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Abstract

In this article we consider maps m : R — R on a non-associative ring R which
satisfy the product rule 7(ab) = (wa)b + anb for arbitrary a,b € R, calling such a
map a production on R. After some general preliminaries, we restrict ourselves to
the case where R is the underlying Lie ring of a finite dimensional split semi-simple
Lie algebra over a field F of characteristic zero. In this case we show that if 7 is a
production on R, then 7 necessarily satisfies the sum rule 7(a 4+ b) = ma + b, that
is, we show that the product rule implies the sum rule, making 7 a derivation on
the underlying Lie ring of R. We further show that there exist unique derivations
on the field FF, one for each simple factor of R, such that appropriate product rules
are satisfied for the Killing form of two elements of R, and for the scalar product of
an element of F with an element of R.
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1 Preliminaries

Definition 1 Let R be a non-associative ring. A map © : R — R is called
a production on R provided that m(xy) = (wx)y + zmwy for all x,y € R. A
production which also satisfies m(x + y) = wx + wy for all x,y € R is called a
derivation on R.
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Proposition 2 Let R be a non-associative ring and let 7 : R — R be a
production on R. Then w0 = 0.

PROOF. We calculate 7(0) = 7(0-0) = (70)-0+0-70=0. O

Proposition 3 Let R be a non-associative ring with identity and let m : R —
R be a production on R. Then w1 =0 and 27(—1) = 0.

PROOF. To see that 71 = 0, we calculate 711 = 7w(1-1) = (71)1 + 17l. To
see that 2m(—1) = 0 whenever 2% = 1, we calculate 0 = 71 = 7((—1)-(—1)) =
(7(=1) - (=D + (=1) - 7(=1) = =2a(=1). O

Example 4 Let R be the ring Z/4 of integers modulo 4. Then it is easy to
see that the productions on R are precisely the maps m : R — R such that

70 =71 =0 and 72,73 € {0,2}. Thus there are exactly four productions on
the ring R = Z/4.

Remark 5 Note that Example 4 shows that the second conclusion of Propo-
sition 3 cannot in general be improved to read w(—1) = 0, even in the case of
commutative rings with identity.

Lemma 6 Let S, A, B, T and C be abelian groups. Suppose that we are given
a bilinear map (denoted by jurtaposition) A x B — C. Suppose that we have
bilinear maps (also denoted by juxtaposition) S x A — A and S x C' — C' such
that the following diagram with the obvious maps commute:

SxAxB —— SxC

l l (sa)b = s(ab)
AxB —— C(C
Suppose further that we also have bilinear maps (also denoted by juxtaposition)

BxT — B and C xT — C such that the following diagram with the obvious
maps commute:

AXBxT —— CxT

J J a(bt) = (ab)t
AxB —— (O

Suppose that we have maps mq : A — A, m1g: B — B, and 7¢ : C' — C which
jointly satisfy the equation the following production equation for any a € A
and b € B.

mo(ab) = ma(a)b+ anp(b) (1)



Then, given any S1,...,8, € S, a1,...,a, € A, and any by,...,b, € B
and ti,...,t, € T the following equation holds for wc, where we write a =
Z?:l S;Q; CLTLd b = Z;rL:l bjtj.

mo(ab) + i i sime(aib)t; = isiwc(aib) + ilﬂc(abj)tj (2)

i=1j=1

Remark 7 Note that expressions such as sabt (with s € S, a € A, b € B and
t € T) are unambiguous, because of the associativity represented by the com-
mutative diagrams above. However, sct (with ¢ € C') in general is ambiguous,
since it is in general possible that (sc)t # s(ct). Of course, if ¢ can be written as
c =Y a;b; with a; € A and b; € B, then (sc)t = (s(3 a;b;))t = > (s(ab;))t =
S ((sa;)bi)t = Yo (sa;)(bit) = X s(a;(bit)) = X s((a;by)t) = s((X a:bi)t) = s(ct).

In particular, stc(ab)t = s(ma(a)b+ amp(b))t is unambiguous.

Remark 8 It should be emphasized that (1) is the only assumption made
about the maps ma, w1 and w¢. In particular no assumption is made that any
of the maps are additive. Since the map A x B — C' is bilinear, it is easy
to prove that m¢(0c) = 0c. We need only note that m¢(0c) = 7(0405) =
74(04)05 + 04m(05) = 0c + Oc = Oc. However, without knowledge of the
linear map A x B — C, this is all that can be said, and nothing analogous
need hold for wa and wg. In fact, if the bilinear map A x B — C' is the trivial
map (a,b) — 0, then (1) reduces to simply saying that 7.(0c) = O¢, so that
ma and g are totally arbitrary, as is ¢, so long as it maps O¢ to Oc.

