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1 Lecture 1: Geometries

1.1 On the Origin of Geometry in Physics

In one word, the origin of geometry in physics is observer-independence. Physics is the
ongoing attempt to describe “nature”, which is to say, the collection of phenomena
that seem “external” to us; phenomena which we feel would take place even without
the presence of humans. It is therefore clear that physical laws, to the extent possible,
should be formulated in a way that is independent of any one person. This includes
past, current, and future people, all over the world. More generally, due to the feeling
that we have a choice about our future, we include hypothetical people. The umbrella
term for these different perspectives is that of an observer. Since we are not really
concerned with individual details related only to the observer itself, what matters
is how the observer interacts with the “external” environment. This is sometimes
described as an observer carrying a clock and a marked rod. This is referring to the
observer’s notion of the passage of time and local measure of distance. More generally,
we can imagine an observer carrying other collections of measuring apparatuses, or
gauges, through which they can probe the world. In fact, it is the only thing we
care about when it comes to an observer. Thus, an observer can be abstracted to a
choice of coordinate system for spacetime, along with a choice of gauges. Collectively,
we refer to coordinate systems and choice of gauge as a reference frame. These
choices extend only locally, as the observer cannot perform measurements far away.

Now we encounter the strange dilemma of how an observer would actually make
such a “choice”. Consider the situation of a lone observer floating in empty space,
carrying a clock and nothing else. Suppose the clock is equipped with a dial, enabling
the clock hands to speed up or slow down. Consider two different settings, a slow and
a fast mode. What is the difference? You might say that the observer knows roughly
how long a second is, and could therefore tell the two settings apart. Surely their
heartbeat, if nothing else, can be used to compare the two settings? But this requires
internal details about the observer which we are not allowed to refer to. There is no
heartbeat, no person, only a clock. You might say, the faster setting would wear out
the gears (or battery) of the clock faster and would allow us to distinguish between
the two settings. But that again refers to internal structure of the observer (now just
a clock). Therefore the observer must be regarded as a disembodied clock without
internal structure. There is therefore no physical difference between the settings of
the clock. The same reasoning applies to choosing measuring rods, or calibrating
various gauges. The inescapable conclusion is that there is actually no content
to a particular observer themself, only the relative comparison between
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two reference frames has physical meaning. The manner in which we relate
reference frames to each other therefore takes center stage. Typically this is done
using the language of coordinates and coordinate transformations. It is in this way
that geometry becomes a theoretical foundation for physics.

1.2 Coordinate Transformations and Geometries

Definition 1.1. Let n be a positive integer and M be a set.

i) A (global, n-dimensional) coordinate system on M is a mapping from M to Rn,
denoted

x 7→ xi
def
= (x1, x2, . . . , xn) (1.1)

which is injective (i.e. one-to-one).

ii) If x 7→ xi
′
is another coordinate system, the map

xi 7→ xi
′

(1.2)

is called a coordinate transformation or a change of coordinates. It is a one-to-
one and onto map from a subset of Rn (the image of x 7→ xi) to a subset of Rn

(the image of x 7→ xi
′
).

iii) An (n-dimensional) geometry G is a collection of one-to-one and onto functions
between subsets of Rn, closed under taking inverses, and function compositions
(when defined).

iv) A (global, n-dimensional) G -space is a setM equipped with a set C of coordinate
systems such that

1. The coordinate transformations between any coordinate systems from C be-
long to G .

2. Compositions defines a map G × C → C .

Broadly speaking, there are three geometries that play important roles in physics:

1.2.1 The Galilean/Newtonian geometry

Here n = 3+1 and we define GGal to consist of the following three kinds of transfor-
mations and their compositions:
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i) Rotations/reflections: t
′

x′

y′

z′

 =


1 0 0 0
0

0 Aj
i

0

 ·

txy
z

 (1.3)

where (Aj
i )

3
i,j=1 is an orthogonal 3× 3-matrix (see Homework #1, Problem 1):

3∑
j,l=1

Aj
iA

l
kδjl = δjk. (1.4)

ii) Galilean boosts parametrized by vi = (v1, v2, v3) ∈ R3 (called relative velocity):t
′

x′

y′

z′

 =

 1 0 0 0
v1 1 0 0
v2 0 1 0
v3 0 0 1

 ·

txy
z

 (1.5)

which can also be written

{
t′ = t

xi
′
= xi + vi · t

iii) Translations: {
t′ = t+ b

xi
′
= xi + ai

(1.6)

where b, a1, a2, a3 ∈ R.

Remark 1.2. We give three examples of notions that are invariant under Galilean
coordinate transformations. It means that these objects “live on M” (where (M,C )
is some fixed G -space, G being the Galilean geometry defined above).

If p and q are two points on M (since M model a region if spacetime, we also
call such p and q events), choose one of the coordinate systems on M and write
pµ = (t, p1, p2, p3) and qµ = (u, q1, q2, q3). Then we can define the following two
quantities (which depend on p and q):

∆t = t− u, ∆s =
( 3∑
i,j=1

(pi − qi)(pj − qj)δij
)1/2

=
( 3∑

i=1

(pi − qi)2
)1/2

. (1.7)
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Then, for fixed p and q, the quantity ∆t take the same value in all coordinate
systems. To see this, recall that by definition of a G -space, all coordinate systems
are related to each other by some sequence of coordinate changes of the above three
types. For each of those coordinate changes we have ∆t′ = t′ − u′ = t− u = ∆t (the
only nontrivial case is translations). It means that the duration between the events
p and q is coordinate independent and therefore is a notion all observers agree on.
Consequently we can consider the duration between two events as part of reality (in
Galilean physics).

Similarly, but now using that Aj
i are entries from an orthogonal matrix, the

quantity ∆s can be seen to be independent of coordinate changes and therefore the
(spatial) distance between two events p and q is something “real” in Galilean physics.

Lastly, the Laplace differential operator

∆ =

3∑
i,j=1

∂

∂xi
∂

∂xj
δij (1.8)

is also a coordinate independent quantity. This follows from the chain rule for the
coordinate change of type i) above:

∂

∂xi
′ =

∑
j

Aj
i′
∂

∂xj
(1.9)

and that Aj
i′ are entries of an orthogonal matrix. (Details left as homework problem.)

1.2.2 The Lorentzian geometry (special relativity)

Again, n = 3 + 1. Here space and time will be considered on equal footing. To
facilitate this we need a dimensionfull conversion factor between time and space. We
call it c:

x0 = ct (1.10)

When we get to Maxwell’s equations, c will be identified with the speed of light in
vaccuum. The Lorentzian geometry GLor consists of compositions of three types of
coordinate transformations:

i) Rotations/reflections in space:
x0

′

x1
′

x2
′

x3
′

 =


1 0 0 0
0

0 Aj
i

0

 ·

x
0

x1

x2

x3

 (1.11)
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where (Aj
i )

3
i,j=1 is an orthogonal 3× 3-matrix as before.

ii) Lorentz boosts parametrized by λ ∈ R (called the rapidity):
x0

′

x1
′

x2
′

x3
′

 =

coshλ sinhλ 0 0
sinhλ coshλ 0 0
0 0 1 0
0 0 0 1

 ·

x
0

x1

x2

x3

 =

 γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

 ·

x
0

x1

x2

x3

 (1.12)

(Here for simplicity we only consider Lorentz boost in the x1-direction. Re-
placing (β, 0, 0) by an arbitrary 3-vector βi we get abitrary direction. We leave
the details to the reader.) By hyperbolic trig identity we have γ2 − β2γ2 = 1,
therefore

γ = (1− β2)−1/2. (1.13)

Substituting x0 = ct, we may write the Lorentz boost in terms of time and space
coordinates as follows 

t′ = γ(t+ (β/c)x1)

x1
′
= γ(βct+ x1)

x2
′
= x2

x3
′
= x3

(1.14)

from which we see that

v1 :=
dx1

′

dt′
=
dx1

′
/dt

dt′/dt
= βc (1.15)

Thus, substituting β = v1/c into (1.13),(1.14) and taking the limit as c → ∞
we obtain a Galilean boost with relative velocity vi = (v1, 0, 0). In this way we
see that Galilean physics is a limiting case of Lorentzian physics.

iii) Translations, xµ
′
= xµ + aµ, (µ = 0, 1, 2, 3).

The following theorem gives an alternative definition, that is often much simpler
to work with (but the connection to Galilean geometry is less clear).

Theorem 1.3. The two types of Lorentz transformations i) and ii) above can be
summarized in a single type of transformation of the form

xµ
′
=

3∑
ν=0

Λµ′
ν x

ν (1.16)
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where Λµ′
ν are the entries of a 4× 4-matrix satisfying

(a) ∑
ν′,τ ′

Λν′
µ Λ

τ ′
σ ην′τ ′ = ηµσ (1.17)

where ηµν are the entries of the so called flat metric, by definition a diagonal ma-
trix with entries (+1,−1,−1,−1) (the “mostly minus” convention. The opposite
sign convention yields the same Lorentz transformations.)

(b) Λ0′
0 > 0 (we say (Λν

µ) is orthochronous, meaning time-direction-preserving, if
this holds)

(c) det(Λν
µ) = 1 (we say (Λν

µ) is proper, if this holds).

Proof. Exercise for the reader.

We introduce some notation:

O(1, 3) = {Λ | (1.17) holds}
SO(1, 3) = {Λ ∈ O(1, 3) | detΛ = 1}
O+(1, 3) = {Λ ∈ O(1, 3) | Λ0

0 > 0}
SO+(1, 3) = SO(1, 3) ∩O+(1, 3).

