem.

3.2 Smash Products

Now we will associate to every Kleinian singularity (V,G) an CH-algebra whose
quotient variety is isomorphic to V//G.

As we know from the second lesson, the action of G on V gives rise to an action
on the polynomial ring C[V ] ∼= C[X,Y ]. Construct the vector space C[V ]|G| we
can identify the standard basis elements with the elements in the group, such
that every element of this space can be written uniquely as a sum of f(X,Y )g
where f(X,Y ) is a polynomial function and g is an element of G. We can now
define a product on this vector space

fi(X,Y )gi × fj(X,Y )gj = (figi · fj)gigj,

in this expression the · denotes the action of G on C[V ]. One can easily check that
this product is associative and by linearly extending it to the whole vector space
one obtains an algebra: the smash product of C[V ] and G. In symbols we write
C[V ]#G. The center of this algebra can be easily determined: if z =

∑

g fgg ∈ Z
then

∀f ∈ C[V ] : [z, f ] = fg(f − g · f)g = 0 and ∀h ∈ g : [z, h] = (h · fg − fg)gh

The first equation implies that fg = 0 if g 6= 1 and the second implies that f1

must be a G-invariant function so we can conclude that

Z(C[V ]#G) ∼= C[V ]G.
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We can also embed this algebra into M|G|(C[V ]): if we consider C[V ]|G| as a
space of row vectors then multiplication on the right with g can be modeled with
a permutation matrix and multiplication with a function f with the diagonal
matrix







g1 · f
. . .

g|G| · f






.

The standard trace on M|G|(C[V ]) gives a trace on C[V ]#G making it a CH-
algebra of order |G|. For this trace we have that

Tr(
∑

fgg) :=
∑

π(fg)Trg =
∑

g∈G
g · f1 ∈ Z(C[V ]#G)

The fact that the trace comes from an ordinary matrix trace implies that the
CH-identity is satisfied. Note also that the trace maps surjectively onto C[V ]G.

3.3 Quivers

A quiver Q = (Q0, Q1, h, t) consists of a set of vertices Q0, a set of arrows Q1

between those vertices and maps h, t : A → V which assign to each arrow its
head and tail vertex. We also denote this as

76540123h(a) 76540123t(a)
aoo .

The Euler form of Q is the bilinear form χQ : Z
#V × Z

#V → Z defined by the
matrix

mij = δij −#{a|'&%$ !"#i '&%$ !"#jaoo , }
where δ is the Kronecker delta.

A sequence of arrows a1 . . . ap in a quiver Q is called a path of length p if t(ai) =
h(ai+1), this path is called a cycle if t(ap) = h(a1). A path of length zero will be
defined as a vertex. A quiver is strongly connected if for every couple of vertices
(v1, v2) there exists a path p such that s(p) = v1 and t(p) = v2.

A dimension vector of a quiver is a map α : Q0 → N, the size of a dimension
vector is defined as |α| := ∑v∈Q0

αv. A couple (Q,α) consisting of a quiver and
a dimension vector is called a quiver setting and for every vertex v ∈ Q0, αv is
referred to as the dimension of v. A setting is called sincere if none of the vertices
has dimension 0. For every vertex v ∈ Q0 we also define the dimension vector

ǫv : V → N : w 7→
{

0 v 6= w,

1 v = w.
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An α-dimensional complex representation W of Q assigns to each vertex v a linear
space C

αv and to each arrow a a matrix

Wa ∈ Matαh(a)×αt(a)
(C)

The space of all α-dimensional representations is denoted by Rep(Q,α).

Rep(Q,α) :=
⊕

a∈A
Matαh(a)×αt(a)

(C)

To the dimension vector α we can also assign a reductive group

GLα :=
⊕

v∈V
GLαv

(C).

An element of this group, g, has a natural action on Rep(Q,α):

W := (Wa)a∈A, W
g := (gt(a)Wag

−1
s(a))a∈A

The quotient of this action will be denoted as

iss(Q,α) := Rep(Q,α)//GLα.

