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Abstract. In this talk, we discuss the results of investigations that began with a

solution to an open problem posed by Schwabhäuser and Szczerba regarding definability

(without parameters) in the three dimensional Euclidean geometry of lines, asking whether

intersection was definable from perpendicularity (two lines intersecting at a right angle). It

is not. The result is a “new” 3-dimensional geometry of lines, which we call perpendicular

geometry, since it can be formalized from perpendicularity. Further investigations produce

a rather complete classification of possible geometries arising from elementary Euclidean

binary relations between lines in R3, modulo the determination of (metrical) projective

geometries formalized by binary relations between points. The classification shows that in

a sense made precise, perpendicular geometry is the only new geometry that can arise from

binary geometric relations, except for possible new projective plane geometries, which we

conjecture do not exist. Generalizing to geometries of s-flats in n-dimensional Euclidean

geometry, we state a theorem which provides the essential first step towards a similar

classification for the general case. The theorem states that parallel is definable in such

a geometry no matter what binary geometric relation that one might chose to formalize

geometry (with an enumerated list of trivial exceptions). To what extent this is true for

ternary or higher order geometric relations is open, even for lines in R3. We conjecture

that it remains true, that is, that parallel is definable from anything “except for the

exceptions”. Finally, we note that perpendicular geometry, whose automorphism group is

connected with derivations, sheds some rather curious light on the relationship between

the product rule for derivations over a ring, and the sum rule. For example, it is a direct

consequence of perpendicular geometry that the product rule for the cross product of 3-

dimensional vectors implies the sum rule. It is conjectured that this is also true of all

finite dimensional semi-simple Lie algebras over the complex numbers.

In [2], Schwabhäuser and Szczerba investigated the possibility of formulating
Euclidean geometry based on lines as primitive notions, together with geometric
relations between lines. (An n-ary relation between lines in R3 is called geometric
provided that the relation is preserved under similarity transformations, that is,
compositions of rotations, reflections, dilations, and translations.) They showed
that for any n ≥ 2, the binary relation of perpendicularity (two lines intersecting
at a right angle), together with the ternary relation of copunctuality (three lines
intersecting at a single point) suffices to formalize n-dimensional Euclidean ge-
ometry. (Essentially, these relations suffice to interpret the points as equivalence
classes of pairs of intersecting lines.) They went on to show that for n ≥ 4, the
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single binary relation of perpendicularity sufficed, since copunctuality is defin-
able from perpendicularity for n ≥ 4. (Throughout this abstract, by “definable”
we mean first order definable without parameters, unless otherwise stated.)

It is easy to describe the binary geometric relations on L1(Rn). They are
the unions of orbits of the action of the group of similarity transformations on
L1(Rn). Let ×•θ be the binary relation of two lines intersecting at angle θ, and
let ×◦θ be the binary relation of two lines being skew at angle θ (parallel but
not equal if θ = 0). If A ⊆ R, we define ×•A =

⋃
θ∈A×•θ, and ×◦A =

⋃
θ∈A×◦θ.

A general binary geometric relation R on L1(Rn) has the form R = ×•A ∪×◦B
where A,B ⊆ [0, π

2 ] for n ≥ 3. For n = 2, we further require that B ⊆ {0}, since
skew lines do not exist in R2.

Schwabhäuser and Szczerba went on to observe that for n = 2, the binary
relation of perpendicularity and the ternary relation of copunctuality formed a
minimal set of relations between lines to formalize Euclidean geometry. In fact,
they observed that no set of binary relations would suffice in that case, so the
use of a ternary (or higher) relation was essential. (The proof is trivial. Simply
choose two distinct parallel lines, and define the bijection σ : L1(R2) → L1(R2)
that transposes the two lines, and leaves everything else fixed. This bijection
preserves all the the binary geometric relations, but does not preserve the ternary
relation of copunctuality.)

This left the case of n = 3. In this case, they noted that the binary relation of
perpendicularity and the binary relation of intersection sufficed, since the ternary
relation of copunctuality is definable in

〈
L1(R3),⊥•,×•〉, where ⊥•= ×π

2
and

×• = ×•[0, π
2 ]. They then asked whether this was a minimal set of relations.

