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Abstract

In this article we consider maps π : R → R on a non-associative ring R which
satisfy the product rule π(ab) = (πa)b + aπb for arbitrary a, b ∈ R, calling such a
map a production on R. After some general preliminaries, we restrict ourselves to
the case where R is the underlying Lie ring of a finite dimensional split semi-simple
Lie algebra over a field F of characteristic zero. In this case we show that if π is a
production on R, then π necessarily satisfies the sum rule π(a + b) = πa + πb, that
is, we show that the product rule implies the sum rule, making π a derivation on
the underlying Lie ring of R. We further show that there exist unique derivations
on the field F, one for each simple factor of R, such that appropriate product rules
are satisfied for the Killing form of two elements of R, and for the scalar product of
an element of F with an element of R.

Key words: derivation, product rule, Lie ring, Lie algebra, non-associative ring,
non-associative algebra

1 Preliminaries

Definition 1 Let R be a non-associative ring. A map π : R → R is called
a production on R provided that π(xy) = (πx)y + xπy for all x, y ∈ R. A
production which also satisfies π(x + y) = πx + πy for all x, y ∈ R is called a
derivation on R.
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Proposition 2 Let R be a non-associative ring and let π : R → R be a
production on R. Then π0 = 0.

PROOF. We calculate π(0) = π(0 · 0) = (π0) · 0 + 0 · π0 = 0. 2

Proposition 3 Let R be a non-associative ring with identity and let π : R →
R be a production on R. Then π1 = 0 and 2π(−1) = 0.

PROOF. To see that π1 = 0, we calculate π1 = π(1 · 1) = (π1)1 + 1π1. To
see that 2π(−1) = 0 whenever x2 = 1, we calculate 0 = π1 = π((−1) · (−1)) =
(π(−1)) · (−1) + (−1) · π(−1) = −2π(−1). 2

Example 4 Let R be the ring Z/4 of integers modulo 4. Then it is easy to
see that the productions on R are precisely the maps π : R → R such that
π0 = π1 = 0 and π2, π3 ∈ {0, 2}. Thus there are exactly four productions on
the ring R = Z/4.

Remark 5 Note that Example 4 shows that the second conclusion of Propo-
sition 3 cannot in general be improved to read π(−1) = 0, even in the case of
commutative rings with identity.

Lemma 6 Let S, A, B, T and C be abelian groups. Suppose that we are given
a bilinear map (denoted by juxtaposition) A × B → C. Suppose that we have
bilinear maps (also denoted by juxtaposition) S×A → A and S×C → C such
that the following diagram with the obvious maps commute:

S × A×B −−−→ S × Cy
y (sa)b = s(ab)

A×B −−−→ C

Suppose further that we also have bilinear maps (also denoted by juxtaposition)
B× T → B and C × T → C such that the following diagram with the obvious
maps commute:

A×B × T −−−→ C × Ty
y a(bt) = (ab)t

A×B −−−→ C

Suppose that we have maps πA : A → A, πB : B → B, and πC : C → C which
jointly satisfy the equation the following production equation for any a ∈ A
and b ∈ B.

πC(ab) = πA(a)b + aπB(b) (1)
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Then, given any s1, . . . , sn ∈ S, a1, . . . , an ∈ A, and any b1, . . . , bm ∈ B
and t1, . . . , tm ∈ T the following equation holds for πC, where we write a =∑n

i=1 siai and b =
∑m

j=1 bjtj.

πC(ab) +
n∑

i=1

m∑

j=1

siπC(aibj)tj =
n∑

i=1

siπC(aib) +
m∑

j=1

πC(abj)tj (2)

Remark 7 Note that expressions such as sabt (with s ∈ S, a ∈ A, b ∈ B and
t ∈ T ) are unambiguous, because of the associativity represented by the com-
mutative diagrams above. However, sct (with c ∈ C) in general is ambiguous,
since it is in general possible that (sc)t 6= s(ct). Of course, if c can be written as
c =

∑
aibi with ai ∈ A and bi ∈ B, then (sc)t = (s(

∑
aibi))t =

∑
(s(aibi))t =∑

((sai)bi)t =
∑

(sai)(bit) =
∑

s(ai(bit)) =
∑

s((aibi)t) = s((
∑

aibi)t) = s(ct).
In particular, sπC(ab)t = s(πA(a)b + aπB(b))t is unambiguous.

Remark 8 It should be emphasized that (1) is the only assumption made
about the maps πA, πB and πC. In particular no assumption is made that any
of the maps are additive. Since the map A × B → C is bilinear, it is easy
to prove that πC(0C) = 0C. We need only note that πC(0C) = πC(0A0B) =
πA(0A)0B + 0AπB(0B) = 0C + 0C = 0C. However, without knowledge of the
linear map A × B → C, this is all that can be said, and nothing analogous
need hold for πA and πB. In fact, if the bilinear map A×B → C is the trivial
map (a, b) 7→ 0, then (1) reduces to simply saying that πc(0C) = 0C, so that
πA and πB are totally arbitrary, as is πC, so long as it maps 0C to 0C.

PROOF.

