The next exercise introduces a subgroup, J(P), which (like the center of P) is defined for an arbitrary finite group P (although in most applications P is a group whose order is a power of a prime). This subgroup was defined by J. Thompson in 1964 and it now plays a pivotal role in the study of finite groups, in particular, in the classification of finite simple groups.

20. For any finite group P let d(P) be the minimum number of generators of P (so, for example, d(P) = 1 if and only if P is a nontrivial cyclic group and $d(Q_8) = 2$). Let m(P)be the maximum of the integers d(A) as A runs over all abelian subgroups of P (so, for example, $m(Q_8) = 1$ and $m(D_8) = 2$). Define

 $J(P) = \langle A \mid A \text{ is an abelian subgroup of } P \text{ with } d(A) = m(P) \rangle.$

(J(P)) is called the *Thompson subgroup* of P.)

- (a) Prove that J(P) is a characteristic subgroup of P.
- (b) For each of the following groups P list all abelian subgroups A of P that satisfy d(A) = m(P): Q_8 , D_8 , D_{16} and QD_{16} (where QD_{16} is the quasidihedral group of order 16 defined in Exercise 11 of Section 2.5). [Use the lattices of subgroups for these groups in Section 2.5.]
- (c) Show that $J(Q_8) = Q_8$, $J(D_8) = D_8$, $J(D_{16}) = D_{16}$ and $J(QD_{16})$ is a dihedral subgroup of order 8 in QD_{16} .
- (d) Prove that if $Q \leq P$ and J(P) is a subgroup of Q, then J(P) = J(Q). Deduce that if P is a subgroup (not necessarily normal) of the finite group G and J(P) is contained in some subgroup Q of P such that $Q \subseteq G$, then $J(P) \subseteq G$.

4.5 SYLOW'S THEOREM

In this section we prove a partial converse to Lagrange's Theorem and derive numerous consequences, some of which will lead to classification theorems in the next chapter.

Definition. Let G be a group and let p be a prime.

- (1) A group of order p^{α} for some $\alpha \geq 0$ is called a *p-group*. Subgroups of G which are p-groups are called p-subgroups.
- (2) If G is a group of order $p^{\alpha}m$, where $p \nmid m$, then a subgroup of order p^{α} is called a Sylow p-subgroup of G.
- (3) The set of Sylow p-subgroups of G will be denoted by $Syl_p(G)$ and the number of Sylow p-subgroups of G will be denoted by $n_p(G)$ (or just n_p when G is clear from the context).

Theorem 18. (Sylow's Theorem) Let G be a group of order $p^{\alpha}m$, where p is a prime not dividing m.

- (1) Sylow p-subgroups of G exist, i.e., $Syl_p(G) \neq \emptyset$. $N_p(G) \neq \emptyset$
- (2) If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then there exists $g \in G$ such that $Q \leq gPg^{-1}$, i.e., Q is contained in some conjugate of P. In particular, any two Sylow p-subgroups of G are conjugate in G. p / Np-1
- (3) The number of Sylow p-subgroups of G is of the form 1 + kp, i.e.,

 $n_p \equiv 1 \pmod{p}$.

Further, n_p is the index in G of the normalizer $N_G(P)$ for any Sylow p-subgroup P, hence n_p divides m.

Np(G) = 14. NG(P)

139

We first prove the following lemma:

PUDSHED

Lemma 19. Let $P \in Syl_p(G)$. If Q is any p-subgroup of G, then $Q \cap N_G(P) = Q \cap P$.

Proof: Let $H = N_G(P) \cap Q$. Since $P \leq N_G(P)$ it is clear that $P \cap Q \leq H$, so we must prove the reverse inclusion. Since by definition $H \leq Q$, this is equivalent to showing $H \leq P$. We do this by demonstrating that PH is a p-subgroup of G containing both P and H; but P is a p-subgroup of G of largest possible order, so we must have PH = P, i.e., $H \leq P$.

Since $H \leq N_G(P)$, by Corollary 15 in Section 3.2, PH is a subgroup. By Proposition 13 in the same section

 $|PH| = \frac{|P||H|}{|P \cap H|}.$

All the numbers in the above quotient are powers of p, so PH is a p-group. Moreover. P is a subgroup of PH so the order of PH is divisible by p^{α} , the largest power of p which divides |G|. These two facts force $|PH| = p^{\alpha} = |P|$. This in turn implies P = PH and $H \le P$. This establishes the lemma.

Proof of Sylow's Theorem (1) Proceed by induction on |G|. If |G| = 1, there is nothing Proof of Sylow's Theorem (1) Proceed by induction on G, to prove. Assume inductively the existence of Sylow p-subgroups for all groups of Gorder less than |G|.

If p divides |Z(G)|, then by Cauchy's Theorem for abelian groups (Proposition 21, Section 3.4) Z(G) has a subgroup, N, of order p. Let $\overline{G} = G/N$, so that $|\overline{G}| = p^{\alpha-1}m$. No $\Gamma \leq C$ By induction, \overline{G} has a subgroup \overline{P} of order $p^{\alpha-1}$. If we let P be the subgroup of Gcontaining N such that $P/N = \overline{P}$ then $|P| = |P/N| \cdot |N| = p^{\alpha}$ and P is a Sylow p-subgroup of G. We are reduced to the case when p does not divide |Z(G)|.