It is obvious that perpendicularity is not definable from intersection. (In fact,
intersection alone suffices to formalize affine geometry.) So this amounted to
asking whether intersection was definable from perpendicularity in L1(R3).

This question was answered negatively in [1], by exhibiting an automorphism
of

〈
L1(R3),⊥•〉 that does not preserve ×•. (The automorphisms of this “per-

pendicular geometry” do not preserve the points.)
So, if intersection is not definable in perpendicular geometry, which geometric

relations are definable? The relation of parallel is easily seen to be definable.
There is a quaternary relation ≡, essentially an equivalence relation on unordered
pairs of lines. For A, B,C, D ∈ L1(R3), we say that AB ≡ CD iff there is a rigid
transformation σ (ie: induced by a composition of rotations and translations on
R3) such that σ(A) = C and σ(B) = D. The relations ⊥• and ≡ are, in fact,
inter-definable, that is, each is definable from the other. Furthermore, using
these two relations, one can define “algebraic operations” on the equivalence
classes of ≡ that have “derivation-like” behavior. One can use this behavior to
define the relations ×•θ and ×◦θ for any angle θ such that cos θ is an algebraic
number. In fact, we have the following theorem, which determines precisely the
binary geometric relations that are definable from perpendicularity.

Theorem 1. Let R = ×•A ∪×◦B with A,B ⊆ [0, π
2 ] be an arbitrary geometric

relation in L1(R3). Then R is definable in
〈
L1(R3),⊥•〉 iff (A ⊕ B)∼{0} is a

finite, nonempty set of angles, all of which have algebraic cosines, and A,B are
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both finite unions of intervals and isolated points, such that the endpoints of the
intervals and the isolated points all have algebraic cosines.

This theorem has a converse, in which the algebraicity of the angles is not
needed.

Theorem 2. Let A,B ⊆ [0, π
2 ] with (A ⊕ B)∼{0} a finite, nonempty set of

angles. Then the relation ⊥• is definable in
〈
L1(R3),×•A ∪×◦B

〉
.

Thus, all of the binary relations definable in
〈
L1(R3),⊥•〉 are actually inter-

definable with each other.
Now, suppose that we are given an arbitrary binary geometric relation R in

L1(R3). Ideally, we seek to determine which binary relations can be defined in〈
L1(R3),R

〉
. In all of these cases considered so far, the essential (and easy!)

first step has been to define the parallel relation ‖= ×•0 ∪×◦0. It turns out that
the task of defining parallel is not so easy in general, if you don’t know what you
are trying to define it from. And all that we know now is that R = ×•A ∪×◦B for
some A,B ⊆ [0, π

2 ]. Nevertheless, we have the following theorem. (We call R a
logical relation provided that R is definable from equality alone. Otherwise, R
is called non-logical. There are exactly four logical binary relations.)

Theorem 3. Let R be a non-logical geometric binary relation. Then ‖ is
definable in

〈
L1(R3),R

〉
.

This theorem can be generalized. Let Ls(Rn) with 0 ≤ s ≤ n be the set
of all s-flats in Rn. Again, the group of similarity transformations on Rn

acts on L(Rn), and we have a corresponding notion of a geometric relation
on L(Rn). The binary geometric relations have a similar description as R =
×•A ∪×◦B where A and B are now sequences of angles of length s satisfying the
restrictions A ⊆ {

α ∈ Rs | 0 ≤ α1 ≤ · · · ≤ αs ≤ π
2 with α` = 0 for ` ≤ 2s− n

}
and B ⊆ {

β ∈ Rs | 0 ≤ β1 ≤ · · · ≤ βs ≤ π
2 with β` = 0 for ` ≤ 2s + 1− n

}
. In

this more general situation, we must be somewhat careful in stating the theorem,
due to the existence of non-logical geometric equivalence relations on Ls(Rn)
other than ‖.