Quiver representations can be seen as representations of an algebra, called the
path algebra. If we take all the paths, including the one with zero length, as
a basis we can form a complex vector space CQ. On this space we can put a
noncommutative product, by concatenating paths. By the concatenation of two
paths a1 . . . ap and b1 . . . bq we mean

a1 . . . ap · b1 . . . bq :=

{

a1 . . . apb1 . . . bq s(ap) = t(b1)

0 t(ap) 6= h(b1)

For a vertex v and a path p we define vp as p if p ends in v and zero else. On the
other hand pv is p if this path starts in v and zero else.

The vector space CQ equipped with this product is called the path algebra. The
set of vertices Q0 = {v1, . . . , vk} forms a set of mutually orthogonal idempotents
for this algebra. The subalgebra generated by these vertices is isomorphic to
CQ0 = C

⊕k and this is also the degree zero part if we give CQ a gradation using
the length of the paths.

Suppose we have an n-dimensional representation ρ of the path algebra, then we
can decompose the vector space C

n into a direct sum

Cn := ρ(v1)C
n ⊕ · · · ⊕ ρ(vk)Cn.
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Note that ρ(vi) acts like the identity on ρ(vi)C
n. Choosing bases in ρ(vi)C

n we
can associate with every arrow a of Q a matrix Wa corresponding to the map

ρ(a)|ρ(t(a))Cn : ρ(t(a))Cn → ρ(h(a))Cn

These matrices give us a quiver representation W with dimension

α : Q0 7→ N : vi 7→ Dimρ(vi)C
n.

The identification of ρ with a quiver representation depends on the choice of the
base and hence there is still an action of GLα working on this representation.
Making the quotient we can say that every equivalence class of n-dimensional
CQ-representations defines uniquely an α-dimensional representation class of Q,
for a certain α of size n. This implies that if we take take the quotient in RepnCQ
or in Rep(Q,α) we get the same. In symbols we have

issnCQ ∼=
⊔

|α|=n
iss(Q,α).

Viewing quiver representations of a quiver as representations of a algebra we
easily translate the concepts simple and semisimple representation to the quiver
language.

A representationW is called simple if the only collections of subspaces (Vv)v∈V , Vv ⊆
C
αv having the property

∀a ∈ A : WaVs(a) ⊂ Vt(a)

are the trivial ones (i.e. the collection of zero-dimensional subspaces and (Cαv)v∈V ).

The direct sum W ⊕W ′ of two representations W,W ′ has as dimension vector
the sum of the two dimension vectors and as matrices (W ⊕W ′)a := Wa ⊕W ′

a.
A representation equivalent to a direct sum of simple representations is called
semisimple.

From this point of view an orbit of a quiver representation is closed if and only if
this representation is semisimple. So one can also consider iss(Q,α) as the space
classifying all semisimple α-dimensional representation classes.

Path algebras of quiver perform a similar function as free algebras (in fact free
algebras are path algebras of quivers with one vertex). Every algebra over
CQ0 = C

⊕k can be seen as a quotient of a path algebra of a quiver with k vertices.
If we want to study the representations of A = CQ/I, we can see them as repre-
sentations of CQ satisfying some relations. Therefore it makes sense to consider
the variety of α-dimensional representations of A, this is the closed subset of
Rep(Q,α) satisfying the relations in I. We will denote this variety as Rep(A,α).
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Because this is a closed subset of Rep(Q,α), the quotient Rep(A,α)//GLα can be
seen as the image of Rep(A,α) under the quotient map Rep(Q,α) → iss(Q,α).
Again it classifies the semisimple α-dimensional representations up to isomor-
phism and hence we denote it by iss(A,α).

3.4 Getting Quiver representations from Smash

Products

To go from the smash product to quivers, we recall from the first chapter that

CG =







Matn1×n1

. . .

Matnk×nk







Where k is the number of simple representations of G and n1, . . . , nk are the di-
mensions of these representations. Now let e denote the element that corresponds
to the matrix having a 1 in the upper left corner for each representation and zeros
everwhere else.

