Let g_1, g_2, \ldots, g_r be representatives of the distinct non-central conjugacy classes of G. The class equation for G is

$$|G| = |Z(G)| + \sum_{i=1}^{r} |G| : C_G(g_i)|.$$

If $p \mid |G| : C_G(g_i)$ for all i, then since $p \mid |G|$, we would also have $p \mid |Z(G)|$, a contradiction. Thus for some i, p does not divide |G|: $C_G(g_i)$. For this i let $H = C_G(g_i)$ so that

$$|H| = p^{\alpha}k$$
, where $p \nmid k$.

Since $g_i \notin Z(G)$, |H| < |G|. By induction, H has a Sylow p-subgroup, P, which of course is also a subgroup of G. Since $|P| = p^{\alpha}$, P is a Sylow p-subgroup of G. This completes the induction and establishes (1).

Before proving (2) and (3) we make some calculations. By (1) there exists a Sylow p-subgroup, P, of G. Let

$${P_1, P_2, \ldots, P_r} = \mathcal{S}$$

be the set of all conjugates of P (i.e., $S = \{gPg^{-1} \mid g \in G\}$) and let Q be any psubgroup of G. By definition of S, G, hence also Q, acts by conjugation on S. Write S as a disjoint union of orbits under this action by Q:

$$\mathcal{S} = \mathcal{O}_1 \cup \mathcal{O}_2 \cup \cdots \cup \mathcal{O}_s$$

where $r = |\mathcal{O}_1| + \cdots + |\mathcal{O}_s|$. Keep in mind that r does not depend on Q but the number of Q-orbits s does (note that by definition, G has only one orbit on S but a subgroup Q of first s elements of S are representatives of the Q-orbits: $P_i \in \mathcal{O}_i$, $1 \le i \le s$. It follows from Proposition 2 that $|\mathcal{O}_i| = |Q| : N_Q(P_i)$. By definition, $N_Q(P_i) = N_G(P_i) \cap Q$ and by Lemma 19, $N_G(P_i) \cap Q = P_i \cap Q$. Combining these two facts gives

$$|\mathcal{O}_i| = |Q: P_i \cap Q|, \qquad 1 \le i \le s. \tag{4.1}$$

We are now in a position to prove that $r \equiv 1 \pmod{p}$. Since Q was arbitrary we may take $Q = P_1$ above, so that (1) gives

$$|\mathcal{O}_1| = 1$$
.

Now, for all i > 1, $P_1 \neq P_i$, so $P_1 \cap P_i < P_1$. By (1)

$$|\mathcal{O}_i| = |P_1 : P_1 \cap P_i| > 1, \qquad 2 \le i \le s.$$

Since P_1 is a p-group, $|P_1|: P_1 \cap P_i|$ must be a power of p, so that

$$p \mid |\mathcal{O}_i|, \quad 2 \leq i \leq s.$$

Thus

$$r = |\mathcal{O}_1| + (|\mathcal{O}_2| + \ldots + |\mathcal{O}_s|) \equiv 1 \pmod{p}.$$

We now prove parts (2) and (3). Let Q be any p-subgroup of G. Suppose Q is not contained in P_i for any $i \in \{1, 2, ..., r\}$ (i.e., $Q \not\leq gPg^{-1}$ for any $g \in G$). In this situation, $Q \cap P_i < Q$ for all i, so by (1)

$$|\mathcal{O}_i| = |Q: Q \cap P_i| > 1, \qquad 1 \le i \le s.$$

Thus $p \mid |\mathcal{O}_i|$ for all i, so p divides $|\mathcal{O}_1| + \ldots + |\mathcal{O}_s| = r$. This contradicts the fact that $r \equiv 1 \pmod{p}$ (remember, r does not depend on the choice of Q). This contradiction proves $Q \leq g P g^{-1}$ for some $g \in G$.

To see that all Sylow p-subgroups of G are conjugate, let Q be any Sylow p-subgroup of G. By the preceding argument, $Q \leq gPg^{-1}$ for some $g \in G$. Since $|gPg^{-1}| = |Q| = p^{\alpha}$, we must have $gPg^{-1} = Q$. This establishes part (2) of the theorem. In particular, $S = Syl_p(G)$ since every Sylow p-subgroup of G is conjugate to P, and so $n_p = r \equiv 1 \pmod{p}$, which is the first part of (3).

Finally, since all Sylow p-subgroups are conjugate, Proposition 6 shows that

$$n_p = |G: N_G(P)|$$
 for any $P \in Syl_p(G)$,

completing the proof of Sylow's Theorem.

Note that the conjugacy part of Sylow's Theorem together with Corollary 14 shows that any two Sylow p-subgroups of a group (for the same prime p) are isomorphic.