Homework 2

(Due Friday, February 7, 2025)

- 1. Let A be an algebra over a field k and let $z \in Z(A)$ be a central element. Let $\rho : A \to \operatorname{End}(V)$ be an indecomposable representation. Show that $\rho(z)$ only has one eigenvalue, equal to the scalar by which z acts on some irreducible subrepresentation of V.
- 2. Let A be the k-algebra generated by a and b subject to the relations

$$\begin{cases} a^{2}b - 2aba + ba^{2} = 0, \\ b^{2}a - 2bab + ab^{2} = 0. \end{cases}$$

Prove that $\{[a,b]^i a^j b^k \mid i,j,k \in \mathbb{Z}_{\geq 0}\}$ is a basis for A. (Hint: For linear independence, one way is to show there is a homomorphism from A to algebra $A_1(k)[t] \cong A_1(k) \otimes k[t]$, determined by $a \mapsto y \otimes t$, $b \mapsto x \otimes 1$.)

- 3. In this problem, let $A = A_1(k)$ be the Weyl algebra over a field k.
 - (a) Assume k has characteristic zero. Find all finite-dimensional representations of A. (Hint: Use the fact that, if B and C are square matrices, then Tr(BC) = Tr(CB).)
 - (b) Assume k has characteristic p > 0. Describe the center Z(A) of A. (Hint: First show x^p and y^p are central elements.)
 - (c) Assume k has characteristic p > 0. Find all finite-dimensional irreducible representations of A. (Hint: If v is an eigenvector of y on V, show that $\{v, xv, \ldots, x^{p-1}v\}$ is a basis for V.)
- 4. Let $V \neq 0$ be a representation of an algebra A. We say $v \in V$ is *cyclic* if it generates V, that is, Av = V. A representation admitting a cyclic vector is said to be *cyclic*. Show that:
 - (a) V is irreducible if and only if all nonzero vectors of V are cyclic.
 - (b) V is cyclic if and only if it is isomorphic to A/I for some left ideal I of A.