1
0

...
0

. . .
1

0
...

0

















∈ CG.

This element is the sum of k idempotent elements with a unique one, we denote
these by e1, . . . , ek. Each of these corresponds to a unique simple representation
of G. These representations can be seen as Si ∼= CGei The ei also have the
property that for a CG-representation W the dimension of the subspace eiW is
the same as the multiplicity of Si inside W . Another important property is that
the ideal generated by e is the full group algebra, CGeCG = CG, this is because
matrix algebras have no proper ideals and e has a nonzero value in every matrix
component of CG.

Given the algebra A = C[V ]#G, we look at the subspace Π := eAe. This space
is again an algebra but its unit element is now e instead of 1, it is called the
preprojective algebra of G and V . The preprojective algebra is closely related
to A: they have the same representation theory. If W is a representation of
A then the subspace eW is a representation of Π. On the other hand if W is
a representation of Pi we can turn it into a representation of A by taking the
tensor product

WA := A⊗Π W = Ae⊗eAeW
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These two operations are each other’s inverse:

e(Ae⊗Π W ) = eAe⊗eAeW = W

Ae⊗Π eW = Ae⊗eAe eA⊗AW = AeA⊗AW = A⊗AW = W.

So instead of looking at the representations of A we can consider representations
of Π. Π has the advantage that it is an algebra over eCGe = C

⊕k so it is the
quotient of a path algebra of a quiver.

Not all representations of A are of interest, we were only considering trace pre-
serving representations of A. These corresponds to representations of Π with a
special dimension vector.

If W is a trace preserving representation of A then it is also a trace preserving
representation of CQ. Because TrCGg = |G|δg1 we know that W must be iso-
morphic to the regular representation of G. This means that eiW = eieW is
ni-dimensional where ni = dimSi. So eW is an α-dimensional representation
with αi = ni = dimSi.

We can conclude that

trepA//GLn ∼= Rep(Π, α)//GLα

Finally we need an explicit description of Π in terms of its quiver and its relations.
The vertices of the quiver are already known these are the simple representations.
The arrows will correspond to generators of A, these sit inside the degree 1 part:
A1 = (CX + CY )CG.

Now for every couple i, j we can choose a basis for the subspace ei(CX+CY )CGej ⊂
C[V ]#G. The union of all these bases forms a basis {a1, . . . , al} for the space
eA1e. We can now construct a quiver QG with vertices the set {e1, . . . , ek} and
as arrows {a1, . . . , al}. If the arrow aℓ sits in ei(CX + CY )CGej then we let it
run from ei to ej: h(aℓ) = ej, t(aℓ) = ei.

Theorem 3.3. QG is the McKay Quiver of G.

Proof. The dimension of ei(CX + CY )CGej is the same as the multiplicity of ei
in V ⊗ CG

To obtain the relations we show first write out eXY − Y Xe in terms of these
arrows. In the case of An this is easy to do, eXe will correspond to all clockwise

arrows (i
ai→ i+1) and eY e to all anticlockwise arrows (i− 1

bi← i). Therefore the
relation will turn out to be

∑

i

ai−1bi − bi+1ai
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Because every term above consists only of paths from i to i, all these terms
must be zero separately. For the other cases one can do similar things but the
calculations become more complicated. We will only state the general result
without proof.

Theorem 3.4 (Crawley-Boevey). Choose an involution on the arrows ·∗ : Q1 →
Q1 such that h(a∗) = t(a) and t(a∗) = h(a). Take a subset A ⊂ Q1 such that
every arrow can uniquely be written as a or a∗ with a ∈ A. Now we can express
the preprojective algebra as

ΠG := CQG/(
∑

a∈A
aa∗ − a∗a).

32



Chapter 4

Resolutions of Singularities

4.1 Non-affine varieties

Up until now we have only seen affine varieties, however one can construct far
bigger class of varieties by gluing affine varieties together.