PROOF.

mo(ab) = wa(a)b + arwp(b)

= 7TA<CL> i:lbjtj —+ (27_1; Siai> 71-B(b)
i ma(a)bit; + i sia;mp(b)

- f:l(ﬁc(abj) —amp(by)) t; + il si (mc(a:b) — ma(a;)b)
= i (WC(ab]) - (Zi: Siai> WB(bJ)> t
+ il S (Wo(aib) — ma(a;) i th3>

= i mo(abj)t; + Z sime(aqb) — Zn: i si (ma(ai)b; + aimp(y;)) t;



Corollary 9 Let R be a non-associative ring and let m : R — R be a produc-
tion on R. Let x; € R for 1 <i <n andy; € R for 1 < j < m. Then we
have

Z Z (ziy;) = > () + > w(zy;) (3)
i=1j=1 =1 Jj=1
where v = 37" x; and y = 377", y;.

PROOF. Apply Lemma 6 with A= B =C = R and S =T = Z, together
with the obvious bilinear maps. Let 7y = mp =mc =7, 5, =t; =1, a =2
and b = y. All of the hypotheses are satisfied, and (2) reduces to (3). O

Corollary 10 Let R be a non-associative ring and let m : R — R be a pro-
duction on R. Let z;,y; € R for 1 < i < n. Suppose further that z;y; = 0
whenever © # j, so that xy = Y1 | x;y;, where x = Y0 x; and y = > y;.

Then we have
= w(ziy;).
=1

PROOF. First note that 7(z;y;) = 70 = 0 for ¢ # j, by Proposition 2. Note
also that xy;=x;y = x;y;. With this in mind, Corollary 9 now says that

W(JZy)—f-Zﬂ' zyz Zﬂ— zyz + Tr(l‘zyz)
i=1 i=1 i

1

from which the corollary follows. O

Corollary 11 Let R be a non-associative ring and let m : R — R be a pro-
duction on R. Let u,v € R satisfy u?> = v* = 0. Then we have

m(uv + vu) = w(uv) + w(vu).
PROOF. Setting ;1 = y; = v and x3 = yo = v in Corollary 9 with n =m =
2, we see that
7(uv + vu) + (r(uwv) + w(vu)) = (7(uv) + 7(vu)) + (7(vu) + 7(uv))

from which the corollary follows. O



Corollary 12 Let R be a non-associative ring and let m : R — R be a pro-
duction on R. Let u,v € R satisfy u?> = v* = 0 and vu = —uv. Then we
have

m(—uv) = —mw(uv).

PROOF. By Proposition 2 and Corollary 11, we see that w(uv) + m(—uv) =
m(uwv) + w(vu) = 7(uww +vu) =70 =0. O

Corollary 13 Let R be a non-associative algebra over the commutative ring
with identity A, and let m : R — R be a production on the underlying ring of
R. Let a,b € R with ¢ = ab. Then for any A\, u € A we have

m(Ape) + Aur(c) = pm(Ae) + Ar(pe). (4)

PROOF. Apply Lemma 6 with A= B =C = Rand S =T = A, together
with the obvious bilinear maps. Let 74 = mp = 71¢ = m and n = m = 1 with
s1 = A, t; = p. All of the hypotheses are satisfied, and (2) reduces to (4). O

Corollary 14 Let R be a non-associative algebra over the commutative ring
with identity A, and let m : R — R be a production on the underlying ring of
R. Let ag,ay,by, by € R satisfy agby = a1bg = 0 and agbyg = a1b; = ¢. Then for
any A\, p € A we have

m(Ac + pe) = m(Ac) + 7 (puc) (5)
and

m(Auc) + Au(c) = pm(Ae) + Am(uc). (6)

PROOF. First note that if a = A\gag + A\a; and b = pebg + p1b1, then the
hypotheses imply that ab = (Agag + A1a1) (obo + p1b1) = (Mopo + A1pr) .
Apply Lemma 6 with A = B =C = R and S =T = A, together with the
obvious bilinear maps. Let 74 = mg = m¢ = mand n = m = 2 with s; = \;
and t; = p;. All of the hypotheses are satisfied, and the (2) reduces to (7).

