
1. Lattices

1.1. Lattices. A Z-lattice (or simply a lattice) L of rank n is a Z-module of rank n with
a symmetric bilinear form (also called inner product) 〈 , 〉 : L × L → Q. Unless otherwise
stated, we shall assume that the inner product is non-degenerate, that is, 〈x, y〉 = 0 for all
y implies x = 0.

If 〈x, y〉 ∈ Z for all x, y ∈ L, then we say that L is integral. We can always think of L as
sitting inside a vector space V of dimension n as a discrete subgroup. Let L be a lattice in
a vector space V . The inner product extends linearly to V . Define the dual lattice

L∨ = {x ∈ V : 〈x, y〉 ∈ Z for all y ∈ Γ}.

If L is integral then L ⊆ L∨. Say that an integral lattice L is self dual if L = L∨. Write
|x|2 = 〈x, x〉 and call it the norm of x. Let L(n) denote the set of all lattice vectors in L of
norm n. An integral lattice L is even if |x|2 is an even integer for all x ∈ L.

Exercise: Show that every integral has an even sublattice of index at most 2.

The inner product matrix ((〈ei, ej〉)) of a basis (e1, · · · , en) of L is called the Gram matrix
of L and its determinant is denoted by d(L).

Exercise: Show that if L is integral then [L∨ : L] = d(L).

In particular, L is self dual if and only if d(L) = 1. Say that L has signature (m,n) if
the Gram matrix of L has m positive and n negative eigenvalues. Say that L is positive
definite if L has signature (n, 0) and that L is Lorentzian if L has signature (n, 1) for some
n ≥ 1.

1.2. Examples. In the first two examples below, the inner product is the usual one on Rn.
All the lattices below are even. The subscripts usually denotes rank.

(1) Let An be the set of all (x0, · · · , xn) ∈ Zn+1 such that
∑

i
xi = 0.

(2) Let Dn be the set of all (x1, · · · , xn) ∈ Zn such that
∑

i
xi ≡ 0 mod 2.

(3) Let m,n be natural numbers. Let Rm,n be the real vector space of dimension (m+n)
with the inner product of signature (m,n):

|x|2 = x2

1 + · · ·+ x2

m − x2

m+1 − · · · − x2

m+n

where x = (x1, · · · , xm+n) ∈ Rm,n. Let m− n ≡ 0 mod 8. Define

IIm,n = {x ∈ Rm,n : xj ∈ Z for all j or (xj +
1

2
) ∈ Z for all j,

∑

j

xj ≡ 0 mod 2}.

Then IIm,n is an even self dual integral lattice whenever (m− n) ≡ 0 mod 8. In fact
we have the following theorem: Even self dual integral lattices of signature (m,n)
exist only if m − n ≡ 0 mod 8. If m and n are both non-zero then there is a unique
such lattice, namely IIm,n. (see [Se])

(4) Let E8 = II8,0. Let E7 be the orthogonal complement of any norm 2 vector vector in
E8. Let E6 be the orthogonal complement of any copy of A2 lattice sitting in E8.
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(5) Let ρ = (0, 1, 2, 3, .., 24, 70) ∈ II25,1. Then ρ is a primitive null vector so ρ ∈ ρ⊥ and
Λ := ρ⊥/ρZ is a positive definite even self dual lattice of rank 24. This is the famous
Leech lattice.

1.3. Roots. A root of L is a lattice vector s with |s|2 > 0 such that reflection Rs in s is an
isometry of L. Here Rs is the isometry of the vector space V that fixes s⊥, called the mirror
of reflection, and takes s to −s. A formula for Rs is

Rs(v) = v − 2〈v, s〉s/|s|2.

The reflection group Ref(L) of L is the subgroup of Aut(L) generated by the reflections in the
roots of L. A root lattice is a lattice generated by its roots. The lattices An, Dn, E6, E7, E8

above are root lattices.
Digression: In contrast Leech lattice has no roots. In fact the Leech lattice is the only
positive definite self dual lattice of dimension < 32 that has no roots. So its reflection group
is trivial. However the automorphism group O(Λ) has size 8315553613086720000. It is one
of the 26 sporadic finite simple groups in the classification theorem. Its discovery in the
sixties lead to the discovery of quite a few more sporadic groups leading up to the largest
sporadic finite simple group, the Monster, which has size almost 8× 1053.

1.4. Root syetems of lattices: A (reduced) root system Φ in an inner product space V is a
nonempty spanning subset of V such that such that for all s, s′ ∈ Φ,we have sR∩Φ = {s,−s},
Rs(Φ) = Φ and 2〈s, s′〉/〈s, s〉 ∈ Z. We say that Φ is simply laced if all the roots of L have
norm 2.

Exercise: If L is an even integral lattice, then norm 2 vectors are roots of L and L(2)
is a simply laced root system.

In particular An(2), Dn(2), E6(2), E7(2), E8(2) are finite simply laced root systems. (finite
because the lattices a positive definite). In fact: any finite simply laced root system in Rn is
isomorphic to an “orthogonal direct sum” of these ADE root systems.

Exercise: Suppose u and v are two non-proportional roots in a positive definite simply
laced root system Φ.
(a) Show that the angle between them is π/3, π/2 or 2π/3.
(b) Conclude that if 〈u, v〉 > 0, then in fact 〈u, v〉 = 2 and u− v = Rv(u) is a root.
(c) Show that the only rank 2 simply laced positive definite root systems are A1(2)×A1(2)
and A2(2).