Each of these is a group under matrix multiplication. SO+(1, 3) is called the
Lorentz group. It is connected.

Remark 1.4. We can easily extend Lorentz geometry to more space dimensions.
The same applies to Galilean geometry.

1.2.3 The smooth (or general) geometry

This n-dimensional geometry, denoted Gsm consists of all one-to-one and onto func-
tions f : U → V where U and V are open subsets of Rn such that all partial
derivatives of f (and f−1) exist to all orders.

Denoting such a function f by

xi 7→ xi
′
= xi

′
(xj) = xi

′
(x1, x2, . . . , xn) (1.18)
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we let J i′
j denote the entries of the Jacobian matrix:

J i′
j =

∂xi
′

∂xj
(1.19)

and we let J ′ denote the determinant

J ′ = det
(
J i′
j

)n
i′,j=1

(1.20)

Entries of the Jacobian matrix of the inverse coordinate change xi
′ 7→ xi(xj

′
) are

consequently denoted

J i
j′ =

∂xi

∂xj
′ (1.21)

with determinant
J′ = (J ′)−1 = det

(
J i
j′
)n
i,j′=1

. (1.22)

(Note that ′ is used a subscript in J′ although we will not use it much.)
We can get more restricted geometries by imposing conditions on J ′:

• J ′ > 0 is called oriented geometry. It is useful for integration.

Although less important, other examples are:

• |J | = 1, leading to unimodular geometry, and

• J = 1, giving proper geometry (in analogy with Lorentz transformations).

1.3 Homework #1

1. Show that a matrix A = (Aij)
n
i,j=1 satisfies AT · A = In (where AT denotes the

transpose) if and only if

n∑
j,l=1

AijAklδ
jl = δik, ∀i, k (1.23)

where δjl = δjl =

{
1, j = l

0, j ̸= l
denotes the Kronecker delta.
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2. Let B : Rn × Rn → R is a symmetric bilinear form on Rn and define Bij =

B(ei, ej) where (ei)
n
i=1 is the standard ordered basis for Rn. Further, let (Aj

i )
n
i,j=1

be a real n× n-matrix. Show that B is A-invariant, that is,

B(Av,Aw) = B(v, w), ∀v, w ∈ Rn (regarded as column vectors) (1.24)

if and only if the following identity holds:∑
j,l

Aj
iA

l
kBjl = Bik, ∀i, k. (1.25)

3. Let (M,C ) be a G -space where G is any geometry whose coordinate transforma-
tions are smooth (i.e. C∞) maps between open subsets of Rn. Let ϕ :M → R be
a function. Show that if ϕ is smooth in some coordinate system, then it is smooth
in all coordinate systems. [That is, let M ∋ x 7→ xi ∈ Rn be a coordinate system
from the collection C . Abusing notation, denote the corresponding function from
(a subset of) Rn to R by ϕ(xi) = ϕ(x1, x2, . . . , xn). Show that if ϕ(xi) is smooth

then ϕ(xi
′
) is smooth for every other coordinate system xi

′
from C .] (In this case

we call ϕ smooth.)

4. Show that the Laplace operator

∆ =

3∑
i,j=1

∂

∂xi
∂

∂xj
δij (1.26)

is invariant under Galilean coordinate transformations. (Conclude that if ϕ, ψ :
M → R are smooth functions, in the sense of previous problem, then the equation
∆ϕ = ψ makes sense without choosing coordinates. See the Newton-Laplace
problem below.)

5. Show that the d’Alembert operator

□ =

3∑
µ,ν=0

∂

∂xµ
∂

∂xν
ηµν (1.27)

is invariant under Lorentz transformations. [Hint: Use Theorem 1.3.]

6. Consider a GGal-space (M,C ). The Newton-Laplace equation for gravity is

∆ϕ = 4πGρ (1.28)

where
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• ϕ : M → R (in coordinates, ϕ(t, x, y, z)) is the so-called gravitational poten-
tial,

• ρ :M → R is a mass density distribution,

• G is Newton’s constant.

The physical interpretation of ϕ is that ∇ϕ = −a⃗ where a⃗ is the acceleration
vector field for a test particle.

Show that for ρ(t, x, y, z) = δ(x, y, z)M (where δ(x, y, z) denotes the delta dis-
tribution on R3 centered at the origin) we recover Newton’s Law of Universal
Gravitation.

[Integrate both sides of (1.28) over a closed ball of radius r centered at the origin:∫∫∫
B(0,r)

∆ϕ d3x =
∫∫

∂B(0,r)
∇ϕ·dS⃗ by the divergence theorem. The latter equals

−
∣∣(∇ϕ)(r)∣∣4πr2 by symmetry. On the other hand,

∫∫∫
B(0,r)

4πGρ d3x = 4πGM .

If the test particle has mass m is at distance r from the origin we thus get F =
m|⃗a(r)| = GmM

r2
.]

7. In Lorentz geometry, show that if a curve is given by xi = xi(t), i = 1, 2, 3, in

some coordinate system such that
∑3

i=1(dx
i/dt)2 = c2 then the same is true in

any other coordinate system. (This shows that the speed of light in vacuum (the
constant c) is the same in all reference frames.)

8. In Lorentz geometry, if two distinct events x, y ∈ M have the same time coordi-
nates, i.e. x0 = y0, in some coordinate system, then there is another coordinate

system in which x0
′ ̸= y0

′
. (Thus, simultaneity is lost as a “real” concept, when

we go from Galilean to Lorentzian physics.)

9. In Lorentz geometry, the interval between two events x, y ∈M is defined by

∆τ =
( 3∑
µ,ν=0

(xµ − yµ)(xν − yν)ηµν
)1/2

(1.29)

Show that ∆τ only depends on the events x and y, and not on the particular
choice of coordinate system we used to write down the right hand side.
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2 Lecture 2: Tensor Fields

2.1 Vector Fields and Contravariant Tensor Fields

In this lecture, we assume G ⊆ Gsm is a smooth geometry, i.e. consisting of smooth
maps between open subsets of Rn (but not necessarily all such maps), and we fix a
G -space M = (M,C ).

2.1.1 Curves, Tangent Vectors, and Vector Fields

Definition 2.1. A (smooth) curve in M is a function

γ : R →M (2.1)

such that, for some coordinate system xµ (from C ) the functions

γµ : R → Rn, γµ(t) = xµ
(
γ(t)

)
, (2.2)

are smooth functions of t.

Remark 2.2. If xµ
′
is another coordinate system (from C ), then the corresponding

functions γµ′(t) defined by γµ′(t) = xµ
′(
γ(t)

)
are also smooth. This follows because

any two coordinate systems are related by a smooth coordinate transformation. Ex-

plicily, for any x ∈ M , we have xµ
′
(x) = xµ

′
(xν(x)), where in the left hand side xµ

′

is the new coordinate system and in the right hand side xµ
′
stands for the coordinate

transformation from xµ to xµ
′
. We thus have

γµ′(t) = xµ
′(
γν(t)

)
. (2.3)

Since the composition of smooth maps is smooth, γµ′ is indeed smooth.

Definition 2.3. The tangent vector of a curve γ at a point γ(t) in a coordinate
system xµ is given by

γ̇µ(t) =
d

dt
γµ(t). (2.4)

Remark 2.4. If xµ
′
is another coordinate system then, by the chain rule,

γ̇µ′(t) =

n∑
ν=1

∂xµ
′

∂xν
γ̇ν(t). (2.5)
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This can be written more succinctly:

γ̇µ′ = Jµ′
ν γ̇ν (2.6)

using the Einstein summation convention that for repetead indices, one upper
and one lower, summation over the index range is implied.

To summarize, tangent vectors γ̇µ are given in each coordinate system, and are
related by the transformation law (2.6). We say that the components γ̇µ transform

according to (2.6) under coordinate transformations xµ 7→ xµ
′
.

Since any vector in Rn is the tangent vector of some curve, the following definition
makes sense. (From now on we drop the adjective “smooth”.)

Definition 2.5. A vector field on M assigns to each coordinate system xµ an n-
tuple of functions Aµ = (Aµ)

n
µ=1 (each defined on the image of xµ) such that, for

any coordinate transformation xµ 7→ xµ
′
= xµ

′
(xν) we have

Aµ′ = Jµ′
ν A

ν (2.7)

where Aµ′ is the n-tuple corresponding to the coordinate system xµ
′
. The functions

Aµ are the components of the vector field.

For n = 2, if we write out (2.7), it reads
A1′(x1

′
, x2

′
) =

∂x1
′

∂x1
(x1, x2) · A1(x1, x2) +

∂x1
′

∂x2
(x1, x2)A1(x1, x2)

A2′(x1
′
, x2

′
) =

∂x2
′

∂x1
(x1, x2) · A1(x1, x2) +

∂x2
′

∂x2
(x1, x2)A1(x1, x2)

(2.8)

2.1.2 Addition and Scaling of Vector Fields

If Aµ and Bµ are (the components in an arbitrary coordinate system xµ of) two
vector fields, then

Aµ +Bµ, cAµ, (c ∈ R a constant) (2.9)

define vector fields. To check this, we must see that they obey the transformation
law (2.7). We have

Aµ′ +Bµ′ = Jµ′
ν A

ν + Jµ′
ν B

ν = Jµ′
ν (Aν +Bν)

cAµ′ = cJµ′
ν A

ν = Jµ′
ν (cAν)

It is straightforward to show that the set of all vector fields on M , with these two
operations, forms itself a vector space. This vector space is denoted by Vect(M).
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2.1.3 Contravariant Tensor Fields

Perhaps it is natural to wonder whether we can multiply vector fields as well. We
immediately run into problems, however. If we try with AµBµ (without summation
convention) then these objects do not transform according to (2.7) (check this!). On
the other hand, AµBν have too many indices (two upper). The best solution is to
accept that we obtain not a vector field, but a new type of object. We do have the
following transformation law for AµBν :

Aµ′Bν′ = Jµ′

λ J
ν′
ρ A

λBρ (2.10)

(summation over both λ and ρ implied, per convention). Similarly, if we multiply
three vector fields we get three factors of the Jacobian matrix. We take this as basis
for a new definition.