πC(ab) = πA(a)b + aπB(b)

= πA(a)
m∑

j=1

bjtj +

(
n∑

i=1

siai

)
πB(b)

=
m∑

j=1

πA(a)bjtj +
n∑

i=1

siaiπB(b)

=
m∑

j=1

(πC(abj)− aπB(bj)) tj +
n∑

i=1

si (πC(aib)− πA(ai)b)

=
m∑

j=1

(
πC(abj)−

(
n∑

i=1

siai

)
πB(bj)

)
tj

+
n∑

i=1

si


πC(aib)− πA(ai)

m∑

j=1

bjtj




=
m∑

j=1

πC(abj)tj +
n∑

i=1

siπC(aib)−
n∑

i=1

m∑

j=1

si (πA(ai)bj + aiπB(yj)) tj
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=
m∑

j=1

πC(xyj)tj +
n∑

i=1

siπC(aib)−
n∑

i=1

m∑

j=1

siπC(aibj)tj

2

Corollary 9 Let R be a non-associative ring and let π : R → R be a produc-
tion on R. Let xi ∈ R for 1 ≤ i ≤ n and yj ∈ R for 1 ≤ j ≤ m. Then we
have

π(xy) +
n∑

i=1

m∑

j=1

π(xiyj) =
n∑

i=1

π(xiy) +
m∑

j=1

π(xyi) (3)

where x =
∑n

i=1 xi and y =
∑m

j=1 yj.

PROOF. Apply Lemma 6 with A = B = C = R and S = T = Z, together
with the obvious bilinear maps. Let πA = πB = πC = π, si = tj = 1, a = x
and b = y. All of the hypotheses are satisfied, and (2) reduces to (3). 2

Corollary 10 Let R be a non-associative ring and let π : R → R be a pro-
duction on R. Let xi, yi ∈ R for 1 ≤ i ≤ n. Suppose further that xiyj = 0
whenever i 6= j, so that xy =

∑n
i=1 xiyi, where x =

∑n
i=1 xi and y =

∑n
i=1 yi.

Then we have

π(xy) =
n∑

i=1

π(xiyi).

PROOF. First note that π(xiyj) = π0 = 0 for i 6= j, by Proposition 2. Note
also that xyi=xiy = xiyi. With this in mind, Corollary 9 now says that

π(xy) +
n∑

i=1

π(xiyi) =
n∑

i=1

π(xiyi) +
n∑

i=1

π(xiyi)

from which the corollary follows. 2

Corollary 11 Let R be a non-associative ring and let π : R → R be a pro-
duction on R. Let u, v ∈ R satisfy u2 = v2 = 0. Then we have

π(uv + vu) = π(uv) + π(vu).

PROOF. Setting x1 = y1 = u and x2 = y2 = v in Corollary 9 with n = m =
2, we see that

π(uv + vu) + (π(uv) + π(vu)) = (π(uv) + π(vu)) + (π(vu) + π(uv))

from which the corollary follows. 2
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Corollary 12 Let R be a non-associative ring and let π : R → R be a pro-
duction on R. Let u, v ∈ R satisfy u2 = v2 = 0 and vu = −uv. Then we
have

π(−uv) = −π(uv).

PROOF. By Proposition 2 and Corollary 11, we see that π(uv) + π(−uv) =
π(uv) + π(vu) = π(uv + vu) = π0 = 0. 2

Corollary 13 Let R be a non-associative algebra over the commutative ring
with identity Λ, and let π : R → R be a production on the underlying ring of
R. Let a, b ∈ R with c = ab. Then for any λ, µ ∈ Λ we have

π(λµc) + λµπ(c) = µπ(λc) + λπ(µc). (4)

PROOF. Apply Lemma 6 with A = B = C = R and S = T = Λ, together
with the obvious bilinear maps. Let πA = πB = πC = π and n = m = 1 with
s1 = λ, t1 = µ. All of the hypotheses are satisfied, and (2) reduces to (4). 2

Corollary 14 Let R be a non-associative algebra over the commutative ring
with identity Λ, and let π : R → R be a production on the underlying ring of
R. Let a0, a1, b0, b1 ∈ R satisfy a0b1 = a1b0 = 0 and a0b0 = a1b1 = c. Then for
any λ, µ ∈ Λ we have

π(λc + µc) = π(λc) + π(µc) (5)

and

π(λµc) + λµπ(c) = µπ(λc) + λπ(µc). (6)

PROOF. First note that if a = λ0a0 + λ1a1 and b = µ0b0 + µ1b1, then the
hypotheses imply that ab = (λ0a0 + λ1a1) (µ0b0 + µ1b1) = (λ0µ0 + λ1µ1) c.
Apply Lemma 6 with A = B = C = R and S = T = Λ, together with the
obvious bilinear maps. Let πA = πB = πC = π and n = m = 2 with si = λi

and tj = µj. All of the hypotheses are satisfied, and the (2) reduces to (7).

π
(
(λ0µ0 + λ1µ1) c

)
+ (λ0µ0 + λ1µ1) π (c) =

µ0π (λ0c) + λ0π (µ0c) +µ1π (λ1c) + λ1π (µ1c)
(7)

Letting λ1 = µ1 = 0, λ0 = λ and µ0 = µ in (7), we see immediately that (6)
holds. Similarly, by letting λ1 = µ0 = 1, λ0 = λ and µ1 = µ we see that

π
(
(λ + µ) c

)
+ (λ + µ) π(c) = π (λc) + λπ(c) + µπ(c) + π (µc) .

From this, (5) follows immediately. 2
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Remark 15 Note that if R is an anti-symmetric non-associative algebra over
Λ, that is, if x2 = 0 for every x ∈ R, then any c = ab will satisfy the conclu-
sions (5) and (6) of Corollary 14. To see this, we need only note that if we
define a0 = b1 = a and b0 = −a1 = b, then a0b1 = a2 = 0, a1b0 = −b2 = 0,
a0b0 = ab = c, and a1b1 = −ba = ab = c. Note in particular that this applies
to any Lie algebra.