W(()\o,uo + Aifiy) C) + (Aopto + Aypin) 7 (c) =

(7)
to (Aoc) + Aom (poc) +pm (Are) + A (pac)

Letting A\; = 3 = 0, \g = X and po = p in (7), we see immediately that (6)
holds. Similarly, by letting Ay = o =1, Ag = A and py = p we see that

T((A+ ) c) + A+ @) m(e) = (Ae) + Ar(c) + pm(e) +  (uc)

From this, (5) follows immediately. O



Remark 15 Note that if R is an anti-symmetric non-associative algebra over
A, that is, if 22 = 0 for every x € R, then any ¢ = ab will satisfy the conclu-
sions (5) and (6) of Corollary 14. To see this, we need only note that if we
define ag = by = a and by = —a, = b, then agby = a®> = 0, a;by = —b* = 0,
aobg = ab = ¢, and a1by = —ba = ab = c¢. Note in particular that this applies
to any Lie algebra.

Let R be a non-associative ring which is direct sum of ideals R = R1&®- - -®R,,.
If m; : R; — R; is a production on R; for each i = 1,...,n, then the map
7w : R — R defined by 7(z1 + -+ + 2,,) = mi(z1) + - - - + mp(xy,) for z; € R; is
easily seen to be a production on R. Theorem 16 provides a partial converse
to this. We say that a non-associative ring is annihilator free if for any a € R;
which satisfies az = za = 0 for all x € R;, we have a = 0. In case R is a direct
sum R = R; & ---® R, note that R is annihilator free if and only if each R;
is annihilator free.

Theorem 16 Let R be a non-associative ring which is direct sum of ideals
R=R & ---®R,, and let 7 : R — R be a production on R. Suppose further
that R is annihilator free. (Equivalently, that each R; is annihilator free.)
Then there exist unique productions m; : R; — R; such that w(x1+ -+ x,) =
m(z1) + -+ mu(xy,) for x; € R;.

PROOF. The uniqueness is trivial, since m;(0) = 0 for every 7, so that m;(x) =
7(x) for any = € R;.

For existence, we first need to show that m(z) € R; whenever = € R;. Let
x € R;. Write n(z) = ap + - -+ + a,, with a; € R;. Given any j # ¢ and any
y € R;, we have a;y = m(x)y € R; and also a;y = 7(z)y = m(xy) — an(y) =
7(0) —aw(y) = —zw(y) € R;. Thus, ajy = 0 for any y € R;. Similarly, ya; =0
for any y € R;. Since R; is annihilator free, we must have a; = 0. Since a; = 0
for every j # i, we have 7(x) = a; € R;, as desired.

Now, we may define m; : R; — R;, for any i = 1,...,n, by m(z) = n(x) for
any x € R;. Clearly, each m; is a production on R;. It remains only to show
that m(x; + -+ +x,) = m(x1) + -+ m,(z,) whenever z; € R; for each i. Let
r=x1+--+x, and y =y, + - - - + y, be arbitrary, with z;,y; € R;. Making
use of Corollary 10, we may calculate as follows:

(m(@)=m(21) = -+ = Tu(wn))y = 7(2)y — 7(21)y — ... — 7(TN0)Y
= (m(zy) —27m(y)) — (7(21y) — 217(y)) — ... = (7(2ny) — 207 (y))
=7(zy) —m(z1y) — - = w(wpy) — (T — 21 — - = 2,) T(Y)
=7(zy) — m(z1y1) — - — 7(TaYn)
=0



Thus, (m(x) — m(21) — -+ — mu(xn))y = 0 for any y € R. Similarly, y(7(z) —
m(z1) —- - —ma(x,)) = 0 for any y € R. Since R is annihilator free, this gives
w(xy+--+x,) =m(z1)+- -+ m(x,), as desired. The proof is complete. O

Proposition 17 Let R be a non-associative ring with direct sum decomposi-
tion R = @,cr Ra as an abelian group under addition, and let m: R — R be a
production on R. Suppose that 7 is additive on each of the summands R, in
the sense that for any « € I and for any x,y € R, we have m(z+y) = max+my.
Suppose further that for each o, 3 € I there exists some v € I such that vy €
R, for any x € R, andy € Rg. Define 6 : R — R by 6 (XCacr Ta) = Yoner Ta,
where x, € R, for each o € I and z, = 0 for all but finitely many o € I.
Then ¢ is a derivation on R.