For the record, we should note just exactly what the geometric equivalence
relations on Ls(Rn) are. Besides the logical equivalence relations and the parallel
relation ‖, the geometric equivalence relations are as follows.

For s = 1 and n = 2, there is a geometric equivalence relation for every
subgroup G of R with π ∈ G. The geometric equivalence relation corresponding
to G is R = ×•A for A = {θ ∈ G | 0 ≤ θ ≤ π

2 }.
For n > 2, there are no non-logical equivalence relations other than ‖, unless

n = 2s, in which case there is exactly one such relation. In this case, the relation
R =‖ ∪×•〈π

2 ,..., π
2 〉 is a geometric equivalence relation.

Given a geometric binary relation R, we will refer to the relations R, the
compliment of R, and the symmetric difference of the identity relation with
either R or its compliment, as the associates of R. Note that any relation is
trivially inter-definable with any of its associates.

Having established the terminology, we can now state the main theorem on
the definability of parallel.
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Theorem 4. Let R be an geometric binary relation on Ls(Rn). Then ‖ is
definable in 〈Ls(Rn,R)〉 iff R is not an associate of a geometric equivalence
relation other than parallel.

This suggests an open problem, which we state in its simplest case, in the form
of a conjecture.

Conjecture 1. Let R be a non-logical ternary geometric relation on L1(R3).
Then ‖ is definable from

〈
L1(R3),R

〉
.

Suppose that R is a binary geometric relation on Ls(Rn) such that ‖ is a con-
gruence relation of the structure 〈Ls(Rn),R〉. Such a relation, and its associates,
we call projective. (If R is an associate of such a relation, we may replace R by
its symmetric difference with the identity relation, if necessary.) In that case, if
parallel is definable (which according to the above theorem, it is in all interesting
cases), we may as well mod out by ‖ and consider R as a geometric relation on
Ls−1(P(Rn)). Note here that the group action induced by the similarity trans-
formations can be considered as the orthogonal group action on P(Rn), the real
n−1-dimensional projective space. (Thus, for us a projective geometric relation
on Ls−1(P(Rn)) is one that is preserved by all metric preserving bijections on
the projective space P(Rn).) Essentially, projective relations are those relations
that are unable to distinguish between skew and intersecting pairs of s-flats of
the same angle sequences, except possibly for parallel s-flats.

Theorem 5. Let R be a non-projective binary geometric relation on Ls(Rn).
Then the ternary relation that asserts that three s-flats are mutually parallel and
all lie in some s + 1-flat is definable in 〈Ls(Rn),R〉.

Let us now return to the case of s = 1 and n = 3. The following theorem simply
states that the set of all binary relations definable in

〈
L1(R3),⊥•,×•〉 is correct,

given that we already know that the two binary relations of perpendicularity
and intersection suffice to formalize 3-dimensional Euclidean geometry.

Theorem 6. Let R = ×•A ∪×◦B with A,B ∈ [0, π
2 ] be a binary geometric

relation on L1(R3). Then R is definable in
〈
L1(R3),⊥•,×•〉 iff A and B can both

be written as finite unions of intervals and isolated points so that the endpoints
of the intervals and the isolated points all have algebraic cosines.

Theorem 7. Let R = ×•A ∪×◦B with A,B ∈ [0, π
2 ] be a binary geometric

relation on L1(R3). If A ⊕ B contains a nonempty open interval, then ×• is
definable in

〈
L1(R3),R

〉
. Furthermore, if in addition (0, π

2 ] 6⊆ A ⊕ B (ie: R
is not an associate of ×•), and if A ⊕ B can be written as a finite union of
intervals and isolated points, then ⊥• is also definable in

〈
L1(R3),R

〉
. (Note

that in the latter case, if the endpoints of the intervals and the isolated points all
have algebraic cosines, then R is a single binary geometric relation that suffices
to formalize 3-dimensional Euclidean geometry.)