Let R be a non-associative ring which is direct sum of ideals R = R1⊕· · ·⊕Rn.
If πi : Ri → Ri is a production on Ri for each i = 1, . . . , n, then the map
π : R → R defined by π(x1 + · · · + xn) = π1(x1) + · · · + πn(xn) for xi ∈ Ri is
easily seen to be a production on R. Theorem 16 provides a partial converse
to this. We say that a non-associative ring is annihilator free if for any a ∈ Ri

which satisfies ax = xa = 0 for all x ∈ Ri, we have a = 0. In case R is a direct
sum R = R1 ⊕ · · · ⊕Rn, note that R is annihilator free if and only if each Ri

is annihilator free.

Theorem 16 Let R be a non-associative ring which is direct sum of ideals
R = R1 ⊕ · · · ⊕Rn, and let π : R → R be a production on R. Suppose further
that R is annihilator free. (Equivalently, that each Ri is annihilator free.)
Then there exist unique productions πi : Ri → Ri such that π(x1 + · · ·+ xn) =
π1(x1) + · · ·+ πn(xn) for xi ∈ Ri.

PROOF. The uniqueness is trivial, since πi(0) = 0 for every i, so that πi(x) =
π(x) for any x ∈ Ri.

For existence, we first need to show that π(x) ∈ Ri whenever x ∈ Ri. Let
x ∈ Ri. Write π(x) = a0 + · · · + an with aj ∈ Rj. Given any j 6= i and any
y ∈ Rj, we have ajy = π(x)y ∈ Rj and also ajy = π(x)y = π(xy) − xπ(y) =
π(0)−xπ(y) = −xπ(y) ∈ Ri. Thus, ajy = 0 for any y ∈ Rj. Similarly, yaj = 0
for any y ∈ Rj. Since Rj is annihilator free, we must have aj = 0. Since aj = 0
for every j 6= i, we have π(x) = ai ∈ Ri, as desired.

Now, we may define πi : Ri → Ri, for any i = 1, . . . , n, by πi(x) = π(x) for
any x ∈ Ri. Clearly, each πi is a production on Ri. It remains only to show
that π(x1 + · · ·+ xn) = π1(x1) + · · ·+ πn(xn) whenever xi ∈ Ri for each i. Let
x = x1 + · · ·+ xn and y = y1 + · · ·+ yn be arbitrary, with xi, yi ∈ Ri. Making
use of Corollary 10, we may calculate as follows:

(π(x)−π1(x1)− · · · − πn(xn))y = π(x)y − π(x1)y − . . .− π(xn)y

= (π(xy)− xπ(y))− (π(x1y)− x1π(y))− . . .− (π(xny)− xnπ(y))

= π(xy)− π(x1y)− · · · − π(xny)− (x− x1 − · · · − xn) π(y)

= π(xy)− π(x1y1)− · · · − π(xnyn)

= 0
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Thus, (π(x)− π1(x1)− · · · − πn(xn))y = 0 for any y ∈ R. Similarly, y(π(x)−
π1(x1)−· · ·−πn(xn)) = 0 for any y ∈ R. Since R is annihilator free, this gives
π(x1 + · · ·+xn) = π1(x1)+ · · ·+πn(xn), as desired. The proof is complete. 2

Proposition 17 Let R be a non-associative ring with direct sum decomposi-
tion R =

⊕
α∈I Rα as an abelian group under addition, and let π : R → R be a

production on R. Suppose that π is additive on each of the summands Rα, in
the sense that for any α ∈ I and for any x, y ∈ Rα, we have π(x+y) = πx+πy.
Suppose further that for each α, β ∈ I there exists some γ ∈ I such that xy ∈
Rγ for any x ∈ Rα and y ∈ Rβ. Define δ : R → R by δ (

∑
α∈I xα) =

∑
α∈I πxα,

where xα ∈ Rα for each α ∈ I and xα = 0 for all but finitely many α ∈ I.
Then δ is a derivation on R.

PROOF. We define m : I×I → I so that xy ∈ Rm(α,β) whenever x ∈ Rα and
y ∈ Rβ. For any x ∈ R, we write x =

∑
α∈I xα, where xα ∈ Rα for each α ∈ I

and xα = 0 for all but finitely many α. Then we see that δ is a production as
follows.

δ(xy) = δ

((∑
α

xα

)(∑

β

yβ

))

= δ

(∑
γ

( ∑

m(α,β)=γ

xαyβ

))

=
∑
γ

π
( ∑

m(α,β)=γ

xαyβ

)

=
∑
γ

( ∑

m(α,β)=γ

π(xαyβ)
)

=
∑
α

∑

β

π(xαyβ)

=
∑
α

∑

β

((πxα)yβ + xαπyβ)

=
(∑

α

πxα

)
y + x

∑

β

πyβ

= (δx)y + xδy

To see that δ is a derivation on R, it remains only to show additivity of δ on
R, which we see as follows.

δ(x + y) = δ
(∑

α

xα +
∑
α

yα

)

= δ
(∑

α

(xα + yα)
)

=
∑
α

π(xα + yα)
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=
∑
α

(πxα + πyα)

=
∑
α

πxα +
∑
α

πyα

= δ
(∑

α

xα

)
+ δ

(∑
α

yα

)

= δx + δy

2

Theorem 18 Let L be a Lie ring, and π : L → L a production on L. Then
we have

π[[x, y], z] + π[[y, z], x] + π[[z, x], y] = 0

for every x, y, z ∈ L.

PROOF.