PROOF. We definem : I xI — I sothat zy € Ry, .3 whenever x € R, and
y € Rg. For any € R, we write x = ) ,c; T, Where 2, € R, for each o € 1
and z, = 0 for all but finitely many «. Then we see that ¢ is a production as

follows.
§(zy) = 5(( ) $a> (Zw))

To see that 0 is a derivation on R, it remains only to show additivity of § on
R, which we see as follows.

J



= Z(ﬂ'l’a + TYa)

= Zwma Zwya
) ()
=0 + dy

|

Theorem 18 Let L be a Lie ring, and m : L — L a production on L. Then
we have

mllz, yl, 2 + wlly, 2], o] + 7[[z, 2], y] = 0
for every x,y,z € L.

PROOF.

ll,yl, 21+ 7lly, 2], o] + wllz, 2], y] = [xla, o], 2] + [l y], w2

[ )

+ [rly, 2], 2] + [[y, 2], ma]

+ [z, 2], y] + [z, 2]my]
= [[rz, y], 2] + [z, 7y). 2] + [z, y], 72]

+ [[my. 2, ] + [ly, w2l 2] + [y, 2], 2]

+ [z, 2]yl + [[z, wa], y] + [[2, 2], 7y
= [[mz, y], 2] + [[z, 7], y] + [y, 2], wx]

+ [z, myl, 2] + [[z, 2], my] + [[my, 2], 2]

+ [z, yl m2] + (72, 2], y) + [ly, 72, 2]
=0+0+0

2 Finite dimensional split semi-simple Lie algebras over a field of
characteristic zero

In this section, we assume that L is a finite dimensional split semi-simple Lie
algebra over a field F of characteristic zero, with (—, —) as its Killing form.
(Recall that any Lie algebra over an algebraically closed field of characteristic
zero is split.) Let

L=H® P L. (8)

aEA

be a fixed Cartan decomposition for L, where A = A, UA_ is the set of (non-
zero) roots of L, and A, is the set of positive roots under a given ordering,



with A_ the corresponding set of negative roots. We write h, for the coroot
of a. Let AY be the set of simple positive roots, that is, the set of all @ € A,
such that there do not exist 3,7 € A} with « = G+ . Then { h, | @ € A}
is a basis for H. Note that [h, z,] = a(h)z, for any h € H and z,, € L,, and
that [24,%_a] = (Ta,T_qa) he for any z, € L, and z_, € L_,. Recall that
(ha,hg) € Q is rational for all a, f € A.

Throughout this section we will assume that the map 7 : L — L is a produc-
tion on the underlying Lie ring of L.

Lemma 19 Let L be a finite dimensional split semi-simple Lie algebra over
a field F of characteristic zero, with Cartan decomposition (8). Suppose that
wh =0 for every h € H and that for every a € A and every x, € L, we have
mxq = 0. Then 7 is the trivial production mx = 0 for all x € L.

PROOF. First, we will show that
(o +2_0) =0 (9)

whenever z, € L, and x_, € L_,. If one or both of z, and z_,, are 0, then we
have nothing to prove, so assume that both are non-zero. Then (z,,x_,) # 0.
Thus, we may define y, € Ly by 24 = (Za, T—a) (has ha) Yo Then, we have
(Yo T—a) (Pary ho) = 1. Now, we use Theorem 18 to Calculate as follows.

T[Ya, T—al, Ta — T_a] + T[[T_a, Ta — T_a], Ya] + T[[Ta — T—a) Ya), T-d]
= 77[<you T o) hmxa =T o] + [~ (Ta,T-a) Pas Yol + T[(Yas T-a) Pay T
= 7((Yas 7-a) (P o) T + (s 7—a) (s o) 7

+m(- (xa, o) (P ha Yo) + (= Yo 7—a) (s ha) 7))
(o + o) + T(—24) + T(—2_4)
=7(To +T_4)

This proves (9), as desired.
Next, we show that

m(z) € H whenever z = ) g, (10)

a€ceA

where z, € L,. It is enough to show that [h,m(x)] = 0 for any h € H. Since
[H, L] C @®nea La, this is equivalent to showing that [h, w(x)] € H for any h €
H. We do this by induction on the number & of non-zero terms z, occurring
in the sum = = Y ca Zo. If £ < 2, then w(x) = 0 by hypothesis. Similarly,
if £ = 2 and there is some o € A with z,,z_, # 0, then x = x, + z_,, so
that m(x) = 0 by (9). Either way, we have [h, 7(x)] = [h,0] = 0 trivially. So,
we may assume that there exists o/, o’ € A with x,, 2, # 0 with such that



o # +a”. Note that any h € H can be written in the form h = b’ + h” for
some h',h" € H satisfying o/ (h') = o"(h") = 0.

