Homework 6

(Due Friday, March 28, 2025)

In these exercises, k denotes an algebraically closed field of characteristic zero.

- 1. (Etingof Problem 5.11.1) Compute the decomposition into irreducibles of all the representations of A_5 induced from the irreducible representations of
 - (a) \mathbb{Z}_2
 - (b) \mathbb{Z}_3
 - (c) \mathbb{Z}_5
 - (d) A_4
 - (e) $\mathbb{Z}_2 \times \mathbb{Z}_2$
- 2. (Lorenz Exercise 4.1.1) Let n a positive integer, and $A = kS_n$ the group algebra of the symmetric group S_n . Let $s_i = (i \ i + 1)$ for i = 1, 2, ..., n 1 be the adjacent transpositions, and let $X_1, X_2, ..., X_{n-1}$ be the Jucys-Murphy elements. Prove that the following relations hold in A:

$$s_i X_i = X_{i+1} s_i - 1, \quad \forall i = 1, 2, \dots, n-1;$$

 $s_i X_j = X_j s_i, \quad \forall j \notin \{i, i+1\}.$

3. Let $V \in \text{Irr } S_n$ and let $(\cdot, \cdot) : V \times V \to k$ be an S_n -invariant bilinear form (that is, $(\sigma v, \sigma w) = (v, w)$ for all $\sigma \in S_n$ and all $v, w \in V$). Show that the Gelfand-Zetlin basis (v_T) of V is orthogonal: $(v_T, v_{T'}) = 0$ for $T \neq T'$. (Hint: You may use the fact that representations of symmetric groups are self-dual (we have not shown this in class).)