π[[x, y], z] + π[[y, z], x] + π[[z, x], y] = [π[x, y], z] + [[x, y], πz]

+ [π[y, z], x] + [[y, z], πx]

+ [π[z, x], y] + [[z, x]πy]

= [[πx, y], z] + [[x, πy], z] + [[x, y], πz]

+ [[πy, z], x] + [[y, πz], x] + [[y, z], πx]

+ [[πz, x], y] + [[z, πx], y] + [[z, x], πy]

= [[πx, y], z] + [[z, πx], y] + [[y, z], πx]

+ [[x, πy], z] + [[z, x], πy] + [[πy, z], x]

+ [[x, y], πz] + [[πz, x], y] + [[y, πz], x]

= 0 + 0 + 0

2

2 Finite dimensional split semi-simple Lie algebras over a field of
characteristic zero

In this section, we assume that L is a finite dimensional split semi-simple Lie
algebra over a field F of characteristic zero, with 〈−,−〉 as its Killing form.
(Recall that any Lie algebra over an algebraically closed field of characteristic
zero is split.) Let

L = H ⊕ ⊕

α∈∆

Lα (8)

be a fixed Cartan decomposition for L, where ∆ = ∆+∪∆− is the set of (non-
zero) roots of L, and ∆+ is the set of positive roots under a given ordering,
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with ∆− the corresponding set of negative roots. We write hα for the coroot
of α. Let ∆0

+ be the set of simple positive roots, that is, the set of all α ∈ ∆+

such that there do not exist β, γ ∈ ∆+ with α = β + γ. Then {hα | α ∈ ∆+}
is a basis for H. Note that [h, xα] = α(h)xα for any h ∈ H and xα ∈ Lα, and
that [xα, x−α] = 〈xα, x−α〉hα for any xα ∈ Lα and x−α ∈ L−α. Recall that
〈hα, hβ〉 ∈ Q is rational for all α, β ∈ ∆.

Throughout this section we will assume that the map π : L → L is a produc-
tion on the underlying Lie ring of L.

Lemma 19 Let L be a finite dimensional split semi-simple Lie algebra over
a field F of characteristic zero, with Cartan decomposition (8). Suppose that
πh = 0 for every h ∈ H and that for every α ∈ ∆ and every xα ∈ Lα, we have
πxα = 0. Then π is the trivial production πx = 0 for all x ∈ L.

PROOF. First, we will show that

π(xα + x−α) = 0 (9)

whenever xα ∈ Lα and x−α ∈ L−α. If one or both of xα and x−α are 0, then we
have nothing to prove, so assume that both are non-zero. Then 〈xα, x−α〉 6= 0.
Thus, we may define yα ∈ Lα by xα = 〈xα, x−α〉 〈hα, hα〉 yα. Then, we have
〈yα, x−α〉 〈hα, hα〉 = 1. Now, we use Theorem 18 to calculate as follows.

0 = π[[yα, x−α], xα − x−α] + π[[x−α, xα − x−α], yα] + π[[xα − x−α, yα], x−α]

= π[〈yα, x−α〉hα, xα − x−α] + π[−〈xα, x−α〉hα, yα] + π[〈yα, x−α〉hα, x−α]

= π
(
〈yα, x−α〉 〈hα, hα〉xα + 〈yα, x−α〉 〈hα, hα〉x−α

)

+ π
(
−〈xα, x−α〉 〈hα, hα〉 yα

)
+ π

(
−〈yα, x−α〉 〈hα, hα〉x−α

)

= π(xα + x−α) + π(−xα) + π(−x−α)

= π(xα + x−α)

This proves (9), as desired.

Next, we show that

π(x) ∈ H whenever x =
∑

α∈∆

xα, (10)

where xα ∈ Lα. It is enough to show that [h, π(x)] = 0 for any h ∈ H. Since
[H, L] ⊆ ⊕

α∈∆ Lα, this is equivalent to showing that [h, π(x)] ∈ H for any h ∈
H. We do this by induction on the number k of non-zero terms xα occurring
in the sum x =

∑
α∈∆ xα. If k < 2, then π(x) = 0 by hypothesis. Similarly,

if k = 2 and there is some α ∈ ∆ with xα, x−α 6= 0, then x = xα + x−α, so
that π(x) = 0 by (9). Either way, we have [h, π(x)] = [h, 0] = 0 trivially. So,
we may assume that there exists α′, α′′ ∈ ∆ with xα′ , xα′′ 6= 0 with such that
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α′ 6= ±α′′. Note that any h ∈ H can be written in the form h = h′ + h′′ for
some h′, h′′ ∈ H satisfying α′(h′) = α′′(h′′) = 0.

[h, π(x)] = [h′ + h′′, π(x)]

= [h′, π(x)] + [h′′, π(x)]

=
(
π[h′, x]− [π(h′), x]

)
+

(
π[h′′, x]− [π(h′′), x]

)

= π[h′, x] + π[h′′, x]

= π
[
h′,

∑

α∈∆

xα

]
+ π

[
h′′,

∑

α∈∆

xα

]

= π
( ∑

α∈∆

α(h′)xα

)
+ π

( ∑

α∈∆

α(h′′)xα

)

∈ H

The last statement follows directly from the induction hypothesis, since we
have α′(h′) = α′′(h′′) = 0 and xα′ , xα′′ 6= 0, so that both sums

∑
α∈∆ α(h′)xα

and
∑

α∈∆ α(h′′)xα have strictly fewer non-zero terms than the sum
∑

α∈∆ xα,
and therefore the images of both sums under π are in H. Thus, (10) is proved.