[h,7(x)] = [A + B", 7 (x)]
= [I/, ()] + [, 7 ()]
= (all, 2] — [w(W),«]) + (x[0", 2] — [x(h"),])
— [, 2] + 7", a]
= W{h P %i + W[h” O%:A%z]
_ W( (k) xa) 4 W(Z a(h”)xa)

a€A

The last statement follows directly from the induction hypothesis, since we
have o/(h') = o (h") = 0 and zy, x4 # 0, so that both sums > ca a(h')z,
and Y ,en a(h”)z, have strictly fewer non-zero terms than the sum >, ca Za,
and therefore the images of both sums under 7 are in H. Thus, (10) is proved.

Next, we show that
m(x) € H for any x € L. (11)

As before, it is enough to show that [h, 7(z)] = 0 for any = € L and h € H,
which in turn is equivalant to showing that [h, w(x)] € H for any x € L and
h € H. By writing x as = b/ + Y ca o, We see that

[h, w(x)] = xlh, z] — [(h), 2]
—7T|:h h'—l—Zxa} 0, z]

a€A

T ( > a(h)xa)

acA
H

m

by (10). Thus, (11) is proved.
Finally, we complete the proof of Lemma 19 by showing that
m(x) =0 for all x € L. (12)

Since 7(z) € H by (11), it is enough to show that [7(x),ys] = 0 for every
B e Aand ys € Lg. If we let h = 7(z), we see immediately that [7(x),ys] =
[h,ys] = B(h)ys € L. But

(), ys] = wla, ys] — [z, w(ys)]

10



= 7z, ys] — [2,0]
€ H,

by (11), so that [7(z),ys] € Lg N H = {0}. Thus, (12) holds, and the proof
is complete. O

Theorem 20 Let L be a finite dimensional split semi-simple Lie algebra over
a field F of characteristic zero. Suppose that 7 is a production on the underlying
Lie ring of L. Then 7 s additive, that is,

m(z +y) = 7(x) +7(y) (13)

forall z,y € L.

PROOF. First, we show that the Cartan decomposition (8) satisfies the hy-
potheses of Proposition 17. That is, we show that 7 is additive on each of the
summands of (8).

Given o € A and z, € L, with z, # 0, note that [hy, xa] = (ha, ha) Ta, SO
that 7 is additive on F (hq, ha) o = Fxq = Ly, by Remark 15.

Note also that if z, € L, and z_, € L_, with z,,x_, # 0, then (z,,z_,) # 0
and [T, T_o] = (o, T_o) ha, so that 7 is additive on F(x,,z_,) he = Fha,
by Remark 15. Recall that H = @, A Fh,. For convenience, let us choose
To € Ly and z_, € L_, for each o € AY such that (z,,2_,) = 1. Then
[Za, 2_a] = hq for all @ € AY. Note also that [z, 2z_g] = 0 for any «, € A%
with o # (.

We now show that 7 is additive on H. Let h,h’ € H. Then we can write
h = Yaeno raha and n = Yaeny rhhe with ro, 7, € F for o € AY. The
following calculation uses Corollary 10 together with the fact that 7 is additive

on Fh, for all a € AY.

n(h+h)=m=

Il
=
7 N 7N\
—~
=
e
_l’_
< =
o~
N~—
>
S
N——

11



a€A0+
= 3 (7 (raha) + 7 (rhha))
aeAi
= Z 7 (roha) + Z 7 (rlha)
acAf aeAf
- Z T[ra®a, o] + Z T [raTas T-al
N aeAf
:W[ Z TaTea, Z T_q —|—7T[ Z T;Qja, Z T_q
eny €Ay €Al €Al
(3 raha) 47 X riha)
eAg_ aGAE)‘_
=n(h) +m(h')