Let V be a topological space, such that it is the union V1 ∪ · · · ∪ Vn of open
subsets, and suppose that each Vi and each intersection Vi∩Vj have the structure
of reduced affine varieties and that the natural embedding Vi ∩ Vj → Vi can be
seen as morphisms of affine varieties, then we will call V a (pre)variety.

Morphisms between varieties are maps φ : V → W such that the φ|Vi∩φ−1(Wj) are
morphisms of affine varieties.

The standard examples of non-affine varieties can be done using the Proj -construction.
IfA is a graded ring such it is generated byX1, . . . , Xn with degree 0 and Y0, · · ·Ym
with degree 1 end let r1, . . . rp the homogeneous relations between the generators,
then we can define a subset

Proj A := {(x1, . . . , xn, y0, . . . , ym) ∈ C
n × P

m|ri(x1, . . . , xn, y0, . . . , ym) = 0}

This set is well defined because if ri is of degree d then

ri(x1, . . . , xn, λy0, . . . , λym) = 0⇔ λdri(x1, . . . , xn, λy0, . . . , λym) = 0.

Now we can cover by affine open subset Vi corresponding to the locus where yi is
nonzero:

Vi = {(x1, . . . , xn, λ
y0

yi
, . . . ,

yi−1

yi

yi+1

yi
, . . . ,

ym
yi

)|(x1, . . . , xn, y0, . . . , ym) ∈ Proj A} ⊂ C
n+m
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Note that C[Vi] = A[y−1
i ] and C[Vi ∩ Vj] = A[y−1

i , y−1
j ] so Proj A is indeed a

variety.

This variety can be mapped to V (A0) by the ordinary projection

(x1, . . . , xn, y0, . . . , ym) 7→ (x1, . . . , xn).

With all this in mind we can introduce the concept of a resolution of a singularity:

Definition 4.1. If V is a singular reduced variety then the morphism of varieties
π : W → V is a resolution of V if

• π is a surjection,

• there is an open parts UV ⊂ V and UW ⊂ W such that π|UW
is an isomor-

phism between UW and UV ,

• W is smooth (if W is not smooth we call π a partial resolution). The locus
of W for which π is not one-to-one is called the exceptional fiber.

4.2 Blow-ups

An interesting way of constructing resolutions is by using blow-ups. Suppose V
is an affine variety and n ⊳ C[V ] is an ideal corresponding to the closed subset
X. The blow-up of X is then defined as

Ṽ = Proj C[V ]⊕ nt⊕ n
2t2 ⊕ · · · .

The standard projection π : Ṽ → V is at least a partial resolution because if
p ∈ V \X and y0t, . . . ymt are the generators of nt is there must be at least one
yi that is not zero on p, so the preimage of p will only contain the point

(x1(p), . . . , xn(p), y0(p), . . . , ym(p))

We will now calculate the blow ups corresponding to the kleinian singularities.
The ring C[X,Y, Z]/(XY − Z2) has a unique singularity in the point (0, 0, 0)
because

(∂X , ∂Y , ∂Z)r = (Y,X, 2Z) = 0⇔ (X,Y, Z) = (0, 0, 0).

The blow-up is (using the convention x = Xt, y = Y t, z = Zt)

Proj C[X,Y, Z]/(r)⊕ (X,Y, Z)t⊕ (X,Y, Z)2t2 ⊕ · · ·

=
C[X,Y, Z, x, y, z]

(XY − Z2, Xy − xY, xZ −Xz, Y z − yZ,Xy − Zz, xy − z2)

= {(X,Y, Z,X, Y, Z) ∈ C
3 \ {0} × P

2|XY − Z2} ∪ {(0, 0, 0, x, y, z) ∈ P
2|xy − z2 = 0}
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where the last bit is the exceptional fiber, it is a conic and hence as a variety it is
isomorphic to P1. We can cover the blow-up variety by two parts corresponding
to

x 6= 0 we can choose coordinates X, η = y/x, ζ = z/x the relation XY − Z2

becomes 6 X2(η − ζ2) = 0. which is smooth.

y 6= 0 we can choose coordinates ξ = x/y, Y, ζ = z/y the relation XY − Z2 be-
comes 6 Y 2(ξ − ζ2) = 0. which is smooth.

z 6= 0 is not necessary because it implies that both x, y 6= 0.