Next, we show that

π(x) ∈ H for any x ∈ L. (11)

As before, it is enough to show that [h, π(x)] = 0 for any x ∈ L and h ∈ H,
which in turn is equivalant to showing that [h, π(x)] ∈ H for any x ∈ L and
h ∈ H. By writing x as x = h′ +

∑
α∈∆ xα, we see that

[h, π(x)] = π[h, x]− [π(h), x]

= π
[
h, h′ +

∑

α∈∆

xα

]
− [0, x]

= π
( ∑

α∈∆

α(h)xα

)

∈ H,

by (10). Thus, (11) is proved.

Finally, we complete the proof of Lemma 19 by showing that

π(x) = 0 for all x ∈ L. (12)

Since π(x) ∈ H by (11), it is enough to show that [π(x), yβ] = 0 for every
β ∈ ∆ and yβ ∈ Lβ. If we let h = π(x), we see immediately that [π(x), yβ] =
[h, yβ] = β(h)yβ ∈ Lβ. But

[π(x), yβ] = π[x, yβ]− [x, π(yβ)]

10



= π[x, yβ]− [x, 0]

∈ H,

by (11), so that [π(x), yβ] ∈ Lβ ∩H = { 0 }. Thus, (12) holds, and the proof
is complete. 2

Theorem 20 Let L be a finite dimensional split semi-simple Lie algebra over
a field F of characteristic zero. Suppose that π is a production on the underlying
Lie ring of L. Then π is additive, that is,

π(x + y) = π(x) + π(y) (13)

for all x, y ∈ L.

PROOF. First, we show that the Cartan decomposition (8) satisfies the hy-
potheses of Proposition 17. That is, we show that π is additive on each of the
summands of (8).

Given α ∈ ∆ and xα ∈ Lα with xα 6= 0, note that [hα, xα] = 〈hα, hα〉xα, so
that π is additive on F 〈hα, hα〉xα = Fxα = Lα, by Remark 15.

Note also that if xα ∈ Lα and x−α ∈ L−α with xα, x−α 6= 0, then 〈xα, x−α〉 6= 0
and [xα, x−α] = 〈xα, x−α〉hα, so that π is additive on F 〈xα, x−α〉hα = Fhα,
by Remark 15. Recall that H =

⊕
α∈∆0

+
Fhα. For convenience, let us choose

xα ∈ Lα and x−α ∈ L−α for each α ∈ ∆0
+ such that 〈xα, x−α〉 = 1. Then

[xα, x−α] = hα for all α ∈ ∆0
+. Note also that [xα, x−β] = 0 for any α, β ∈ ∆0

+

with α 6= β.

We now show that π is additive on H. Let h, h′ ∈ H. Then we can write
h =

∑
α∈∆0

+
rαhα and h′ =

∑
α∈∆0

+
r′αhα with rα, r′α ∈ F for α ∈ ∆0

+. The
following calculation uses Corollary 10 together with the fact that π is additive
on Fhα for all α ∈ ∆0

+.

π(h + h′) = π
( ∑

α∈∆0
+

rαhα +
∑

α∈∆0
+

r′αhα

)

= π
( ∑

α∈∆0
+

(rα + r′α) hα

)

= π
[ ∑

α∈∆0
+

(rα + r′α) xα,
∑

α∈∆0
+

x−α

]

=
∑

α∈∆0
+

π
[
(rα + r′α) xα, x−α

]

=
∑

α∈∆0
+

π
(
(rα + r′α) hα

)

11



=
∑

α∈∆0
+

π (rαhα + r′αhα)

=
∑

α∈∆0
+

(
π (rαhα) + π (r′αhα)

)

=
∑

α∈∆0
+

π (rαhα) +
∑

α∈∆0
+

π (r′αhα)

=
∑

α∈∆0
+

π [rαxα, x−α] +
∑

α∈∆0
+

π [r′αxα, x−α]

= π
[ ∑

α∈∆0
+

rαxα,
∑

α∈∆0
+

x−α

]
+ π

[ ∑

α∈∆0
+

r′αxα,
∑

α∈∆0
+

x−α

]

= π
( ∑

α∈∆0
+

rαhα

)
+ π

( ∑

α∈∆0
+

r′αhα

)

= π(h) + π(h′)

Thus, we see that π is additive on H. Since π has already been seen to be
additive on Lα for each α ∈ ∆, we see that the Cartan decomposition (8)
satisfies the hypotheses for Proposition 17. Let δ : L → L be the map whose
existence is claimed in Proposition 17. Note that δ is a derivation (and there-
fore a production) on the underlying Lie ring of L, which agrees with π on H
and on Lα for all α ∈ ∆. It is trivial to see that the set of all productions on
the underlying Lie ring of L form a vector space over the field F, under the
obvious pointwise definitions. In particular, the map π′ = π − δ defined by
π′(x) = π(x)− δ(x) is a production on the underlying Lie ring of L. Further-
more, π′(h) = 0 for all h ∈ H and π′(xα) = 0 for all α ∈ ∆ and all xα ∈ Lα.
Thus, Lemma 19 implies that π′ is the trivial production, so that π = δ. Thus,
π is a derivation on the underlying Lie ring L, and hence additive. 2

Theorem 21 Let L be a finite dimensional split simple Lie algebra over a field
F of characteristic zero, with Killing form 〈−,−〉, and let π be a production
on the underlying Lie ring of L. Then π is a derivation on the underlying Lie
ring of L, and there exists a unique derivation δ : F→ F on the field of scalars
F such that

π(λx) = δ(λ)x + λπ(x) (14)

and

δ 〈x, y〉 = 〈π(x), y〉+ 〈x, π(y)〉 , (15)

for any λ ∈ F and any x, y ∈ L.