Definition 2.6. A contravariant r-tensor (field) assigns to each coordinate system
xµ an nr-tuple of functions Tµ1µ2···µr (defined on the image of xµ) such that under

xµ 7→ xµ
′
,

Tµ′1µ
′
2···µ

′
r = J

µ′1
ν1 J

µ′2
ν2 · · · Jµ′r

νr T
ν1ν2···νr . (2.11)

Thus, for example, if Aµ and Bµ are vector fields, then AµBν is a contravariant
2-tensor. However, not every 2-tensor has this form. Just like for vector fields,
r-tensors for fixed r can be added and scaled, and form a vector space. For example,

AµBν + AνBµ

is a contravariant 2-tensor.

2.2 Covector Fields and Covariant Tensors Fields

There is a dual notion to the previous subsection. Instead of starting with a curve,
which is a function from R to M , we start with a scalar field ϕ which is a function
from M to R. We assume ϕ is smooth, in the sense of Problem 3 of Homework #1,
and denote by ϕ(xµ) the function Rn → R obtained by composing the inverse of the
coordinate system by ϕ.

Definition 2.7. The gradient of a scalar field ϕ is

∂µϕ =
∂

∂xµ
ϕ(xµ). (2.12)
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Just as with the tangent vector, the gradient depends on the choice of coordinate

system. If xµ
′
is another coordinate system, the gradient transforms as follows:

∂µ′ϕ =
∂

∂xµ
′ ϕ(x

ν) =
∂xν

∂xµ
′
∂

∂xν
ϕ(xν) = Jν

µ′∂νϕ (2.13)

where Jν
µ′ is now the inverse of the Jacobian matrix Jµ′

ν . That is:

Jν
µ′J

µ′

λ = δνλ, Jν
µ′J

λ′
ν = δλ

′
µ′ (2.14)

where we used the Kronecker delta (see example below). We take the transformation
law (2.13), which is opposite to the vector field (2.7), as the basis for a new definition.

Definition 2.8. A covector field on M assigns to each coordinate system xµ an
n-tuple of functions Bµ = (Bµ)

n
µ=1 (each defined on the image of x 7→ xµ) which

transform as
Bµ′ = Jν

µ′Bν (2.15)

under a coordinate change xµ 7→ xµ
′
.

Following the same procedure as for vector fields leads us to the dual notion to
contravariant tensors.

Definition 2.9. A covariant s-tensor (field) assigns to each coordinate system xµ

an ns-tuple Bµ1µ2···µs of functions (defined on the image of x 7→ xµ) which transform
as

Bµ′1µ
′
2···µ

′
s
= J

ν1
µ′1
J
ν2
µ′2

· · · Jνs
µ′s
Bν1ν2···νs (2.16)

under a coordinate change xµ 7→ xµ
′
.

2.3 Mixed Tensors

Lastly, there is nothing preventing us from multiplying contravariant and covariant
tensor fields. Since upper and lower indices obey opposite transformation laws, we
are led to the following general definition. For non-negative integers r, s we write

(
r
s

)
for the column vector (not a binomial coefficient).

Definition 2.10. An
(
r
s

)
-tensor, also called a tensor of type

(
r
s

)
, assigns to each

coordinate system xµ on M an nr+s-tuple

Tµ···
ν···

15



with r upper and s lower subscripts, which transform as

Tµ′···
ν′··· = Jµ′

λ · · · Jρ
ν′ · · ·T

λ···
ρ··· (2.17)

under coordinate transformations xµ 7→ xµ
′
. The functions Tµ···

ν··· are the components
of the tensor. The rank of the tensor is the number r + s. The upper indices are
called contravariant and the lower indices are called covariant.

The set of all
(
r
s

)
-tensors forms a vector space, that we could denote by T

(
r
s

)
.

Furthermore, the product of an
(
r
s

)
-tensor by a

(
t
u

)
-tensor is an

(
r+t
s+u

)
-tensor.

Example 2.11 (Kronecker Delta). In all coordinate systems, define

δνµ =

{
1, µ = ν

0, µ ̸= ν
. (2.18)

Then δνµ is a
(
1
1

)
-tensor field on M . (This is one of very few “universal” tensors.) To

check this, we start with the right hand side of (2.17):

Jµ′

λ J
ρ
ν′δ

λ
ρ = Jµ′

λ J
λ
ν′ = δµ

′

ν′ (2.19)

by one of the two Jacobian identities (2.14). This shows δµν satisfies the transforma-
tion law for a

(
1
1

)
-tensor.

2.4 Operations on Tensors: Contraction, Relabeling and Per-
muting

The process of contraction involves setting one upper index equal to a lower index and
then summing over that index. The result turns an

(
r+1
s+1

)
-tensor into an

(
r
s

)
-tensor.

Example 2.12. If Aµ
ν is a

(
1
1

)
-tensor, then Aµ

µ is a
(
0
0

)
-tensor, also known as a scalar

field. To check this, consider:

Aµ′

µ′ = Jµ′

λ J
ρ
µ′A

λ
ρ = δρλA

λ
ρ = Aλ

λ (2.20)

As another application, for a vector field ξµ and a scalar field ϕ, we can define
the directional derivative of ϕ along ξµ to be

ξµ∂µϕ. (2.21)
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Since this is a contraction of the
(
1
1

)
-tensor ξµ∂νϕ, it is a scalar function describing

the rate of change of ϕ relative to the vector field xµ. This quantity is also known
as the Lie derivative of ϕ along ξµ and is denoted £ξϕ. (One can define the Lie
derivative of tensors of rank > 0, but they are more complicated.)

A trivial operation is to simply permute the indices of a tensor. For example, if
Aµνλ is a tensor (of type

(
3
0

)
, needless to say) then, so is Aνλµ. Combining this with

addition we can construct more interesting tensors, for example

Aµνλ + Aνλµ + Aλµν .

Similarly, if Bj
i and C l

k are tensors then a somewhat nontrivial combination of them
is the tensor

Bj
iC

l
k +Bl

iC
j
k.

2.5 Connections to Multilinear Algebra

In this subsection we assume the reader is familiar with some elements of multilinear
algebra. It can be safely skipped; no future sections or problems will rely on it.

If V is a real n-dimensional vector space and we pick a basis ei
1 for V , and let ei

be the dual basis in V ∗, then V ⊗r⊗(V ∗)⊗s has a basis (ei1⊗· · ·⊗eir)⊗(ej1⊗· · ·⊗ejs).
Consequently, any element T ∈ V ⊗r ⊗ (V ∗)⊗s can be written

T = T
i1···ir
j1···js · (ei1 ⊗ · · · ⊗ eir)⊗ (ej1 ⊗ · · · ⊗ ejs) (2.22)

for some real numbers T
i1···ir
j1···js . It is starting to look like a tensor field! (At least,

evaluated at a point.) If ei′ is any other basis, we have

ej = J i′
j ei′ (2.23)

for some invertible matrix J i′
j . Let e

i′ be the basis for V ∗ dual to ei′ . It is straight-
forward to check that

ej = Jj
i′e

i′ , (2.24)

where Jj
i′ is the inverse of the matrix J i′

j . The same element T can now be expanded

in the new basis (ei′1
⊗ · · · ⊗ ei′r)⊗ (ej

′
1 ⊗ · · · ⊗ ej

′
s) for V ⊗r ⊗ (V ∗)⊗s:

T = T
i′1···i

′
r

j′1···j
′
s
(ei′1

⊗ · · · ⊗ ei′r)⊗ (ej
′
1 ⊗ · · · ⊗ ej

′
s) (2.25)

1We use tuple and summation conventions meaning that the (·)ni=1 are dropped around ei.

Similarly, Aj
i is a matrix, and Aj

iej means (
∑n

j=1 A
j
iej)

n
i=1 etc.
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for some T
i′1···i

′
r

j′1···j
′
s
∈ R. Substituting (2.23) and (2.24) into (2.22), using bilinearity,

and then equating coefficients with those in (2.25), we find that

T
i′1···i

′
r

j′1···j
′
s
=
(
J
i′1
a1 · · · J

i′r
ar

)(
J
b1
j′1

· · · Jbs
j′s

)
T
a1···ar
b1···bs

. (2.26)

This is exactly the same transformation law as for a
(
r
s

)
-tensor field, (2.17), except

that here there is no dependence on a point x ∈ M . The coefficients of T that
we discussed in this section (which are assigned to each basis for V , and transform
according to (2.26) under a change of basis) are known as numerical tensors.