The ring C[X,Y, Z]/(XY − Zn), n ≥ 3 has a unique singularity in the point
(0, 0, 0) because

(∂X , ∂Y , ∂Z)r = (Y,X, 3Z2) = 0⇔ (X,Y, Z) = (0, 0, 0).

The blow-up is

C[X,Y, Z, x, y, z]

(XY − Zn, Xy − xY, . . . , Xy − Zn−1z, xy − Zn−2z2)

= {(X,Y, Z,X, Y, Z) ∈ C
3 \ {0} × P

2|XY − Z2} ∪ {(0, 0, 0, x, y, z) ∈ P
2|xy = 0}

where the last bit is the exceptional fiber, it is a union of 2 projective lines that
intersect in the point (0, 0, 0, 0, 0, 1).

We can cover the blow-up variety by three parts corresponding to

x 6= 0 we can choose coordinates X, η = y/x, ζ = z/x the relation XY − Zn

becomes η − ζnXn−2 = 0. which is smooth.

y 6= 0 we can choose coordinates ξ = x/y, Y, ζ = z/y the relation XY − Zn

becomes ξ − ζ2Y n−2 = 0. which is smooth.

z 6= 0 we can choose coordinates ξ = x/z, η = y/z, Z the relation XY − Zn

becomes ξη−Zn−2 = 0, which has a singularity if n > 3, but this singularity
is ’smaller’ so we can blow it up again.

Diagramatically we get the following

�

An

PWQVRUSTPWQVRUST�

An−2

PWQVRUSTPWQVRUSTPWQVRUSTPWQVRUST• •�

An−4

PWQVRUSTPWQV RUSTPWQVRUST• •· · ·

n− 1× P1
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For D2 we can do the following: The first blow-up has exceptional fiber z = 0
because the relation becomes Xx2 + Xy2 + z2 = 0. If we look at the chart for
y 6= 0 we get the relation

ξ3Y + ξY + ζ2

which has three singularities, for ξ = 0,±i if we blow these 3 up (define ξ± = ξ±i),
we get 3 exceptional fibers of the form ξ̄y + ζ̄2 with ζ̄ = ζt, x̄i = t(ξ + 0,±i)
(depending on the point blown up). One can check easily that there are no further
singularities.

If n > 2 then the exceptional fiber is z = 0. There are two singularities in the
blow-up, the one corresponding to (1, 0, 0) which is of the type Dn−2 and the one
in (0, 1, 0) which has local equation ξn+1Y n−1 + ξY + ζ2. The blow-up of this last
singularity has as exceptional fiber a conic (look at the degree 2-part) and there
are no further singularities.

The diagram looks as

N

Dn

PWQVRUSTN �

Dn−2

PWQVRUSTPWQVRUSTPWQVRUST• N �

Dn−4

PWQVRUSTPWQV RUSTPWQVRUST• •· · · N

D3

PWQVRUSTPWQV RUSTPWQVRUSTPWQVRUST• •· · · N
N

N
C

PWQVRUSTPWQV RUSTPWQVRUSTPWQVRUSTPWQVRUST

PWQVRUST

PWQVRUST

• •· · · • •
•

•

PWQVRUSTPWQV RUSTPWQVRUST• •· · · N

D2

PWQVRUSTPWQV RUSTPWQVRUSTPWQVRUST• •· · · •
N

N
C

Below we show a picture of the resolution of D2.

Finally we do the diagrams E6, E7, E8.