Thus, we see that 7 is additive on H. Since 7 has already been seen to be
additive on L, for each o € A, we see that the Cartan decomposition (8)
satisfies the hypotheses for Proposition 17. Let 6 : L — L be the map whose
existence is claimed in Proposition 17. Note that J is a derivation (and there-
fore a production) on the underlying Lie ring of L, which agrees with 7 on H
and on L, for all & € A. It is trivial to see that the set of all productions on
the underlying Lie ring of L form a vector space over the field F, under the
obvious pointwise definitions. In particular, the map n’ = 7 — ¢ defined by
7'(z) = (x) — 0(x) is a production on the underlying Lie ring of L. Further-
more, 7'(h) = 0 for all h € H and 7'(z,) = 0 for all & € A and all z, € L,.
Thus, Lemma 19 implies that 7’ is the trivial production, so that = = ¢. Thus,
7 is a derivation on the underlying Lie ring L, and hence additive. O

Theorem 21 Let L be a finite dimensional split simple Lie algebra over a field
F of characteristic zero, with Killing form (—, =), and let m be a production
on the underlying Lie ring of L. Then m 1s a derivation on the underlying Lie
ring of L, and there exists a unique derivation § : F — F on the field of scalars
F such that

m(Az) = 0(N)z + Aw(x) (14)
and

6 (v, y) = (7(x),y) + (z,7(y)), (15)

for any A € F and any x,y € L.

PROOQOF. The fact that = is a additive on L, and thus a derivation on the
underlying Lie ring of L, is the content of Theorem 20. It follows that 7 is

12



actually Q-linear. In particular, 7((hq, hg) ) = (hq, hg) 7(z) for all z € L and
all a, B € A, since (hy, hg) € Q is rational. We will use this fact freely without
mention.

Note also that the uniqueness of ¢ is trivial, by either (14) or (15), so it enough
to show the existence of a  with the desired properties.

Our first task is to define 0. For any a € A, we define a map ¢, : F — F by

5a()\> — <7T()‘h0l)7 hOé>

o ha) (16)

for any A € F. We shall see shortly that o, = dg for all a, 3 € A.

First, we show that ¢, is a derivation on [ for any o € A. The fact that 9,
is additive is an immediate consequence of the fact that 7 is additive. To see
that d, is a production on F, choose any z, € L, and x_, € L_, such that
(o, T_o) = 1. Then h, = |24, 2_4], S0 we may apply Corollary 13 with ¢ = h,,
in (4) to see that

T(Apha) + Aum(ha) = pm(Aha) + AT (pha),

and thus
O (M) + Auda(1) = pda(A) + Ada(p),

for any A\, u € F. Thus, to see that d, is a production, we need only show that
da(1) =0, (17)

for all & € A. To see this, once again we choose any z, € L, and z_, € L_,
such that (z,,z_,) = 1, and calculate as follows:

_ (m(ha); ha)
da(1) = 701&, )
 {nlha), [rar-a))
(has ha)
_ ([(ha), Tal, T —a)
(has ha)
_ <7T[homxoz] - [hmﬂ-(xa)]?x—a>
(ha ha)
_ (7[has Ta)s T—a) B ([ha, T(Ta)], T—a)
(ha ha) (ha ha)
_ (m ((hay ha) Ta) , T—a) T (7(2a), [has T—a])
(has ha (he, ha)
= (1(2a), T—a) — (7(Ta), T—a)
=0

13



Thus, ¢, is a derivation on F for any a € A, as claimed.

Next, we show that

(m ((Ta; T-a) ha) s 1) = (ha, h) (<7T($a)vx7a> + <$av7r(xfa)>>> (18)
forany c € A, he H, z, € L, and x_, € L_,. We see this as follows:

T [Ta,x_0], h)

(%), 2] s h) + ([Tar T(2a)] , 1)

W(xa)a [x—av ]> + <[hv xa] aﬁ(x—a»

hao b) ((7(2a), T—a) + (Tar T(2-a)))

If (ha,h) # 0, we can rewrite this as

(1 ((Ta, T—a) ha) , h)
(has h)

= (1(2a), T-a) + (Ta, T(-0)) - (19)
If we set h = h,, in (19), we see from (16) that

0a((Ta, T-a)) = (T(Ta), T-a) + (Ta, T(T-a)) - (20)

Given any A € F and any o € A, we can find z, € L, and z_, € L_, such
that A = (24, 2_4). Thus, we may combine (20) with (18) to yield

(T(Aha), hY = 8a(N) (ha, B) . (21)

Next, we show that
(w(h),a) + (h,m(xa)) = 0, (22)
for any a € A, h € H and =z, € L,. To see this, we calculate as follows:

(m(h), za) + (h,m(za)) = <7T(h)= [hw N ]> <h " lh <h%ha>]>
= (.t g5+ (st 2o )
+ <h [ha,w < fo )D
= (1w, 1 > () 5
<[h N ( e Lo )