2.6 Homework #2

1. Convert to “tensor index notation” using tuple and summation conventions.

(i)
(∑n

i=1A
jk
il B

i − 2Aij
liB

k
)n
j,k=1

(ii) (X11Y
1 +X12Y

2, X21Y
1 +X22Y

2) assuming n = 2

(iii) Tr(ABC) for square matrices A,B,C

2. Let us define the “trace” of a vector field Tµ to be T 1 + T 2 + · · · + Tn. What is
wrong with this definition?

3. Assuming all objects involved are tensors, which of the following expressions define
tensors?

(i) FµνFλρg
µλgνρ

(ii) AijAji

(iii) Xij + Y jk + Zki

(iv) W a
µT

i
ajψ

j

4. Show that the covariant Kronecker delta δij =

{
1, i = j

0, i ̸= j
(remaining the same

in all coordinate system) is a
(
0
2

)
-tensor if and only if the geometry consists

of orthogonal transformations along with translations. (That is, show that all

coordinate transformations must have the form xi
′
= Ai′

j x
j + bi

′
, where Ai′

j are
the entries of an orthogonal matrix.) Consider the analogous problem for the flat
metric ηµν .
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5. (a) A
(
0
2

)
-tensor Fµν is symmetric if Fµν = Fνµ. Similarly, we say Fµν is anti-

symmetric if Fµν = −Fµν . Analogous definitions apply to
(
2
0

)
-tensors. Show

that these notions are coordinate-independent.

(b) If Fµν is anti-symmetric and Gµν is symmetric, show that FµνG
µν = 0.

(c) Show that any
(
0
2

)
-tensor is the sum of one symmetric and one anti-symmetric(

0
2

)
-tensor.

6. If Aµ is any covector field and Fµν = ∂µAν − ∂νAν , show that Fµν transforms as

a
(
0
2

)
-tensor field under general (smooth) coordinate transformations. (Hint: You

will have to use the product rule and the definition of Jµ
ν′ .)

7. Show that if two
(
r
s

)
-tensors are equal in one coordinate system, then they are

equal in all coordinate systems. In particular, conclude that whether “a tensor
field vanishes on M (or some subset thereof)” is a coordinate-independent prop-
erty.

8. Let Xµ be a vector field. Suppose that, in some coordinate system, ∂µX
ν = 0

on M , that is to say, all partial derivaties of all components of the vector field
vanishes everywhere. Must the same be true in all other coordinate systems? If
not, find some sufficient conditions which ensures ∂µX

ν vanishes in all coordinate
systems.

9. A
(
1
1

)
-tensor Aν

µ is invertible if there is a
(
1
1

)
-tensor Bν

µ such that Aν
µB

λ
ν = δλµ and

Bν
µA

λ
ν = δλµ (by Problem 7, this is a coordinate-independent property). Show that

in this case,
Tµ
λA

ν
µ = Sν

λ ⇐⇒ Tµ
λ = Sν

λB
µ
ν

for any tensor fields Sν
µ and T ν

µ . Similarly, show that for any coordinate change

xµ 7→ xµ
′
we have Sµ′J

µ′
ν = Tν if and only if Sµ′ = TνJ

ν
µ′ .

10. A symmetric tensor gµν is non-degenerate if there is a symmetric tensor hµν such

that gµνh
νλ = δλµ. A metric is a symmetric non-degenerate

(
0
2

)
-tensor. Show that

any metric gµν gives a well-defined bijection between vector fields and covector
fields, sending Aµ to gµνA

ν .

11. With n = 2, consider the (polar) coordinate change{
x1

′
= x1 cosx2,

x2
′
= x1 sinx2,
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where x1 > 0 and x2 ∈ (0, π/2). (x2 is the second coordinate, not the square of
x)

(a) Find the matrices Ja
b′ , J

b′
a , and their respective determinants J′ and J ′.

(b) If a vector field Aµ is given by A1(x1, x2) = x1 and A2(x1, x2) = 1, find the

components Aµ′(x1
′
, x2

′
) of the vector field in the coordinates xµ

′
.

(c) In each coordinate system, sketch the vector field. Sketch the coordinate
curves t 7→ (t, 0) and t 7→ (0, t) of one system in the other.
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3 Lecture 3: Covariant Differentiation

Fix a smooth geometry G ⊆ Gsm and a G -space (M,C ).

3.1 The Problem of Constant Fields

If ϕ :M → R is a scalar field, we say ϕ is (locally) constant if

∂µϕ = 0 (3.1)

Remark 3.1. It makes sense to say that ϕ : M → R is constant, as a function.
This does not require a coordinate system on M . Every such constant function is
locally constant in the above sense. The converse holds if the image of one (hence
all) coordinate system x 7→ xµ is a connected subset of Rn.

Remark 3.2. The condition (3.1) is coordinate independent, because ∂µϕ is a tensor
field (see Problem 7 of Section 2.6).

On the other hand, if Aµ is a vector field on M , the condition

∂µA
ν = 0 (3.2)

is not coordinate independent (see Problem 8 of Section 2.6). In fact, let us see
precisely what goes wrong:

∂µ′A
ν′ = Jα

µ′∂α(J
ν′
β A

β)

= Jα
µ′J

ν′
β ∂αA

β + Jα
µ′J

ν′
αβA

β (3.3)

where we introduce the notation

Jν′
αβ = ∂αJ

ν′
β =

∂2xν
′

∂xα∂xβ
. (3.4)

The first term in (3.3) would say that ∂µA
ν is a tensor of type

(
1
1

)
, but the second

term,

Jα
µ′J

ν′
αβA

β, (3.5)

spoils this. We therefore think of this as an “error term” that needs to be corrected
for.

Remark 3.3. The same problem appears for covector fields. However, the expression
Fµν = ∂µBν − ∂νBµ does in fact transform as a

(
0
2

)
-tensor (see Problem 6 in Section

2.6), even though neither term does. The lesson we draw here is that sometimes the
sum of two non-tensorial terms is tensorial.
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These remarks leads us to the idea that we might be able to add a counteracting
term to ∂µA

ν , which is also non-tensorial but transform in such a way as to counteract

the error term. Note that the error term (3.5) has the index structure
(
1
2

)
and

contracts against the vector field Aβ in (3.3).

3.2 Affine Connections

The discussion in the previous subsection leads us to make the following Ansatz:

∇µA
ν := ∂µA

ν + Γ ν
µβA

β (3.6)

and the question we face is: How should Γ ν
µβ transform under coordinate changes,

so as to counteract the error term in (3.3), making the object ∇µA
ν into a tensor of

type
(
1
1

)
?

Under a change of coordinates xµ 7→ xµ
′
, we have by (3.6) and (3.3),

∇µ′A
ν′ = ∂µ′A

ν′ + Γ ν′
µ′β′A

β′

= Jα
µ′J

ν′
β ∂αA

β +
(
Jα
µ′J

ν′
αβ + Γ ν′

µ′α′J
α′
β

)
Aβ (3.7)

where we also used that Aµ are the components of a vector field. For ∇µA
ν to be a

tensor field type
(
1
1

)
, we want (3.7) to equal

Jα
µ′J

ν′
β ∇αA

β = Jα
µ′J

ν′
β ∂αA

β + Jα
µ′J

ν′
λ Γλ

αβA
β. (3.8)

Equating the coefficients of Aβ in (3.7) and (3.8) gives

Jα′
β Γ ν′

µ′α′ = Jα
µ′J

ν′
λ Γλ

αβ − Jα
µ′J

ν′
αβ (3.9)

or, after multiplying both sides by Jτ
σ′ and contracting along τ = β (see Homework

9 in Section 2.6):

Γ ν′
µ′ρ′ = Jα

µ′J
β
ρ′J

ν′
γ Γγ

αβ − Jα
µ′J

β
ρ′J

ν′
αβ (3.10)

We have discovered a new object, of fundamental importance in geometry and
physics.

Definition 3.4. An affine connection on M assigns to each coordinate system xµ

an n3-tuple of functions Γ ν
µρ which transforms according to (3.10) under changes of

coordinates xµ 7→ xµ
′
.

Definition 3.5. An affine connection space is a G -space equipped with an affine
connection. We denote it by (M,Γ ν

µρ) or just (M,Γ ) for short.
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3.3 Covariant Derivatives

Definition 3.6. Let (M,Γ ) be an affine connection space. The covariant derivative
of a vector field Aµ is defined to be the

(
1
1

)
-tensor field ∇µA

ν defined in (3.6).

Because ∇µA
ν is a tensor field, we can now define:

Definition 3.7. A vector field Aµ on an affine connection space (M,Γ ) is said to
be (locally) constant if ∂µA

ν = 0.

For a scalar field ϕ, for the sake of consistent notation, we put

∇µϕ = ∂µϕ (3.11)

No counteracting term is needed here, because ∂µϕ is already a tensor field.
To summarize, we have:

a ( 00 )-tensor ϕ ⇝ a ( 01 )-tensor ∇µϕ

a ( 10 )-tensor A
µ ⇝ a ( 11 )-tensor ∇µA

ν

What about ∇µT
στ? We want the product rule to hold. So if T στ happens to be

a simple tensor, i.e., a product of two vector fields T στ = AσBτ then we would want

∇µ(A
λBρ) = (∇µA

λ)Bρ + Aλ(∇µB
ρ)

= (∂µA
λ + Γλ

µαA
α)Bρ + Aλ(∂µB

ρ + Γ ρ
µαB

α)

= ∂µ(A
λBρ) + Γλ

µαA
αBρ + Γ ρ

µαA
λBα.