N

E6
PWQVRUST

�

PWQVRUST
PWQVRUSTPWQVRUST�

PWQVRUST
PWQVRUSTPWQVRUSTPWQVRUSTPWQVRUSTN• •

PWQVRUST

PWQVRUSTPWQVRUSTPWQVRUSTPWQVRUSTPWQVRUST• • • •
•

N

E7

PWQVRUSTN PWQVRUSTPWQVRUSTN N PWQVRUSTPWQVRUSTPWQVRUSTPWQVRUST• N

N

N

PWQVRUST

PWQVRUSTPWQVRUSTPWQVRUSTPWQVRUSTPWQVRUSTPWQVRUST• • • • •
•
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N

E8

PWQVRUSTN PWQVRUSTPWQVRUSTN PWQVRUSTPWQVRUSTPWQVRUSTN N PWQVRUSTPWQVRUSTPWQVRUSTPWQVRUSTPWQVRUST• • N N

N

PWQVRUSTPWQVRUSTPWQVRUSTPWQVRUSTPWQVRUSTPWQVRUSTPWQVRUST

PWQVRUST

• • • • • •
•

Mystery: Construct a quiver where the vertices correspond to the P1’s in the
exceptional fiber in the blow up of V/G and there is an arrow from vi to vj if their
corresponding P1’s intersect. This quiver is isomorphic to the McKay quiver of
G without the vertex corresponding to the trivial representation.
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Chapter 5

Semi-invariants and Moduli

spaces

5.1 Semi-invariants

As we have seen in the previous chapter it is possible to get a resolution of an
affine variety by constructing the Proj of a graded ring of which the degree zero
part is the ring of regular functions of the original variety. The method we used
for this was blow-ups. In invariant theory it is also possible to do a different
construction using semi-invariants.

If G is a reductive group then a multiplicative character of G is a group morphism
θ : G→ C

∗ : g 7→ gθ. We will write the action of θ exponentially because it will
be very handy later on. The characters of G form an additive group if we define
gθ1+θ2 := gθ1gθ2 , we will also use the shorthand nθ = θ + · · ·+ θ.

If G acts on a variety V then a function f ∈ C[V ] is called a θ-semi-invariant if

∀g ∈ G : g · f = gθf.

The subspace of θ-semi-invariants will be denoted by C[V ]θ. This space does not
form a ring, it is only a module over the ring of invariants C[V ]G.

We can construct an N-graded ring by taking the direct sum of all nθ-semi-
invariants with n ∈ N:

SIθ[V ] =
⊕

n∈N

C[V ]nθ.

It is easy to extend the proof of theorem to show that SIθ[V ] is also finitely
generated as an algebra over SIθ[V ]0 = C[V ]G.
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A point p ∈ V is called θ-semi-stable if there is an f ∈ C[V ]nθ such that f(p) 6= 0.
The set of θ-semi-stable points will be denoted by V ss

θ . Note that V ss
θ itself is

not necessarily an affine variety but if f1, · · · , fk forms a set of homogeneous
generators of SIθ[V ] over C[V ]G then V ss

θ can be covered with affine varieties
corresponding to the rings

Ri = C[V ][f−1
i ] V (Ri) = {p ∈ V |fi(p) 6= 0}

These varieties and rings have G-actions on them coming from the G-action on
V and one can take the categorical quotient of these varieties. Their ring are of
the form

SIθ[V ][f−1
i ]0

and hence one can cover Proj SIθ[V ] with these quotients varieties. Out of this
one can conclude

Theorem 5.1. The variety Proj SIθ[V ] classifies the closed orbits in V ss
θ . If there

exists a θ-semi-invariant that is non-zero in a point of V then V ss
θ is open and

dense in V and the image of the map V ss
θ //G→ V//G is dense.

5.2 semi-stable representations of quivers

If Q is a quiver and α a dimension vector then we can look at the θ-semi-invariants
of the GLα-action on Rep(Q,α). We will denote this set by Repssθ (Q,α), the
quotient of this set by the GLα-action we be denoted by Mss

θ (Q,α) and is called
the moduli space of θ-semistable representations.

First of all we have to look at the multiplicative characters of GLα. For the general
linear group GLn the characters are given by powers of the determinant, so the
group of characters is isomorphic to Z. As GLα consists of k = #Q0 components
each one isomorphic to a general linear group, the group of characters will be
isomorphic to Z

k:

θ = (θ1, . . . , θk) : GLα → C
∗ : (M1, . . . ,Mk) 7→ detM θ1

1 · · · detM θk
k .