1.5. Here are some questions that might interest a person while thinking about lattices.

(1) What are the interesting lattices? This might mean:
◦ what are the 26 dimensional lattices with d(Γ) = 3
◦ what are the “positive definite root lattices”? We shall (almost) answer this one
◦ what the the even self dual lattices? When the signature is indefinite, already
know the answer. For positive definite lattices the story is a lot more interesting.
For m = 8, there is a unique one E8 = II8,0. For m = 16, there are two: E8⊕E8

and II16,0 (the Barne’s-Wall lattice). The dimension m = 24 is ofcourse the
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most interesting case. There are exactly 24 such lattices in dimension 24 called
the Niemeier Lattices, the most famous among them the Leech lattice Λ which
relates to all sorts of exotic objects like Golay codes, Mathiew groups, Conway
groups, Monster.. (see [CS] for a lot more on this). In dimension 32 there are
there are more than 80 million, these have not been classified

(2) What the the lattices with nice symmetry groups. Also interesting lattices give
rise to interesting symmetry, for example, the weyl groups are symmetries of the
root lattices, some sporadic finite simple groups come from lattices like O(Λ), many
interesting discrete subgroups acting on hyperbolic spaces appear as reflection groups
of lattices...

(3) How to count the number of lattice points of a given norm? These investigation leads
to theta functions and modular forms.

(4) Questions about lattices relate to many problems in :
◦ number theory: theory of quadratic forms, since Gauss, representing integers as
sums of squares, since Jacobi.

◦ algebraic topology: the intersection forms on the middle cohomology, or the
torsion part of cohomology..

◦ sphere packing: For example D4, E8, Λ give the densest sphere packing in their
dimension.

◦ kissing number problem, covering problem, error correcting codes... (see [CS]).
The leech lattice has kissing number 196560.

1.6. From the root lattice to Dynkin diagram and back. Let Φ ⊆ V be a simply laced
positive definite root system with all roots of norm 2. Fix a linear functional l : V → R

that does not vanish on any root. Let Φ+ = {r ∈ Φ: l(r) > 0}.; these are called the positive
roots. A positive root is called simple if it cannot be written as a sum of two positive roots.
Let ∆ be a system of simple roots.

Exercise: Show that if s, s′ ∈ ∆ and s 6= s′ then 〈s, s′〉 ≤ 0.

Exercise: Each root can be written as a unique integer linear combination of simple roots
with all coefficients of the same sign. In particular, ∆ is a basis of V .

sketch of proof. The linear independence of simple roots is the following Euclidean geometry
exercise: if all the angles between a set of vectors in Euclidean space obtuse then they are
linearly independent. For suppose there was a linear dependence relation. Such a relation
can be written in the from

∑
i
cisi =

∑
j
djsj where the si’s and sj ’s are all distinct and ci’s

and di’s are all positive. Let v =
∑

i
cisi. Argue that 〈v, v〉 < 0...

If possible, among the positive roots that cannot be written as positive integral linear
combination of ∆, choose one, let’s call it r, such that l(r) is minimal. Then r is not simple
so we can write r = r1 + r2 where both r1, r2 ∈ Φ+. Then l(r1), l(r2) are strictly less than
l(r), so they can be written as positive integer linear combo of ∆. But then so can r... �

Recall from the exercise above that the dot product of two distinct simple roots can be
either 0 or −1. Make a graph whose vertex set is ∆. Two vertices s, s′ are joined if and
only if 〈s, s′〉 = −1. This is the Dynkin diagram of Φ. So each simply laced root positive
definite root lattice L or the corresponding root system L(2) give us a Dynkin diagram. The
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root system is indecomposible if and only if the Dynkin diagram is connected. Now one has
to classify the connected Dynkin diagrams. This is a pleasant combinatorial exercise once
we know the affine diagrams and their magic numberings and hence know that they cannot
appear in any Dynkin diagram for a positive definite root system. This produces the list
An,Dn, E6, E7, E8. So these are the only indecomposible positive definite simply laced root
systems. All the other ones are obtained as orthogonal direct sums of these.

1.7. The ubiquity of ADE’s: This ADE list occurs as the result of many related classi-
fication problem in mathematics. Some examples are Root lattices, Coxeter systems, finite
type quivers, finite subgroups of SU(2), Du-Val singularities, (the last two are connected via
“McKay correspondence” ), Simple complex Lie algebras... In case of Lie algebras, you only
get the simply laced ones but the rest can be obtained by folding.

1.8. A geometric description of the simple roots: Let L be a root lattice with root
system Φ = L(2). The reflection group Ref(L) is generated by the reflections in the roots Φ.
Let M be the union of the mirrors of Φ. Choose a component W of V −M. One can show
that this is a fundamental domain for Ref(L). This is called a Weyl chamber. Choose the
roots that are orthogonal to the walls of the Weyl chamber. These give a set of simple roots
and their negatives. It follows from this description that the reflections in the simple roots
generate Ref(L). In the ADE examples, the group Ref(L) is known as the Weyl group.

1.9. Getting back the root lattice from the Dynkin diagram: Let ∆ be a simply
laced Dynkin diagram. Let L be the free Z module with basis indexed by ∆ and the inner
product defined as follows: for all s, s′ ∈ ∆, we have 〈s, s〉 = 2, and 〈s, s′〉 = −1 if (s, s′)
is an edge of ∆ and 〈s, s′〉 = 0 otherwise. This recovers the root lattice L and then L(2)
recovers the root system.
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