This leads to the guess

∇µT
λρ = ∂µT

λρ + Γλ
µαT

αρ + Γ ρ
µαT

λα (3.12)

This does indeed work! That is, if T λρ are the components of a
(
2
0

)
-tensor, then

∇µT
λρ are the components of a

(
2
1

)
-tensor. The same logic leads to covariant deriva-

tives of higher rank contravariant tensor fields. Before stating the general formula,
let’s address the same question for covariant tensor fields.

3.4 Contravariant tensor fields

Similarly to the case of
(
2
0

)
-tensors, there is a natural way to arrive at the definition

of the covariant derivative ∇µAν of a covector field Aµ. If we assume Bµ is some
vector field, then AµB

µ is a scalar field, and therefore

∇µ(AνB
ν) = ∂µ(AνB

ν) = (∂µAν)B
ν + Aν(∂µB

ν). (3.13)
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On the other hand, we would like the covariant derivative to also satisfy the product
rule. Therefore would like

∇µ(AνB
ν) = (∇µAν)B

ν + Aν(∇µB
ν)

= (∇µAν)B
ν + Aν(∂µB

ν + Γ ν
µαB

α) (3.14)

Equating (3.13) and (3.14), we see that a sufficient condition is that

∇µAν = ∂µAν − Γα
µνAα (3.15)

Again, this does indeed give a
(
0
2

)
-tensor (check!).

3.5 General Formula for the Covariant Derivative of a Ten-
sor Field

Given the previous subsections, the following is not surprising.

Definition 3.8. Let (M,Γ ) be an affine connection space. The covariant derivative
of an

(
r
s

)
-tensor field on T

µ1···µr
ν1···νs is

∇λT
µ1···µr
ν1···νs = ∂λT

µ1···µr
ν1···νs +

r∑
i=1

Γ
µi
λαT

µ1···
i
α···µr

ν1···νs −
s∑

j=1

Γ β
λνj
T
µ1···µr
ν1···β

j
···νs (3.16)

The result is a tensor field of type
(

r
s+1

)
(verify this!).

3.6 Locally Inertial Coordinate Systems

In this section, for simplicity we assume G = Gsm so that we have all smooth co-
ordinate transformations available. (As the reader will see, we actually only need
polynomial coordinate changes of degree two or less.)

Definition 3.9. An affine connection Γλ
µν is symmetric if Γλ

µν = Γλ
νµ.

Symmetric connections are particularly nice, in that, for any point x ∈ M there
is a coortinate system in which the connection vanishes. This property plays a
crucial role in the phenomenology of general relativity, and can also greatly simplify
mathematical calculations.
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Theorem 3.10. Let Γλ
µν be a symmetric affine connection on M , and let y ∈M be

any point. Then there exists a coordinate system xµ on M in which Γλ
µν(y) = 0.2

Proof. After changing coordinates using a translation, we may without loss of gen-
erality assume that yµ = 0. Consider now the coordinate transformation

xµ
′
= Aµ′

α x
α +

1

2
Bµ′

αβx
αxβ

where Aµ′
α and Bµ′

αβ are constant arrays of real numbers, to be determined. We

may without loss of generality assume Bµ′

αβ = Bµ′

βα (because its anti-symmetric piece

must vanish due to xαxβ = xβxα). Computing the first and second Jacobian of this
coordinate change we get

Jµ′
α = Aµ′

α +Bµ′

αβx
β, Jµ′

αβ = Bµ′

αβ

(recall the second Jacobian from (3.4)). Thus, at the point y we have Jµ′
α (y) = Aµ

α.

Therefore, as long as Aµ′
α is an invertible matrix, the coordinate change is a bijection

in a neighborhood of y. The transformation law for an affine connection can be
written

Jµ′
α J

ν′
β Γλ′

µ′ν′ = Jλ′
γ Γγ

αβ − Jλ′
αβ.

(See Problem 1) At the point y we have yµ = 0, so the right hand side vanishes at y
if we choose

Bλ′
αβ = Aλ′

γ Γγ
αβ(y)

Note that this requires Γγ
αβ to be symmetric.

Definition 3.11. A coordinate system xµ on an affine connection space (M,Γ ) is
locally inertial at y ∈M if the components of the connection vanish at y:

Γλ
µν(y) = 0.

Such coordinate systems are also called normal and the point y is a pole of the
coordinate system.

2Note that we here regarded Γλ
µν as a function on M rather than on the image of xµ. We can of

course switch back and forth between viewpoints because xµ is bijective onto its image.
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3.7 Homework #3

1. Show that the transformation law for an affine connection can be written

Jµ′
α J

ν′
β Γλ′

µ′ν′ = Jλ′
γ Γγ

αβ − Jλ′
αβ.

2. Show that if Γ ν
µ λ and γ ν

µ λ are two affine connections then their difference

Γ ν
µ λ − γ ν

µ λ is a
(
1
2

)
-tensor. (This suggests that an affine connection is a kind of

potential.)

3. The torsion of an affine connection Γ ν
µ λ is defined by T ν

µ λ = Γ ν
µ λ −Γ ν

λ µ . Show

that the torsion is a (1, 2)-tensor. In particular, conclude that the property of an
affine connection to be symmetric is coordinate independent.

4. Differentiate Jµ
α′J

α′
ν = δµν with respect to xλ

′
to show the following sometimes

useful identity involving the second Jacobian:

Jµ
α′λ′J

α′
ν = −Jµ

α′J
β
λ′J

α′
βν .

Use this to rewrite the transformation law for an affine connection so that the
second term is a (slightly different looking) term with a plus sign.

5. Show that, in general, the set of affine connections on a space is not closed under
multiplication by a scalar.

6. Given a covector field Aµ on an affine connection space, compare the two
(
0
2

)
-

tensors Gµν = ∇µAν − ∇µAν and Fµν = ∂µAν − ∂νAµ. When are they the
same?

7. Compute the second order covariant derivative ∇µ∇νA
λ of a vector field Aλ.

(Hint: First apply ∇µ, using that ∇νA
λ is a tensor field.)

8. Verify that the formula (3.15) does define a tensor field of type
(
0
2

)
.

4 Lecture 4: Curvature and Torsion; Metric and

Vielbein

4.1 The Curvature and Torsion of an Affine Connection

Let G ⊂ Gsm be a smooth geometry and (M,C ) a G -space equipped with an affine
connection Γλ

µν . (In other words, let M be an affine connection space in a smooth
setting.)
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As we saw in the previous lecture, we then have available the covariant derivative
∇µ, which operates on the space of all tensor fields. It is natural to ask to what
extent the different components of ∇µ commute.

To check this, we let Aλ be a vector field and compute ∇µ∇νA
λ in order to

compare it with ∇ν∇µA
λ. Since ∇νA

λ is a
(
1
1

)
-tensor, the general formula of co-

variant derivative (3.16) tells us we get two correction terms, one with a minus sign
corresponding to the covariant index ν, and one with a plus sign corresponding to
the contravariant index λ:

∇µ∇νA
λ = ∂µ(∇νA

λ)− Γα
µν∇αA

λ + Γλ
µα∇νA

α. (4.1)

Since the middle term already has a clear dependence on switching µ and ν, we
keep it as is. For the other two terms we have, by the formula (3.6) for the covariant
derivative of a vector field,

∂µ(∇vA
λ) = ∂µ(∂νA

λ + Γλ
ναA

α)

= ∂µ∂νA
λ + ∂µΓ

λ
ναA

α + Γλ
να∂µA

α (4.2)

where we used the product rule for the ordinary partial derivative, and

Γλ
µα∂νA

α + Γλ
µαΓ

α
νβA

β. (4.3)

Substituting these into (4.1) we obtain

∇µ∇νA
λ = ∂µ∂νA

λ + ∂µΓ
λ
ναA

α + Γλ
να∂µA

α

− Γα
µν∇αA

λ

+ Γλ
µα∂νA

α + Γλ
µαΓ

α
νβA

β. (4.4)

When we switch µ and ν and substract, the red terms (the first, third, and fifth)
cancel, and the remaining terms get anti-symmetrized in µ and ν:

[∇µ,∇ν ]A
λ =

(
∂µΓ

λ
να − ∂νΓµαλ + Γλ

µβΓ
β
να − Γλ

νβΓ
β
µα︸ ︷︷ ︸

def
= Rλ

µνα

)
Aα −

(
Γα
µν − Γλ

νµ︸ ︷︷ ︸
def
= Tα

µν

)
∇αA

λ

Definition 4.1. Rλ
µνα is the Riemann Curvature tensor and Tα

µν is the torsion tensor
of the affine connection.
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In a previous homework problem, it was shown that Tα
µν is a tensor. Therefore

Tα
µν∇αA

λ is a tensor. Since the left hand side of (4.5) is also a tensor, it follows that

Rλ
µναA

α is a tensor for every vector field Aα. One can from this draw the conclusion

that Rλ
µντ is a tensor of type

(
1
3

)
, see Problem 3 of Section 4.5. Alternatively, one

can directly verify that Rλ
µντ is a tensor (see Problem 4 of Section 4.5).

Remark 4.2.

1. The torsion tensor vanishes if and only if the affine connection is symmetric in
its two lower indices.

2. The curvature tensor Rλ
µντ is anti-symmetric in its first two covariant indices

µ and ν.

3. The formula for [∇µ,∇ν ] acting on other tensors is similar in form to the
covariant derivative, in that we get a + curvature term for each contravariant
index, and a − curvature term for each covariant index, though only a single
− torsion term. For example:

[∇µ,∇ν ]B
στ
π = Rσ

µναB
ατ
π +Rτ

µναB
σα

−Rα
µνπB

στ
α − Tα

µν∇αB
στ
π (4.5)

(We leave it to the reader to verify this.)