In the case of invariants we had a nice description using traces of cycles, for semi-
invariants we can do a similar thing. A way to construct a θ-semi invariant is the
following: let i1, . . . , is be the vertices for which θiℓ is positive, while j1, . . . , jt be
the ones with a negative θjℓ . Now chose for each i and j |θiθj| elements in jCQi
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and put all these in a
∑

j θj ×
∑

i θi-matrix D over CQ.

D :=

















j1←i1 ... j1←i1 j1←is ... j1←is
... |θj1

θi1
|×

... ···
... |θj1

θis |×
...

j1←i1 ... j1←i1 j1←is ... j1←is
...

...
...

jt←i1 ... jt←i1 jt←is ... jt←is
... |θjtθi1

|×
... ···

... |θjtθis |×
...

jt←i1 ... jt←i1 jt←is ... jt←is

















Now ifW ∈ Rep(Q,α) then we can substitute each entry inD to its corresponding
matrix-value in W . In this way we obtain a block matrix DW with dimensions
∑

i αi|θi| ×
∑

j αj|θj|. One can easily check that

Dg·W =

















gj1

...
gj1

...
gjt

...
gjt

















DW





















g−1
i1

...
g−1

i1

...
g−1

is

...
g−1

is





















So if DW is a square matrix the determinant of DW is a θ-semi-invariant:

detDg·W = det g
θj1
j1
· det g

θjt
jt

detDW det g
−|θi1

|
i1

· det g
−|θis |
is

= gθ detDW .

We will call these semi-invariants determinantal semi-invariants

Theorem 5.2. As a C[RepαQ]GLα-module C[RepαQ]θ is generated by determinan-
tal semi-invariants. As a ring SIθ[RepαQ] is generated by invariants (i.e. traces
of cycles) and determinantal nθ-semi-invariants with n ∈ N.

Note that this implies that there are only θ-semi-invariants if DW is a square
matrix so

∑

i αi|θi| =
∑

j αj|θj| or equivalently θ · α = 0.

Now we can use this special form for the semi-invariants to get a nice interpreta-
tion for the covering of Rep(Q,α)ssθ//GLα.

As we have seen Rep(Q,α) describes the α-dimensional representations of the
pathalgebra CQ. Now if W ∈ Rep(Q,α) is θ-semistable then there exists a
∑

j |θj| ×
∑

i |θi|-matrix D with entries in CQ such that detDW 6= 0, so DW is
an invertible matrix:

∃EW : DWEW = 1P |θj |αj
and DWEW = 1P |θi|αi
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So W is also a representation of a new algebra for which D is is indeed an
invertible matrix. To be more precise we need a good interpretation a the identity
matrices that appeared in the equations above. Recall that for an α-dimensional
representation W the vertex i can considered as an idempotent in CQ and iW will
correspond to the identity matrix on the αi-dimensional space iW . The identity
matrix 1P |θj |αj

can hence be considered as the evaluation in W of the matrix

1j =















j1

...
j1

...
jt

...
jt















=

[

h(D11)

...
h(Dpp)

]

Now we define E = Eµν to be the matrix such that DE = 1j and ED = 1i so

∑

κ

DµκEκν = δµνh(Dµµ) and
∑

κ

EµκDκν = δµνt(Dµµ).

Now we define the universal localization of CQ at D to be the algebra

CQ[D−1] = CQE/(
∑

κ

DµκEκν − δµνh(Dµµ),
∑

κ

EµκDκν = δµνt(Dµµ))

Here QE is a new quiver consisting of Q together with extra arrows Eµν such that
h(Eµν) = t(Dµν) and t(Eµν) = h(Dµν).

There is a natural map CQ→ CQ[D−1] so we also have a map

Rep(CQ[D−1], α)→ Rep(Q,α)

This map is an (open) embedding because (D−1)W is uniquely defined by DW ,
its image consist precisely of these representations of CQ for which detDW 6= 0.