PROOF. The fact that π is a additive on L, and thus a derivation on the
underlying Lie ring of L, is the content of Theorem 20. It follows that π is
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actually Q-linear. In particular, π(〈hα, hβ〉x) = 〈hα, hβ〉 π(x) for all x ∈ L and
all α, β ∈ ∆, since 〈hα, hβ〉 ∈ Q is rational. We will use this fact freely without
mention.

Note also that the uniqueness of δ is trivial, by either (14) or (15), so it enough
to show the existence of a δ with the desired properties.

Our first task is to define δ. For any α ∈ ∆, we define a map δα : F→ F by

δα(λ) =
〈π(λhα), hα〉
〈hα, hα〉 , (16)

for any λ ∈ F. We shall see shortly that δα = δβ for all α, β ∈ ∆.

First, we show that δα is a derivation on F for any α ∈ ∆. The fact that δα

is additive is an immediate consequence of the fact that π is additive. To see
that δα is a production on F, choose any xα ∈ Lα and x−α ∈ L−α such that
〈xα, x−α〉 = 1. Then hα = [xα, x−α], so we may apply Corollary 13 with c = hα

in (4) to see that

π(λµhα) + λµπ(hα) = µπ(λhα) + λπ(µhα),

and thus
δα(λµ) + λµδα(1) = µδα(λ) + λδα(µ),

for any λ, µ ∈ F. Thus, to see that δα is a production, we need only show that

δα(1) = 0, (17)

for all α ∈ ∆. To see this, once again we choose any xα ∈ Lα and x−α ∈ L−α

such that 〈xα, x−α〉 = 1, and calculate as follows:

δα(1) =
〈π(hα), hα〉
〈hα, hα〉

=
〈π(hα), [xα, x−α]〉

〈hα, hα〉
=
〈[π(hα), xα], x−α〉

〈hα, hα〉
=
〈π[hα, xα]− [hα, π(xα)], x−α〉

〈hα, hα〉
=
〈π[hα, xα], x−α〉

〈hα, hα〉 − 〈[hα, π(xα)], x−α〉
〈hα, hα〉

=
〈π (〈hα, hα〉xα) , x−α〉

〈hα, hα〉 +
〈π(xα), [hα, x−α]〉

〈hα, hα〉
= 〈π(xα), x−α〉 − 〈π(xα), x−α〉
= 0

13



Thus, δα is a derivation on F for any α ∈ ∆, as claimed.

Next, we show that

〈π (〈xα, x−α〉hα) , h〉 = 〈hα, h〉
(
〈π(xα), x−α〉+ 〈xα, π(x−α)〉

)
, (18)

for any α ∈ ∆, h ∈ H, xα ∈ Lα and x−α ∈ L−α. We see this as follows:

〈π (〈xα, x−α〉hα) , h〉 = 〈π [xα, x−α] , h〉
= 〈[π(xα), x−α] , h〉+ 〈[xα, π(x−α)] , h〉
= 〈π(xα), [x−α, h]〉+ 〈[h, xα] , π(x−α)〉
= 〈hα, h〉

(
〈π(xα), x−α〉+ 〈xα, π(x−α)〉

)

If 〈hα, h〉 6= 0, we can rewrite this as

〈π (〈xα, x−α〉hα) , h〉
〈hα, h〉 = 〈π(xα), x−α〉+ 〈xα, π(x−α)〉 . (19)

If we set h = hα in (19), we see from (16) that

δα(〈xα, x−α〉) = 〈π(xα), x−α〉+ 〈xα, π(x−α)〉 . (20)

Given any λ ∈ F and any α ∈ ∆, we can find xα ∈ Lα and x−α ∈ L−α such
that λ = 〈xα, x−α〉. Thus, we may combine (20) with (18) to yield

〈π(λhα), h〉 = δα(λ) 〈hα, h〉 . (21)

Next, we show that

〈π(h), xα〉+ 〈h, π(xα)〉 = 0, (22)

for any α ∈ ∆, h ∈ H and xα ∈ Lα. To see this, we calculate as follows:

〈π(h), xα〉+ 〈h, π(xα)〉 =

〈
π(h),

[
hα,

xα

〈hα, hα〉

]〉
+

〈
h, π

[
hα,

xα

〈hα, hα〉

]〉

=

〈
[π(h), hα],

xα

〈hα, hα〉

〉
+

〈
h,

[
π(hα),

xα

〈hα, hα〉

]〉

+

〈
h,

[
hα, π

(
xα

〈hα, hα〉

)]〉

=

〈
[π(h), hα],

xα

〈hα, hα〉

〉
+

〈
[h, π(hα)],

xα

〈hα, hα〉

〉

+

〈
[h, hα], π

(
xα

〈hα, hα〉

)〉

=

〈
π[h, hα],

xα

〈hα, hα〉

〉
+

〈
[h, hα],

xα

〈hα, hα〉

〉

14



=

〈
π(0),

xα

〈hα, hα〉

〉
+

〈
0,

xα

〈hα, hα〉

〉

= 0 + 0

Using (22), we may show that

〈π(λh), xα〉 = λ 〈π(h), xα〉 , (23)

for any α ∈ ∆, λ ∈ F, h ∈ H and xα ∈ Lα as follows:

〈π(λh), xα〉 = −〈λh, π(xα)〉
= −λ 〈h, π(xα)〉
= λ 〈π(h), xα〉

From (23), we see immediately that 〈π(λh)− λπ(h), xα〉 = 0 for any xα ∈ Lα,
so that

π(λh)− λπ(h) ∈ H, (24)

for any h ∈ H and λ ∈ F.