4. The Ricci tensor is obtained by contracting the curvature tensor:

Rµν = Rα
αµν . (4.6)

4.2 Metrics and Vielbeins

Definition 4.3. A metric gµν onM is a symmetric non-degenerate
(
0
2

)
-tensor. Sym-

metric means gµν = gνµ, while non-degenerate means there is a contravariant tensor
g̃µν (sometimes called the inverse metric) such that

gµν g̃
νλ = δλµ. (4.7)

Example 4.4. The flat metric ηab is a metric in the Lorentzian geometry.

If Xµ and Y µ are two vector fields, then

gµνX
µY ν (4.8)
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is a scalar field. Thus a metric is a kind of “dot product”. More precisely, at each
point onM , a metric gµν defines a non-degenerate bilinear form on the tangent space
(defined as the space of all vector fields evaluated at that point). By Gram-Schmidt’s
orthonormalization process from linear algebra, we know that such a bilinear form
can be diagonalized. In our notation, it means there exists a matrix eaµ(x) defined at
each point x on M , such that

gµν(x) = eaµ(x)e
b
ν(x)ηab (4.9)

where ηab is diagonal with ±1 on the diagonal (since square roots are available in
R). The pair (t, s) where t is the number of +1’s and s the number of −1’s, is the
signature of gµν .

That eaµ are smooth functions on M follows from the fact that the operations in
the orthonormalization process are algebraic. They transform as covectors in µ.

The matrix eaµ(x) is uniquely determined (by gµν and the relation (4.9)) up to a

(not necessarily proper) Lorentz tranformation acting on the top index: if Λb
a is any

matrix such that Λa
iΛ

b
jηab = ηij then e

a
µ(x) may be replaced by Λa

be
b
µ(x). Conversely,

any two solutions to (4.9) are related this way.
Thus, the Vielbein is subject to two distinct transformation laws:

eaµ′ = Jν
µ′e

a
ν , ea

′
µ = Λa′

b e
b
µ. (4.10)

The fact that the matrix is invertible says there is a field eµa transforming as a general
vector and as a Lorentz covector such that

eaµe
µ
b = δab , eaµe

ν
a = δνµ. (4.11)

In eaµ we call a a flat index and µ is a curved index. Conversely, given any such field
eaµ, we may use (4.9) to define a metric.

The field eaµ is called the Vielbein (German for many-legged) of the metric. Other
common names for eaµ is soldering form, orthogonal frame section, tetrad or Vierbein
(n = 4), Dreibein (n = 3), Tweibein (n = 2).

The Vielbein plays an important role in physics and geometry. For example, it
can serve as an (equivalent) starting point for gravity, wherein the Vielbein takes
over the role of the graviton field. It also provides a way to define spinor fields in
curved spacetime.

4.3 Raising and Lowering of Indices using a Metric

Let gµν be a metric. If Y µ is a vector field, then we define the covector field

Yµ := gµαY
α. (4.12)
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We say that we have lowered the index µ (with respect to the metric gµν). Similarly,
we may turn a covector field Aµ into a vector field using the contravariant (what
some call the “inverse”) metric:

Aµ = g̃µαAα, (4.13)

and we say we have raised the index µ in Aµ. These processes are mutually inverse:

Y µ⇝ gµαY
α⇝ g̃µβgβαY

α = δµαY
α = Y µ.

For a tensor Aµν we wish to be able to distinguish between the result of lowering µ
or ν. It is natural to define

A ν
µ = gµαA

αν

Aµ
ν = gναA

µα

Unless Aµν is symmetric, these are two different
(
1
1

)
-tensors. This makes horizontal

placement of indices important, when we have a metric present and plan to raise
and lower indices. Similarly, when a metric is present, we should avoid writing Bν

µ

because it is completely unclear what Bµν means: gµαB
α
ν or gναB

α
µ? The rule is to

simply avoid writing one index directly above another, and either denote a(
1
1

)
-tensor by B ν

µ or Bν
µ . This is purely a notational distinction.

There are two conventions that have some logic to them, but many texts mix and
match:

In the prefix notation, the “default” form of writing a tensor (or connection, etc)
is T µ···

ν··· . This form is preserved by application of a differential operator from the
left:

∇µA
λ

ν = B λ
µν

2Γ λ
µν = (∂µgνα + · · · )gαλ

R ρ
µνλ = ∂µΓ

ρ
νλ + · · ·

We will mostly follow this convention.
In the postfix notation, one defaults to Tµ···

ν··· . In this convention, it is logical
to write the result of derivatives with an index on the right (to preserve the default
index form). For partial derivatives, one defines

Aµ
ν,λ

def
= ∂λA

µ
ν

and use ; or | for covariant derivatives:

Aµ
ν;λ = Aµ

ν|λ
def
= ∇λA

µ
ν
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The second covariant derivative of a vector field Xµ is written Xµ
|νλ or Xµ

|ν|λ .

Connections and curvature tensors are then typically written

2Γλ
µν = gλα(gαµ,ν + · · · )

Y λ
|µ|ν − Y λ

|ν|µ = Y αRλ
αµν − Y λ

|α T
α
µν

Rλ
µνρ = Γλ

µν,ρ + · · ·

Here there one needs to use slight caution: ∇µ∇νY
λ = Y λ

|ν|µ . Thus, one can en-

counter a different sign convention for the curvature tensor, justified by the notation.
(In addition, there is a different sign convention in the definition of the Ricci ten-
sor). Ultimately these signs only matter once we compute the energy component of
the energy-momentum tensor of our lagrangian density: we want the energy to be
non-negative.

Remark 4.5. A curious fact is revealed when we raise both indices in the metric
itself:

gµν = g̃µαg̃νβgαβ = g̃µαδνα = g̃µν .

In other words, raising the metric gives the contravariant metric. For this reason,
the contravariant metric is denoted by the simpler form gµν . Similarly, the raising µ
(using gµν) and lowering a (using the flat metric) in the Vielbein eaµ gives the inverse
Vielbein eµa .

4.4 The Levi-Civita Connection Associated to a Metric

Definition 4.6. (i) A G -spaceM equipped with a metric gµν is a pseudo-Riemannian
G -space. If the metric is positive definite (i.e. its diagonal form ηab has all +1’s
on the diagonal) then M is a Riemannian G -space.

(ii) A connection Γ λ
µν on a pseudo-Riemannina G -space (M, gµν) is called metric

(or metric-compatible) if
∇λgµν = 0 (4.14)

where the covariant derivative is computed using Γ λ
µν .

Theorem 4.7 (The Fundamental Theorem of (pseudo-)Riemannian Geometry). Let
(M, gµν) be a pseudo-Riemannian G -space (where G ⊂ Gsm is any smooth geometry).
Then there exists a unique affine connection Γ λ

µν on M satisfying the following two
conditions:
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1) The torsion tensor T λ
µν = Γ λ

µν − Γ λ
νµ vanishes identically.

2) Γ λ
µν is metric-compatible.

This affine connection is explicitly given by

Γ λ
µν =

1

2

(
∂µgνα + ∂νgµα − ∂αgµν

)
gλα. (4.15)

Proof. Outlined in the Homework #4 below.

Definition 4.8. The affine connection is called the Levi-Civita connection on (M, gµν).
It is sometimes denoted by

g

Γ λ
µν or γ λ

µν or

{
λ

µ ν

}
and the components called Christoffel symbols.

4.5 Homework #4

1. Let Sµ and Tµ be two vector fields on a pseudo-Riemannian G -space (M, gµν).
Using notation of lowering and raising, show that SµTµ = SµT

µ.

2. Show that the Jacobian Jν′
µ (for fixed µ) transforms as a vector in ν ′, and (for

fixed ν ′) as a covector in µ:

Jν′′
µ = Jν′′

α′ J
α′
µ , Jν′

µ′′ = Jα′
µ′′J

ν′
α′ (4.16)

[Thus, on the one hand, for a fixed coordinate system x 7→ xµ, the Jacobian defines
n vector fields, denoted ∂µ. The components of ∂µ in an arbitrary coordinate

system x 7→ xν
′
are (∂µ)

ν′ = Jν′
µ . These are the basis vector fields relative to

the coordinate system xµ. On the other hand, for a fixed coordinate system
x 7→ xµ, the Jacobian defines n covector fields, denoted dxµ with components in

an arbitrary coordinate system x 7→ xµ
′
given by (dxµ)ν′ = Jµ

ν′ . These are the
basis covector fields (or basis 1-forms) relative to the coordinate system xµ. Thus,

(∂ν′)
µ = (dxµ)ν′ = Jµ

ν′ . (4.17)
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3. Suppose that a tuple of functions Rλ
µντ are given in each coordinate system, but

no transformation law is assumed between different coordinate systems. But,
suppose that we do know that the quantities Rλ

µναA
α define a

(
1
3

)
-tensor for each

vector field Aα. Prove that in that case the quantities Rλ
µντ also transform as a(

1
3

)
-tensor. (The same is true for any other type, but this case is of particular

relevance to the curvature tensor.) (Hint: Fix a coordinate system x 7→ xµ
′
and

take the vector field Aµ to be one of the corresponding coordinate vector fields:
Aµ = (∂ν′)

µ = Jµ
ν′ .)