Theorem 5.3. Repssθ (Q,α) can be covered by representation spaces of universal
localizations of CQ. This covering is compatible with the GLα-action, so Mss

θ (Q,α)
can be covered by quotient spaces of universal localizations of CQ.

This theorem also holds for quotients of path algebras. We will work this out in
the next section for the preprojective algebras.

5.3 Moduli space for preprojective Algebras

So lets now take a closer look at the case of Kleinian singularities. As we already
know we can consider the singularity as the quotient space of the preprojective
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algebra over the McKay quiver with the standard dimension vector.

V//G = iss(ΠG, αG.

In order to construct a nice desingularization of this space we have to find a
good character. Let e1, . . . , en be the vertices of the quiver and let e1 correspond
to the trivial representation. For every vertex ei 6= e1 there exists a character
θi mapping e1 to −αGi = − dimSi, ei to 1 and all the other vertices to zero.
We denote the sum of all these θi as theta and this will be the character under
consideration:

θ(e1) = −|αG|+ 1 and θi = 1 if i 6= 0.

Theorem 5.4. If V//G is a kleinian singularity and Ṽ //G→ V//G is its minimal
resolution, then Ṽ //G = Mss

θ (ΠG, α).

The semi-invariants are constructed using matrices D of which the entries are all
paths starting from e1. If we constructDW , then every column ofDW corresponds
to a column of D because the dimension of e1 is 1. The determinant is linear
in the columns so we can chose D up to linear combinations of the columns. In
this way we can turn D into a form such that DW is block diagonal with the
dimension of every block corresponding to the dimension of a vertex. This means
that the θ-semi-invariants are generated by products of the θi-semi-invariants.
Therefore we can conclude that a representation is θ-semistable if and only if it
is θi-semistable for every i.

The θi-semi-invariants are generated over C[iss(Π, α)] by D’s that are 1×dimSi-
matrices whose entries are paths from e1 to ei. Using the preprojective relation
and the relations from matrix identities one can find a finite number of gener-
ating paths. For instance, these paths cannot run twice through a vertex with
dimension 1 otherwise we could split of a trace of a cycle (and this is contained
in C[iss(Π, α)]). If there are ki such paths there are Cki

αi
generators for the semi-

invariants.

This means that we can embed M ss
θ (Π, α) in

C
3 × P

C
k2
α2 × · · · × P

Ckn
αn .

The first factor is for the 3 invariants, the others for the θi-semi-invariants for
every i > 1.

We will now look at the different cases, separately.

1. An Up to multiplication with invariants there are for every ei exactly two
paths from e1: a clockwise pi and a counterclockwise qi. Each of these paths
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gives a thetai-semi-invariant. The projection map Repssθ (Π, α)→M ss
θ (Π, α)

can now be seen as

W 7→ [(XW , YW , ZW ), (p2, q2)W , . . . , (pn, qn)W ].

To calculate the exceptional fiber we must look at the semistable represen-
tation that have zero invariants (X,Y, Z). Because X is zero there must
be an i such that piW 6= 0 but pi+1W = 0. Semistability then implies that
qi+1W 6= 0. Also qi−1W must be zero otherwise Z = pi/pi−1qi−1/qi would not
be zero. This means that a point P comes from a point in the exceptional
fiber if it is of the form

[(0, 0, 0), (1, 0), · · · , (1, 0), (pi, qi)W , (0, 1), · · · , (0, 1)].

From this we can conclude that the exceptional fiber is indeed the union of
n− 1 P1 intersection each other consecutively.

Dn For this case we can use the preprojective relations to show that for the
vertices of dimension 1 there are always two independant paths: e.g.
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00

��������

For a vertex with dimension 2 we have 3 paths that matter e.g.
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dd ��������

��
]]

00
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To calculate the exceptional fiber we first assume that there is a vertex of
dimension 1 for which the two paths are nonzero. If this is the case then the
longest path for the other vertices with dimension 1 must be zero otherwise
the invariant connecting those 2 vertices is nonzero.

to be continued
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