>
(Vs

[, hal,

/\

14



=0+0
Using (22), we may show that

(m(Ah), o) = A(m(h), za) , (23)
forany « € A, A€ F, h € H and z,, € L, as follows:

(m(Ah), 2a) = = (b, 7(2a))
= —=A{(h,m(z4))

= A(m(h), za)

From (23), we see immediately that (w(Ah) — Aw(h), z,) = 0 for any z,, € L,
so that

w(Ah) — Am(h) € H, (24)
for any h € H and A € F.
Next, we show that
T(Ahg) = 6a(N)ha + AT (ha), (25)
for all « € A and A € F. By (24), we see that m(Ahy) — Am(ha) — 60 (A)ha € H.
Thus, to show (25), it suffices to show that (m(Ahrg) — AT(ha) — da(A)ha, h) =

0 for any h € H. We see this, using (21) and (17) as follows:

(1(Mha) — M (ha) — 0a(N)ha, h)

= (1(Mha), h) = A(@(ha), h) = 8a(A) (ha, )
Sa(N) (has hY — Ma(1) (hay h) — 5a(N) (has h)
0

Next, we show that
(w(ha + hg), [Za, 2p]) = (ha + b, ha + hg) (T(2a), 25) , (26)
for any o, 5 € A, x, € L, and 3 € Lg, by calculating as follows:

(m(ha + hg), [Ta, T6])

([7(ha + hp), xa), Ta)

(w[he + hp, 2a] = [ha + hp, 7(24)], T5)

= (rlha + hg, 2], ) = ([ha + hg, T(2a)], 25)
(m((ha + hg, ha) Ta), 25) + (7(Ta), [ha + ha, 2])
=

=

o + hg, ha) (T(28), 25) + (ho + hg, hg) (T(24), 25)
ha + hg, ho + hg) (T(24), 25)

15



From (26), we see immediately that

(m(ha + hg), [Xa; 24])

(m(x4), xp) = (e + g, b + Big) for o + 3 # 0. (27)

Since x4, xs] + [23, o] = 0, we can use (27) to conclude that
(M(za),25) + (Ta, m(zg)) =0 for a4+ 3 # 0, (28)
for any o, 8 € A, z, € L, and x5 € Lg.
Our next goal is to prove that
T(AZo) = 0a(N) 2o + AT (24), (29)
for any a € A, A € F and z, € L,. We start by using (22) to show that
(T(A2o) — 0a(N)To — Am(x4),h) =0 (30)
for any h € H, by calculating as follows:

(0aN)xa, h) + (AT(24), h) = 0+ A (7(24),
—A(Za, w(h))
= — (Azq, m(h))

= (m(Aza), )

)

Next, we use (28) to show that
(T(Azo) = 6a(N)xzq — AT(x4), x) = 0 for o+ 3 # 0, (31)
foe any x, € Lg, by calculating as follows:

(0a(N)a; 2g) + (A(20), 25) = 0+ A(m(za), 25)
—A(Ta, T(75))
— Az, (25))
= (1(A\7a), 75)

Finally, we use (20) to show that
(T(Axo) — 0a(N) 2o — AT(24),2-0) =0, (32)

for any x_,, by calculating as follows:

N (Ta, T—a) + Mo (Ta, o) — Ao, m(7_4))
o () (Ta o) + A(da (Tas 7-0) = (20, T(2-0)))

16



= 0a(N) (To, T_0) + NT(20),0_0)
= (0aN) o, x_o) + (M (x4),T_0)

Since the Killing form is non-degenerate, we may use (30), (31) and (32) to
conclude that (29) holds, as desired.

We are now in a position to define the derivation ¢ on F. First, note that since
h—_o = —hg, we immediately see from (16) that

da(N) = d_a(N), (33)
for any o € A. Next, we show that
Sats(Apt) = (ANt + Adg(p) for a, B, a0+ B € A, (34)

where \u € F, z, € L, and w3 € Lg. To see this, note that [z,, 23] € Laygs,
since we are assuming that a + 8 € A. Using (29), we see that

Oatp(A)[Ta, 2p] = T (Au[2a, T5]) — Aum[za, 2]
— [ 5] — N[ 2]
— [\, 2] + M (1)) — Nl 2]
= [ulA) T + A(z0), 5] + [N 83(1)5 + o ()] — Mo, 2]