Now, let us consider a projective binary geometric relation R on L1(R3). By
replacing R with its symmetric difference with the identity relation, if necessary,
we may assume that R = ×A = ×•A ∪×◦A for some A ⊆ [0, π

2 ]. As mentioned
above, since R cannot distinguish between parallel lines in R3, we may as well
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mod out by ‖ and think of R as a relation between points in the projective plane
P(R3), two points being R related provided that the distance between the two
points in the projective plane is in A. For any θ ∈ [0, π

2 ], we define ×θ = ×•θ ∪×◦θ,
and ⊥= ×π

2
.

Theorem 8. Let R = ×A with A ⊆ [0, π
2 ] be a projective binary geometric

relation. Then R is definable in
〈
L1(R3),⊥〉

iff A can be written as a finite
union of intervals and isolated points where the cosines of the endpoints of the
intervals and the isolated points are all algebraic.

We conjecture the converse, without the algebraicity assumption.

Conjecture 2. Let R = ×A with A ⊆ [0, π
2 ] be a projective binary geometric

relation. Suppose that A can be written as a finite union of intervals and isolated
points. Then ⊥ is definable in

〈
L1(R3),R

〉
.

We can prove some special cases of this conjecture.

Theorem 9. Let R = ×A with A ⊆ [0, π
2 ] be a projective binary geometric

relation. Suppose that A can be written as a finite union of intervals and isolated
points. Suppose further that one of the following holds:

1. A = [0, θ) for some θ with 0 < θ ≤ π
2 .

2. A = [0, θ] for some θ with 0 < θ < π
2 .

3. A ∩ [π
4 , π

2 ] is either finite, or cofinite in [π
4 , π

2 ].
Then ⊥ is definable in

〈
L1(R3),R

〉
.

= : Pure Logic

‖ : Parallel

⊥ : Projective Plane

×• : Affine Geometry

⊥• : Perpendicular Geometry

⊥•,×• : Euclidean Geometry

???

Figure 1. Definability structure for elementary Euclidean bi-
nary relations

Let us call a geometric relation R on L1(R3) an elementary Euclidean relation
provided that R is definable in

〈
L1(R3),⊥•,×•〉. This is equivalent to saying

that R = ×•A ∪×◦B where A,B ⊆ [0, π
2 ] can both be written as a finite union
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of intervals and isolated points such that the endpoints of the intervals and the
isolated points all have algebraic cosines.

The above theorems then classify the elementary Euclidean binary relations
into the geometries shown in Figure 1, modulo the mysteries of the grey area
of the definability structure of the projective plane, which is conjectured to be
empty.

If the conjecture is true, then the only new geometry in Figure 1 is perpen-
dicular geometry, that is, the structure

〈
L1(R3),⊥•〉. So, let us look a bit closer

at this structure. An examination of the automorphism group of this structure
reveals some rather curious and amusing algebraic results and conjectures, some
of which, if true, surely must have some geometry lurking in the background as
the ultimate cause.

First of all, just as the automorphism group of 3-dimensional Euclidian geom-
etry (which we now identify with the structure

〈
L1(R3),⊥•,×•〉) is generated by

rotations, reflections, dilations and translations, so is the automorphism group
of perpendicular geometry

〈
L1(R3),⊥•〉 generated by rotations, reflections, di-

lations and “generalized translations”.
Let S2 be the set of unit vectors in R3. In the case of perpendicular geometry, a

“generalized translation” reduces to a map δ : S2 → R3, which satisfies δ(a×b) =
δ(a)×b+a×δ(b) whenever a ·b = 0 with ‖a‖ = ‖b‖ = 1. Any such map defines
a “generalized translation” via the map that takes that line A, and maps it to
σ(A) = A + a× δ(a), where a is a any unit direction vector for the line A.

It turns out, for geometric reasons, that any such map must extend uniquely to
a derivation on the cross product ring. Related to this is the following theorem.

Theorem 10. Let
〈
R3,0, +,−,×〉

be the cross product ring of 3-dimensional
vectors. Suppose that δ : R3 → R3 is a map that satisfies the product rule

δ(x× y) = δ(x)× y + x× δ(y) for all x,y ∈ R3.