Next, we show that

π(λhα) = δα(λ)hα + λπ(hα), (25)

for all α ∈ ∆ and λ ∈ F. By (24), we see that π(λhα)−λπ(hα)−δα(λ)hα ∈ H.
Thus, to show (25), it suffices to show that 〈π(λhα)− λπ(hα)− δα(λ)hα, h〉 =
0 for any h ∈ H. We see this, using (21) and (17) as follows:

〈π(λhα)− λπ(hα)− δα(λ)hα, h〉
= 〈π(λhα), h〉 − λ 〈π(hα), h〉 − δα(λ) 〈hα, h〉
= δα(λ) 〈hα, h〉 − λδα(1) 〈hα, h〉 − δα(λ) 〈hα, h〉
= 0

Next, we show that

〈π(hα + hβ), [xα, xβ]〉 = 〈hα + hβ, hα + hβ〉 〈π(xα), xβ〉 , (26)

for any α, β ∈ ∆, xα ∈ Lα and xβ ∈ Lβ, by calculating as follows:

〈π(hα + hβ), [xα, xβ]〉 = 〈[π(hα + hβ), xα], xβ〉
= 〈π[hα + hβ, xα]− [hα + hβ, π(xα)], xβ〉
= 〈π[hα + hβ, xα], xβ〉 − 〈[hα + hβ, π(xα)], xβ〉
= 〈π(〈hα + hβ, hα〉xα), xβ〉+ 〈π(xα), [hα + hβ, xβ]〉
= 〈hα + hβ, hα〉 〈π(xα), xβ〉+ 〈hα + hβ, hβ〉 〈π(xα), xβ〉
= 〈hα + hβ, hα + hβ〉 〈π(xα), xβ〉

15



From (26), we see immediately that

〈π(xα), xβ〉 =
〈π(hα + hβ), [xα, xβ]〉
〈hα + hβ, hα + hβ〉 for α + β 6= 0. (27)

Since [xα, xβ] + [xβ, xα] = 0, we can use (27) to conclude that

〈π(xα), xβ〉+ 〈xα, π(xβ)〉 = 0 for α + β 6= 0, (28)

for any α, β ∈ ∆, xα ∈ Lα and xβ ∈ Lβ.

Our next goal is to prove that

π(λxα) = δα(λ)xα + λπ(xα), (29)

for any α ∈ ∆, λ ∈ F and xα ∈ Lα. We start by using (22) to show that

〈π(λxα)− δα(λ)xα − λπ(xα), h〉 = 0 (30)

for any h ∈ H, by calculating as follows:

〈δα(λ)xα, h〉+ 〈λπ(xα), h〉 = 0 + λ 〈π(xα), h〉
= −λ 〈xα, π(h)〉
= −〈λxα, π(h)〉
= 〈π(λxα), h〉

Next, we use (28) to show that

〈π(λxα)− δα(λ)xα − λπ(xα), xβ〉 = 0 for α + β 6= 0, (31)

foe any xα ∈ Lβ, by calculating as follows:

〈δα(λ)xα, xβ〉+ 〈λπ(xα), xβ〉 = 0 + λ 〈π(xα), xβ〉
= −λ 〈xα, π(xβ)〉
= −〈λxα, π(xβ)〉
= 〈π(λxα), xβ〉

Finally, we use (20) to show that

〈π(λxα)− δα(λ)xα − λπ(xα), x−α〉 = 0, (32)

for any x−α, by calculating as follows:

〈π(λxα), x−α〉 = δα 〈λxα, x−α〉 − 〈λxα, π(x−α)〉
= δα (λ 〈xα, x−α〉)− λ 〈xα, π(x−α)〉
= δα (λ) 〈xα, x−α〉+ λδα 〈xα, x−α〉 − λ 〈xα, π(x−α)〉
= δα (λ) 〈xα, x−α〉+ λ

(
δα 〈xα, x−α〉 − 〈xα, π(x−α)〉

)
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= δα(λ) 〈xα, x−α〉+ λ 〈π(xα), x−α〉
= 〈δα(λ)xα, x−α〉+ 〈λπ(xα), x−α〉

Since the Killing form is non-degenerate, we may use (30), (31) and (32) to
conclude that (29) holds, as desired.

We are now in a position to define the derivation δ on F. First, note that since
h−α = −hα, we immediately see from (16) that

δα(λ) = δ−α(λ), (33)

for any α ∈ ∆. Next, we show that

δα+β(λµ) = δα(λ)µ + λδβ(µ) for α, β, α + β ∈ ∆, (34)

where λµ ∈ F, xα ∈ Lα and xβ ∈ Lβ. To see this, note that [xα, xβ] ∈ Lα+β,
since we are assuming that α + β ∈ ∆. Using (29), we see that

δα+β(λµ)[xα, xβ] = π (λµ[xα, xβ])− λµπ[xα, xβ]

= π[λxα, µxβ]− λµπ[xα, xβ]

= [π(λxα), µxβ] + [λxα, π(µxβ)]− λµπ[xα, xβ]

= [δα(λ)xα + λπ(xα), µxβ] + [λxα, δβ(µ)xβ + µπ(xβ)]− λµπ[xα, xβ]

=
(
δα(λ)µ + λδβ(µ)

)
[xα, xβ] + λµ

(
[π(xα), xβ] + [xα, π(xβ)]− π[xα, xβ]

)

=
(
δα(λ)µ + λδβ(µ)

)
[xα, xβ],

which easily implies (34), by any choice of xα, xβ 6= 0 so that [xα, xβ] 6= 0. By
letting µ = 1 in (34), we see that δα+β(λ) = δα(λ)+λδβ(0) = δα(λ). Similarly,
δα+β(µ) = δβ(µ). Thus, we have

δα = δβ = δα+β for α, β, α + β ∈ ∆. (35)

Since L is assumed to be simple, from (33) and (35) we may conclude that

δα = δβ for α, β ∈ ∆. (36)

(Note that if L were merely assumed to be semi-simple, then (36) would only
follow in case α and β were roots of the same simple factor.)

