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Definition 2.14.2. The dual representation V ∗ to a representa-
tion V of a Lie algebra g is the dual space V ∗ to V with ρV ∗(x) =
−ρV (x)∗.

It is easy to check that these are indeed representations.

Problem 2.14.3. Let V, W, U be finite dimensional representations
of a Lie algebra g. Show that the space Homg(V ⊗W, U) is isomorphic
to Homg(V, U ⊗ W ∗). (Here Homg := HomU(g).)

2.15. Representations of sl(2)

This subsection is devoted to the representation theory of sl(2), which
is of central importance in many areas of mathematics. It is useful to
study this topic by solving the following sequence of exercises, which
every mathematician should do, in one form or another.

Problem 2.15.1. According to the above, a representation of sl(2)
is just a vector space V with a triple of operators E, F, H such that
HE−EH = 2E, HF −FH = −2F, EF −FE = H (the correspond-
ing map ρ is given by ρ(e) = E, ρ(f) = F , ρ(h) = H).

Let V be a finite dimensional representation of sl(2) (the ground
field in this problem is C).

(a) Take eigenvalues of H and pick one with the biggest real part.
Call it λ. Let V̄ (λ) be the generalized eigenspace corresponding to λ.
Show that E|V̄ (λ) = 0.

(b) Let W be any representation of sl(2) and let w ∈ W be a
nonzero vector such that Ew = 0. For any k > 0 find a polynomial
Pk(x) of degree k such that EkF kw = Pk(H)w. (First compute
EF kw; then use induction in k.)

(c) Let v ∈ V̄ (λ) be a generalized eigenvector of H with eigenvalue
λ. Show that there exists N > 0 such that FNv = 0.

(d) Show that H is diagonalizable on V̄ (λ). (Take N to be such
that FN = 0 on V̄ (λ), and compute ENFNv, v ∈ V̄ (λ), by (b). Use
the fact that Pk(x) does not have multiple roots.)

(e) Let Nv be the smallest N satisfying (c). Show that λ = Nv−1.
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(f) Show that for each N > 0, there exists a unique up to isomor-
phism irreducible representation of sl(2) of dimension N . Compute
the matrices E, F, H in this representation using a convenient basis.
(For V finite dimensional irreducible take λ as in (a) and v ∈ V (λ)
an eigenvector of H. Show that v, Fv, . . . , Fλv is a basis of V , and
compute the matrices of the operators E, F, H in this basis.)

Denote the (λ+1)-dimensional irreducible representation from (f)
by Vλ. Below you will show that any finite dimensional representation
is a direct sum of Vλ.

(g) Show that the operator C = EF + FE + H2/2 (the so-called

Casimir operator) commutes with E, F, H and equals λ(λ+2)
2 Id on

Vλ.

Now it is easy to prove the direct sum decomposition. Namely,
assume the contrary, and let V be a reducible representation of the
smallest dimension, which is not a direct sum of smaller representa-
tions.

(h) Show that C has only one eigenvalue on V , namely λ(λ+2)
2

for some nonnegative integer λ (use the fact that the generalized
eigenspace decomposition of C must be a decomposition of represen-
tations).

(i) Show that V has a subrepresentation W = Vλ such that
V/W = nVλ for some n (use (h) and the fact that V is the smallest
reducible representation which cannot be decomposed).

(j) Deduce from (i) that the eigenspace V (λ) of H is (n + 1)-
dimensional. If v1, . . . , vn+1 is its basis, show that F jvi, 1 ≤ i ≤ n+1,
0 ≤ j ≤ λ, are linearly independent and therefore form a basis of V
(establish that if Fx = 0 and Hx = µx for x ̸= 0, then Cx = µ(µ−2)

2 x
and hence µ = −λ).

(k) Define Wi = span(vi, Fvi, . . . , Fλvi). Show that Wi are sub-
representations of V and derive a contradiction to the fact that V
cannot be decomposed.

(l) (Jacobson-Morozov lemma) Let V be a finite dimensional com-
plex vector space and A : V → V a nilpotent operator. Show that
there exists a unique, up to an isomorphism, representation of sl(2)
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on V such that E = A. (Use the classification of the representations
and the Jordan normal form theorem.)

(m) (Clebsch-Gordan decomposition) Find the decomposition of
the representation Vλ ⊗ Vµ of sl(2) into irreducibles components.

Hint: For a finite dimensional representation V of sl(2) it is use-
ful to introduce the character χV (x) = Tr(exH), x ∈ C. Show that
χV ⊕W (x) = χV (x) + χW (x) and χV ⊗W (x) = χV (x)χW (x). Then
compute the character of Vλ and of Vλ ⊗Vµ and derive the decompo-
sition. This decomposition is of fundamental importance in quantum
mechanics.

(n) Let V = CM ⊗ CN and A = J0,M ⊗ IdN + IdM ⊗J0,N , where
J0,n is the Jordan block of size n with eigenvalue zero (i.e., J0,nei =
ei−1, i = 2, . . . , n, and J0,ne1 = 0). Find the Jordan normal form of
A using (l) and (m).

2.16. Problems on Lie algebras

Problem 2.16.1 (Lie’s theorem). The commutant K(g) of a Lie
algebra g is the linear span of elements [x, y], x, y ∈ g. This is an ideal
in g (i.e., it is a subrepresentation of the adjoint representation). A
finite dimensional Lie algebra g over a field k is said to be solvable if
there exists n such that Kn(g) = 0. Prove the Lie theorem: if k = C
and V is a finite dimensional irreducible representation of a solvable
Lie algebra g, then V is 1-dimensional.

Hint: Prove the result by induction in dimension. By the in-
duction assumption, K(g) has a common eigenvector v in V ; that is,
there is a linear function χ : K(g) → C such that av = χ(a)v for any
a ∈ K(g). Show that g preserves common eigenspaces of K(g). (For
this you will need to show that χ([x, a]) = 0 for x ∈ g and a ∈ K(g).
To prove this, consider the smallest subspace U containing v and
invariant under x. This subspace is invariant under K(g) and any
a ∈ K(g) acts with trace dim(U)χ(a) in this subspace. In particular
0 = Tr([x, a]) = dim(U)χ([x, a]).)

                
                                                                                                               