= (Fa (M) + Ads(1) [0, 28] + Ma([7(0), 2] + [, 7 (1)) = [, 5]
= (0a (N + 235 (1)) [, 5],
which easily implies (34), by any choice of x,,x3 # 0 so that [z,,z5] # 0. By
letting = 1 in (34), we see that do45(A) = da(A) +A5(0) = 64 (A). Similarly,
dot8(p) = 0p(p). Thus, we have
0o =0 = Oasp for a, B,a+ B € A. (35)
Since L is assumed to be simple, from (33) and (35) we may conclude that

0o = 0g for o, f € A. (36)

(Note that if L were merely assumed to be semi-simple, then (36) would only
follow in case o and 3 were roots of the same simple factor.)

We now define the derivation ¢ : F — F on F by
§ = 0, for any a € A. (37)
By (36), ¢ is well defined. Also, § is a derivation on I since ¢, is.

It remains to prove (14) and (15).
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Now, we show that
w(Ah) = 0(AN)h + A (h), (38)

for any A € F and h € H. To see this, we write h = ZaerJr Lo, with p, € F
for all & € A%, and use (25) and (37) as follows:.

T(\R) :7r<)\ 3 Mha)

0
a€A+

= 7T( > /\,uaha>

0
a€EAY

> 7 (Maha)

0
a€EAY

= 3 (6(\ta)he + Mtar(ha))

0
aEAY

=¥ ((5@)% + A0(t) ) e + Auaw(ha))

aGAO

= E: taha + A 2: ( (Ha)ha + pa (han

aeAO aeAO

NE+A S w(paha)

aEAg
— S(\h+ m( 3 Ma@)
aGA&

= 5(\)h + An(h)

We are finally in a position to prove (14). Writing © = h+>,c5 To,Wwith h € H
and x, € L, for o € A, we use (29), (38) and (37) to compute as follows:

) =7 (A(n )

a€d

= 7r<)\h + Z )\xa>

a€gd

7(Mh) + 3 m(Aza)

a€d

= 6(Nh+ Am(h) + 3 (6(\)aa + Mr(za))

a€d

= 5()) (h +3 xa> + A(w(h) +> w(%))

acA a€A

= oMz + Ar(x)

Thus, (14) is proved.
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Next, we show that

0 (Mo, pthig) = (T(Mha), pthig) + (Ao, w(phis)) (39)

for any o, 5 € A and h,, hg € H, by using (21) and computing as follows:

8 (hay, pihg) = 6(As (B, his) )
5(/\lu) <hou hﬂ>
(8N + A8(1)) (o, h)
6(A) (hay phg) + 6(1) (hg, Aha)
= (m(Aha), pthg) + (T (phs), Aa)
(m(Aha), phg) + (Aha, T(phg))

It is easy to see that

d(h,z) = (m(h),xq) + (h,m(x4)) , (40)

foralla € 0, h € H and z,, € L,. We need only note that ¢ (h, z,) = §(0) = 0,
and apply (22).

It is equally easy to see that

0 (Ta, 2) = (W(Ta), Tg) + (Ta; T(25)) (41)

forall o, 8 € A, 2o € L, and 23 € Lg. If a + 3 # 0, we need only note that
d(xa,r3) = 0(0) = 0 and apply (28). If @ + 3 = 0, we need only apply (20).

Since every x € L can be written as x = ZaeA(jr Aalo+ 2 nen To Where N, € F

for all o € A0+ and x, € L, for all z, € L,, it is easy to see that we can use
(39), (40) and (41), together with the fact that both 7 and ¢ are additive, and
that the Killing form is bilinear, to prove (15).

This completes the proof of Theorem 21 O

Theorem 22 Let L be a finite dimensional split semi-simple Lie algebra over
a field F of characteristic zero, with Killing form (—,—), and let © be a pro-
duction on the underlying Lie ring of L. Let

be the decomposition of L into its simple factors. Then 7 is a derivation on
the underlying Lie ring of L, and there Then there exists a unique sequence of

19



derivations 01, ...,0, : F — F on the field of scalars F such that

n

T(Az) =Y 6;(N)z; + Mr(z)

i=1

and

n

>0 (zi yi) = (m(x),y) + (2, 7(y)) |

=1

for any A\ € F and any x,y € L,where we write x = 3" x; andy = 31" |y
with x;,y; € L; fori=1,...,n.

PROOF. This is an easy consequence of Theorem 16 and Theorem 21. O
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