We now define the derivation δ : F→ F on F by

δ = δα for any α ∈ ∆. (37)

By (36), δ is well defined. Also, δ is a derivation on F since δα is.

It remains to prove (14) and (15).
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Now, we show that

π(λh) = δ(λ)h + λπ(h), (38)

for any λ ∈ F and h ∈ H. To see this, we write h =
∑

α∈∆0
+

µαhα, with µα ∈ F
for all α ∈ ∆0

+, and use (25) and (37) as follows:.

π(λh) = π
(
λ

∑

α∈∆0
+

µαhα

)

= π
( ∑

α∈∆0
+

λµαhα

)

=
∑

α∈∆0
+

π (λµαhα)

=
∑

α∈∆0
+

(
δ(λµα)hα + λµαπ(hα)

)

=
∑

α∈∆0
+

((
δ(λ)µα + λδ(µα)

)
hα + λµαπ(hα)

)

= δ(λ)
∑

α∈∆0
+

µαhα + λ
∑

α∈∆0
+

(
δ(µα)hα + µαπ(hα)

)

= δ(λ)h + λ
∑

α∈∆0
+

π(µαhα)

= δ(λ)h + λπ
( ∑

α∈∆0
+

µαhα

)

= δ(λ)h + λπ(h)

We are finally in a position to prove (14). Writing x = h+
∑

α∈δ xα,with h ∈ H
and xα ∈ Lα for α ∈ ∆, we use (29), (38) and (37) to compute as follows:

π(λx) = π
(
λ

(
h +

∑

α∈δ

xα

))

= π
(
λh +

∑

α∈δ

λxα

)

= π(λh) +
∑

α∈δ

π(λxα)

= δ(λ)h + λπ(h) +
∑

α∈δ

(
δ(λ)xα + λπ(xα)

)

= δ(λ)
(
h +

∑

α∈∆

xα

)
+ λ

(
π(h) +

∑

α∈∆

π(xα)
)

= δ(λ)x + λπ(x)

Thus, (14) is proved.
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Next, we show that

δ 〈λhα, µhβ〉 = 〈π(λhα), µhβ〉+ 〈λhα, π(µhβ)〉 , (39)

for any α, β ∈ ∆ and hα, hβ ∈ H, by using (21) and computing as follows:

δ 〈λhα, µhβ〉 = δ
(
λµ 〈hα, hβ〉

)

= δ(λµ) 〈hα, hβ〉
=

(
δ(λ)µ + λδ(µ)

)
〈hα, hβ〉

= δ(λ) 〈hα, µhβ〉+ δ(µ) 〈hβ, λhα〉
= 〈π(λhα), µhβ〉+ 〈π(µhβ), λhα〉
= 〈π(λhα), µhβ〉+ 〈λhα, π(µhβ)〉

It is easy to see that

δ 〈h, xα〉 = 〈π(h), xα〉+ 〈h, π(xα)〉 , (40)

for all α ∈ δ, h ∈ H and xα ∈ Lα. We need only note that δ 〈h, xα〉 = δ(0) = 0,
and apply (22).

It is equally easy to see that

δ 〈xα, xβ〉 = 〈π(xα), xβ〉+ 〈xα, π(xβ)〉 , (41)

for all α, β ∈ ∆, xα ∈ Lα and xβ ∈ Lβ. If α + β 6= 0, we need only note that
δ 〈xα, xβ〉 = δ(0) = 0 and apply (28). If α + β = 0, we need only apply (20).

Since every x ∈ L can be written as x =
∑

α∈∆0
+

λαhα +
∑

α∈∆ xα where λα ∈ F
for all α ∈ ∆0

+ and xα ∈ Lα for all xα ∈ Lα, it is easy to see that we can use
(39), (40) and (41), together with the fact that both π and δ are additive, and
that the Killing form is bilinear, to prove (15).

This completes the proof of Theorem 21 2

Theorem 22 Let L be a finite dimensional split semi-simple Lie algebra over
a field F of characteristic zero, with Killing form 〈−,−〉, and let π be a pro-
duction on the underlying Lie ring of L. Let

L =
n⊕

i=1

Li

be the decomposition of L into its simple factors. Then π is a derivation on
the underlying Lie ring of L, and there Then there exists a unique sequence of
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derivations δ1, . . . , δn : F→ F on the field of scalars F such that

π(λx) =
n∑

i=1

δi(λ)xi + λπ(x)

and

n∑

i=1

δi 〈xi, yi〉 = 〈π(x), y〉+ 〈x, π(y)〉 ,

for any λ ∈ F and any x, y ∈ L,where we write x =
∑n

i=1 xi and y =
∑n

i=1 yi

with xi, yi ∈ Li for i = 1, . . . , n.

PROOF. This is an easy consequence of Theorem 16 and Theorem 21. 2
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