Then δ also satisfies the sum rule

δ(x + y) = δ(x) + δ(y) for all x,y ∈ R3.

Furthermore, there exists a unique field derivation δ0 : R→ R such that

δ0(x · y) = δ(x) · y + x · δ(y) for all x,y ∈ R3

and
δ(λx) = δ0(λ)x + λδ(x) for all x ∈ R3 and λ ∈ R.

That is, any map on the cross product ring in R3 that satisfies the product
rule also satisfies the sum rule. Indeed, not only do we get the sum rule for free,
we also get a uniquely determined scalar derivation and the product rules for
the dot product between vectors, and for the scalar product between scalars and
vectors are also free.

It is natural to make the following conjecture.

Conjecture 3. Let L be a finite dimensional semi-simple Lie algebra over
the complex numbers C. Suppose that δ : L → L satisfies the product rule for the
Lie bracket δ[x, y] = [δ(x), y] + [x, δ(y)] for all x, y ∈ L. Then L also satisfies
the sum rule δ(x + y) = δ(x) + δ(y) for all x, y ∈ L.
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(Edited to add: This conjecture is now known to be true.)
This conjecture is known to be valid for the smallest case, that of the 3-

dimensional simple Lie algebra over C. Now, suppose that δ satisfies both the
hypothesis and the conclusion of Conjecture 3. If the previous theorem about
the cross product ring is any guide, we ought to get a scalar derivation for free,
together with the appropriate product rules for scalar multiplication and the
Killing form. In fact, this is true in the simple case, and in the semi-simple
case we get a scalar derivation for every simple factor. The next theorem says
that things are as nice as can possibly be hoped for. Of course, since the above
Conjecture is not yet a Theorem, we will have to assume the sum rule, in addition
to the product rule, at least for now.

Theorem 11. Let L be a finite dimensional semi-simple Lie Algebra over C.
Suppose that δ : L → L satisfies both the product rule and the sum rule (ie: δ is
a derivation on L, as a Lie ring, thus making δ linear over Q.) Let L =

⊕n
i=1 Li

be the decomposition of L into its simple factors, and for any x ∈ L, we write
x =

∑n
i=1 xi with xi ∈ Li for each i. Then there exists a unique sequence of

maps δi : C→ C such that
1. δi is a derivation on C for every i.
2. δ(λx) = (

∑n
i=1 δi(λ)xi) + λδ(x) for every x ∈ L and λ ∈ C.

3.
∑n

i=1 δi 〈xi, yi〉 = 〈δ(x), y〉+ 〈x, δ(y)〉 for every x, y ∈ L.

If R is a ring (not necessarily commutative nor associative), a map δ : R → R
is called a production if it satisfies the product rule. We can easily classify all
productions on Z, Q, R, and C. In the case of Z and Q, any function from the
set of primes to the ring extends uniquely to a production. For R and C, any
function from {eh | h ∈ H} to the field extends uniquely to production, provided
that H is a Hammel basis. In all cases, productions are rarely additive.

Regarding the Quaternions H, we have the following characterization of pro-
ductions.

Theorem 12. Let δ′ : R → R be a production, and let δ1 : R3 → R3 be a
production (and thus a derivation) on the cross product ring

〈
R3,0, +,−,×〉

,
with δ0 : R → R as its corresponding scalar derivation. Identify R with the real
part of H and R3 with the “vector part” of H. Then, the following map δ : H→ H
is a production, where x = x0 +x1 is the decomposition of the x into its real and
vector components, and where ‖x‖ is the standard norm of x in H.

δ(x) = δ′(‖x‖) x

‖x‖ + ‖x‖
(

δ0

(
x0

‖x‖
)

+ δ1

(
x1

‖x‖
))

=
(
δ′(‖x‖)− δ0(‖x‖)

) x

‖x‖ + δ0(x0) + δ1(x1) for all x 6= 0

(Of course, we always have δ(0) = 0.) Furthermore, every production δ on H
can be written uniquely in this form.
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