4. Show directly, using the transformation laws for an affine connection, that the
Riemann curvature tensor Rλ

µντ is in fact a
(
1
3

)
-tensor. (Hint: Calculations can

be cut in half by writing “Rλ
µντ = ∂µΓ

λ
ντ + Γλ

µαΓ
α
ντ − {µ↔ ν}”.)

5. Prove the Fundamental Theorem of (pseudo-)Riemannian Geometry as follows:

(a) Suppose that gµν is a metric, and that Γ λ
µν is any symmetric affine connec-

tion such that ∇λgµν = 0. Using the definition of the covariant derivative
(see e.g. (3.16)), find an equation involving the metric and the affine con-
nection. It should have the symbolic form ∂g − Γg − Γg = 0.

(b) Let Γµνλ = Γ α
µν gαλ be the so-called covariant connection.3 Use the part

(a) to show that
∂µgνλ + ∂νgµλ − ∂λgµν = 2Γµνλ.

(c) Conclude that the connection is therefore determined by the metric:

Γ λ
µν =

1

2
gλα

(
∂µgνα + ∂νgµα − ∂αgµν

)
(4.18)

(d) Conversely, prove that for any metric gµν , the formula (4.18) actually de-
fines an affine connection. This is the Levi-Civita connection on a pseudo-
Riemannian space (M, gµν).

6. Let eaµ be a Vielbein field. Show that Γλ
µν = eλa∂µe

a
ν defines an affine connection.

[This is actually a much easier formula than the traditional one (4.18) in terms of
the metric! Note that the torsion does not necessarily vanish here.]

7. Let Γ λ
µν be the Levi-Civita connection of a metric gµν . Fix a coordinate system

xµ and a point x ∈M . Show that the following two statements are equivalent:

3It is only “covariant” in the sense that it has all indices downstairs. It is not a
(
0
3

)
-tensor but

satisfies some other transformation law.
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(a) Γ λ
µν (x) = 0 (that is, this is a locally inertial coordinate system at x, see

Definition 3.11)

(b) ∂λgµν(x) = 0 (that is, in this coordinate system, the metric is constant to
first order at x).

8. Let gµν be a metric and Γ λ
µν the corresponding Levi-Civita connection. Let

Rµνλρ = gραR
α

µνλ be the covariant curvature tensor. Prove that in a locally
inertial coordinate system at x,

Rµνλρ =
1

2

(
∂µ∂λgνρ + ∂ν∂ρgµλ − ∂ν∂λgµρ − ∂µ∂ρgνλ

)
(4.19)

9. Show that the covariant curvature tensor of the Levi-Civita connection satisfies
the C2-symmetries4

Rµνλρ = −Rνµλρ, Rµνλρ = −Rµνρλ, Rµνλρ = Rλρµν , (4.20)

and the C3-symmetry
Rµνλρ +Rµλρν +Rµρνλ = 0. (4.21)

[Hint: The first one in (4.20) holds by definition of the curvature tensor. For the
second one, by the previous problem Rµνλρ(x) = Rµλρν(x) at the pole x of an
inertial coordinate system. Since that identity is tensorial, it must hold (at x)
in any coordinate system. But x was arbitary so it holds everywhere. The other
identity is proved similarly.]

10. Use (4.20) to show that the Ricci tensor of the Levi-Civita connection is symmet-
ric.

11. (a) Show that if x, y, z are three linear operators on a vector space, then

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

where [a, b] = a ◦ b− b ◦ a is the commutator. (This is the Jacobi identity.)

(b) Assuming Γλ
µν is a symmetric affine connection, apply part (a) to the covariant

derivatives x = ∇µ, y = ∇ν , z = ∇λ, to prove the Bianchi Identity

∇µR
σ
νλτ +∇νR

σ
λµτ +∇λR

σ
µντ = 0. (4.22)

12. Give a second proof of the Bianchi Identity using Hint (2) in Problem 8.

4By Ck we mean the cyclic group of order k.
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13. Show that under a spatial spherical change of coordinates (x0, x1, x2, x3) →
(t, r, θ, ϕ), the Lorentzian flat metric is transformed to

ds2 = dt2 − dr2 − r2dΩ2

where dΩ2 = dθ2 + sin2 θdϕ2. [Here we use the line element notation ds2 =
gµνdx

µdxν to specify the metric.]

14. For constant r and t, we have dt = dr = 0 in the previous problem, and we get
(after negating for simplicity) the metric ds2 = r2dΩ2 on the static 2-sphere. In
other words, n = 2, and

gθθ = r2, gϕϕ = r2 sin2 θ, gϕθ = gθϕ = 0.

Compute the Levi-Civita connection, curvature tensor, Ricci tensor. Show that
the curvature scalar R here is constant, equal to 2

r2
.

5 Lecture 5: Invariant Integration

5.1 Invariant Integration, Scalar Densities and Relative Ten-
sors

Let K ⊂M and consider the idea of an integral

I =

∫
K

ϕ dnx (5.1)

where ϕ is some object to be determined. To make sense of this, we choose a coor-
dinate system x 7→ xµ (from the collection C that M comes equipped with), and we
define ∫

K

ϕ dnx
def
=

∫
K1

ϕ(xµ) dx1dx2 · · · dxn (5.2)

where ϕ(xµ) is a function expressing ϕ in the coordinate system x 7→ xµ, and K1 =
{xµ | x ∈ K}. But, we want this definition to be independent of the choice of
coordinate system. This imposes a relationship between the different coordinate

expressions of ϕ. More precisely, suppose x 7→ xµ
′
is another coordinate system (from

C) on M . Then we need∫
K

ϕ dnx =

∫
K2

ϕ(xµ
′
) dx1

′
dx2

′
· · · dxn

′
.
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The two coordinate systems are related by a transformation belonging to the geom-
etry G under consideration. We will make the assumption on G that all coordinate

transformations have a positive Jacobian determinant J′ = det(∂xµ/∂xν
′
). Making

the substitution xµ = xµ(xµ
′
) in (5.2), we obtain∫

K

ϕ dx =

∫
K2

ϕ(xµ(xν
′
)) · J′ dx1

′
dx2

′
· · · dxn

′
(5.3)

Comparing (5.2) with (5.3), we see that we want

ϕ(xµ
′
) = ϕ(xµ(xν

′
)) · J′ (5.4)

We arrive at the following definition.

Definition 5.1. A scalar density ϕ assigns to each coordinate system xµ a (real-
valued, smooth) function ϕ(xµ), called the expression of ϕ in the coordinates xµ.

Furthermore, if xµ and xµ
′
are any two coordinate systems on M , their respective

expressions are related by the transformation law (5.4).

Example 5.2. Suppose that the expression of ϕ : M → R in a coordinate system
(x, y) is ϕ(x, y) = x3 + xy2. Suppose K ⊂ M is a region whose image under the
coordinate map p 7→ (x(p), y(p)) is K1 = {(x, y) | x2+y2 ≤ 1} (the unit disk). Then,
by definition, ∫

K

ϕ d2x =

∫∫
K1

(x3 + xy2) dxdy

Suppose further that (r, θ) is another coordinate system, related to the first by po-
lar change of coordinates x = r cos θ, y = r sin θ. The Jacobian determinant is
det

(
cos θ sin θ

−r sin θ r cos θ

)
= r and therefore, with K2 = {(r, θ) | r ≤ 1} and the “naive

substitution” is ϕ(x(r, θ), y(r, θ)) = r3 cos θ. As we know from calculus, therefore,∫
K

ϕ dnx =

∫∫
K2

r3 cos θ · r drdθ.

This illustrates that the expression ϕ(r, θ) of ϕ in (r, θ) is not merely the “naive
substitution”, but we also have to multiply by a Jacobian determinant. In other
words: ϕ(r, θ) = r3 cos θ · r.

Note that if ϕ and ψ are two scalar densities, then ϕ/ψ is a scalar field. Therefore
we also call them relative scalars. However, the product ϕψ transforms as ϕ′ψ′ =
ϕψ(J′)2. We say that ϕψ is a relative scalar of weight 2. Multiplying a relative scalar
and a tensor gives a “relative tensor”. The definition that cover everything we need
is as follows.
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Definition 5.3. A relative tensor (field) of type
(
r
s

)
and weight w is an nr+s-tuple

of functions S µ···
ν··· given in each coordinate system xµ, which are related by the

transformation law

S µ′···
ν′··· = (J′)w · Jα

ν′ · · · J
µ′

β · · ·S β···
α··· . (5.5)

Relative tensors/vectors/covectors of weight 1 are called tensor/vector/covector den-
sities. (We will only need the case when w is an integer. In geometries where all
Jacobian determinants are positive, w could in principle be any real number.)

Theorem 5.4. Relative tensors have the following properties.

(i) The set of all relative tensors of type
(
r
s

)
and weight w forms a vector space

(i.e. it is closed under addition and multiplication by constant scalars).

(ii) Relative tensors can be multiplied; the resulting weight is the sum of the respec-
tive weights (just like the types).

(iii) The covariant derivative of a relative tensor field of type
(
r
s

)
and weight w is

defined by

∇λT
ν···

µ··· = ∂λT
ν···

µ···

+ Γ ν
λα T α···

µ··· + · · · (one term for each contravariant index)

− Γ α
λµ T ν···

α··· − · · · (one term for each covariant index)

− wΓ α
αλ T ν···

µ··· (a single extra term)

(5.6)

The result is a tensor of type
(

r
s+1

)
and weight w.

(iv) The product rule works as usual for taking the covariant derivative of any prod-
ucts of relative tensors. Dropping all indices for brevity, the rule reads

∇(TS) = (∇T )S + S(∇T ). (5.7)

Example 5.5. If jµ is a vector density, then its “covariant divergence” is

∇µj
µ = ∂µj

µ + Γ µ
µα jα − Γ β

βµ jµ = ∂µj
µ (5.8)

In particular, the usual partial derivative ∂µj
µ is a scalar density! 5

5Furthermore, this fact — although very special to the vector density case — can be a useful
way of remembering the formula for the covariant derivative of a relative tensor.
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As a consequence of this remarkable fact is that the integral of the covariant
divergence of a vector density has coordinate independent meaning. An important
result related to this is the divergence theorem. We only need the case when jµ

vanishes on the boundary of K.

Theorem 5.6 (Special Case of the Divergence Theorem from Calculus). For any
vector density jµ vanishing on the boundary ∂K of a region K ⊂M , we have∫

K

∂µj
µ dnx = 0. (5.9)

Remark 5.7. In practice, we will only need to consider regions K ⊂ M which in
some coordinate system is a closed ball.

5.2 The Levi-Civita Symbols, and Determinants

We define, in all coordinate systems,

εµ1···µn = εµ1µ2···µn =


+1, if µ1 · · ·µn is an even permutation of 12 · · ·n,
−1, if µ1 · · ·µn is an odd permutation of 12 · · ·n,
0, if µ1 · · ·µn is not a permutation of 12 · · ·n.

(5.10)
These are called the Levi-Civita symbols. Note that the number of indices is equal
to the dimension n of the space M .

Example 5.8. When n = 2, we have ε12 = 1, ε21 = −1, ε11 = ε22 = 0.
When n = 3, ε123 = ε231 = ε312 = 1, ε132 = ε321 = ε213 = −1, and all other

components (having at least two indices equal) are zero.

This notation is convenient for expressing determinants. For example,

det(A ν
µ ) = εν1···νnA 1

ν1
· · ·A n

νn . (5.11)

(Check this for n = 2, 3!) It can also be written in a more tensorial way:

det(A ν
µ )εµ1···µn = εν1···νnA

µ1
ν1 · · ·A µn

νn (5.12)

Something interesting is learned when this formula is applied to the Jacobian

matrix Jµ′
ν associated to a coordinate change:

J
µ′1
ν1 · · · Jµ′n

νn ε
ν1···νn = J ′ · εµ

′
1···µ

′
n
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Multiplying both sides by J′ = (J ′)−1 we get

J′ · Jµ′1
ν1 · · · Jµ′n

νn ε
ν1···νn = εµ

′
1···µ

′
n . (5.13)

This shows the first part of the following proposition.

Proposition 5.9.

(a) The contravariant Levi-Civita symbol

εµ1···µn

is a relative tensor of type
(
n
0

)
and weight 1 (i.e. an

(
n
0

)
-tensor density).

(b) The covariant Levi-Civita symbol

εµ1···µn

is a relative tensor of type
(
n
0

)
and weight −1.

An importan application of this is that by anti-symmetrizing (i.e. contracting
against a Levi-Civita symbol) we can create scalar densities, which can be integrated
in a coordinate-independent manner:

Corollary 5.10. If Cµ1µ2···µn is any
(
0
n

)
-tensor, then

εµ1···µnCµ1···µn (5.14)

is a scalar density.

5.3 The Scalar Density
√
−g

Another important way to build scalar densities comes about when we have a metric
available. The determinant of the metric gµν is denoted by g. It can be written

g = det(gµν) =
1

n!
εµ1···µnεν1···νngµ1ν1 · · · gµ1ν1 . (5.15)

Since this is a fully contracted product of two relative tensors of weight 1 and a one
of weight 0, it follows that g is a relative scalar of weight 2. That is,

g′ = (J′)2g, (5.16)

where g′ = det(gµ′ν′). Assuming that J′ > 0 for all coordinate changes, taking
absolute values on both sides and then the square roots, we conclude that√

|g′| = (J′)
√

|g|. (5.17)

This proves the following result about the metric.
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Proposition 5.11. Let gµν be a metric on a G -space M , where G is an oriented
geometry (i.e. all coordinate transformations in G have positive determinant). Then
the field √

|g| (5.18)

is a scalar density. In particular, when n = 4 and gµν has Lorentzian signature
(either +−−− or −+++), then g < 0 and consequently

√
−g (5.19)

is a scalar density.

5.4 Useful Formulas Involving the Metric

In this section we provide a number of useful formulas involving the metric.
Let gµν be any metric and g its determinant.

Lemma 5.12.

∂µg = ggαβ∂µgαβ (5.20)

Proof. By cofactor expansion of the determinant,

gδρλ = gλαC
αρ (5.21)

where
Cλρ = g · gλρ (5.22)

Regarding the g as a polynomial in n2 variables gµν , we have by the chain rule 6

∂µg =
∂g

∂gαβ
∂µgαβ (5.23)

By (5.21), and that each variable gµν only once in a single monomial of g, we have

∂µg = Cαβ∂µgαβ

Now, using (5.22) we get
∂µg = ggαβ∂µgαβ.

6Note that ∂g/∂gαβ should be regarded as a contravariant object, i.e. it has two upper indices.
This is for three reasons: In this way the contraction against ∂µgαβ is valid. Secondly, the formula
(5.23) actually shows that ∂g/∂gαβ is a

(
2
0

)
-tensor in proper Lorentz geometry (or any geometry with

unimodular linear transformations). Third, it is analogous to how ∂µϕ = ∂ϕ/∂xµ is a
(
0
1

)
-tensor

for scalars ϕ.
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Let |g| be the absolute value of the determinant g of the metric.

Lemma 5.13.

∂µ
√

|g| = 1

2

√
|g| · gαβ∂µgαβ (5.24)

Proof. We write the proof when |g| = −g.

∂µ
√
−g = 1

2
(−g)−1/2(−∂µg) by the chain rule

=
1

2
(−g)−1/2 · (−ggαβ∂µgαβ) by Lemma 5.12

=
1

2

√
−ggαβ∂µgαβ.

Lemma 5.14. Let Γ λ
µν be the Levi-Civita connection corresponding gµν . Then

Γ α
αν =

∂ν
√

|g|√
|g|

= ∂ν ln
√

|g| (5.25)

Proof. The covariant Levi-Civita connection is given by

2Γµνλ = ∂µgνλ + ∂νgµλ − ∂λgµν .

Since the first plus the third term is ∂µgνλ − ∂λgνµ, those terms vanish upon con-
traction against the symmetric tensor gµλ:

Γ α
αν = gµλΓµνλ =

1

2
gµλ∂νgµλ =

∂ν
√

|g|√
|g|

, (5.26)

where we used Lemma 5.13 in the last equality.

Lemma 5.15. Let ∇µ be the covariant derivative with respect to the Levi-Civita
connection corresponding to gµν. Then

∇µ

√
|g| = 0. (5.27)

Proof. Since
√

|g| is a scalar density,

∇µ

√
|g| = ∂µ

√
|g| − Γ α

αµ

√
|g|

which is zero by Lemma 5.14.
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Lemma 5.16. Let ∇µ be the covariant derivative with respect to the Levi-Civita
connection corresponding to gµν. Then, for any scalar field ϕ, we have

∇µ(ϕ
√

|g|) = (∂µϕ)
√

|g|. (5.28)

Proof. By the product rule for the covariant derivative,

∇µ(ϕ
√

|g|) = (∇µϕ)
√

|g|+ ϕ · ∇µ

√
|g|

Since ϕ is a scalar field, ∇µϕ = ∂µϕ, and the other term is zero by Lemma 5.15.

5.5 Homework #5

1. Show that when n = 3, the curl of a covector field Aj can be written εijk∇iAj .
What is the type and weight of this relative tensor? If you had to, how would you
define the “curl” of a covector field Aµ in n dimensions?

2. Suppose we are given an affine connection Γ λ
µν . Let Aµ be a relative covector

of weight w. Show that the formula (5.6) for the covariant derivative of Aµ does

indeed give a relative
(
0
2

)
-tensor of weight w.

3. Let Γ λ
µν be an affine connection and ∇µ the corresponding covariant derivative.

Show that if ϕ is a relative scalar of weight w and Aµ is a relative covector field
of weight v, then the following product rule holds:

∇µ(ϕAν) = (∇µϕ)Aν + ϕ∇µAν .

4. Prove the claim that εµ1···µn is a relative tensor type
(
0
n

)
and weight −1.

5. (Raised and lowered Levi-Civitas) Suppose a metric gµν has been chosen. Define
the raised Levi-Civita symbol ε

µ1···µn
g as the relative tensor obtained by raising all

the indices in εµ1···µn using the metric. Show that this gives a relative
(
n
0

)
-tensor

of weight 1 and that
ε
µ1···µn
g = g−1εµ1···µn

Similarly, the lowered Levi-Civita symbol εgµ1···µn is obtained by lowering all indices
in the contravariant Levi-Civita symbol and εgµ1···µn = gεµ1···µn . [Warning: Some
authors use εµ1···µn to denote the raised Levi-Civita symbol.]
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6. Let ηab be the flat metric (or, if you want, any constant metric, regarded as a
Lorentz

(
0
2

)
-tensor), gµν a general metric, and eaµ be a Vielbein field connecting

the two as in (4.9). Let η = det(ηab), g = det(gµν), and e = det(eaµ) be the
respective determinants. Show that

g = ηe2 (5.29)

In particular, for n = 4 and Lorentzian signature, conclude that

e =
√
−g. (5.30)
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