The next exercise introduces a subgroup, J(P), whi i i
‘ : ) » Which (like the cent P
arbitrary finite group P (although in most applicati : 1o whoso oxder 1 poven o

a prime). This subgroup was defined by J. Tho

. : mpson in 1964 and it | i
in the study of finite groups, in particular, ; e simole st 0

in the classification of finite simple groups.

20. For any finitc group P let d(P) be the minimum number of generators of P (so, for

example,d(P) = 1ifand only if P is a nontrivial cyclic group and d(Q3g) = 2). Let m(P)

be the maximum of the integers d(A) as A runs over all abelian subgroups of P (so, for
example, m(Qg) = 1 and m(Dg) = 2). Define

J(P) = (A | Ais an abelian subgroup of P with d(A) = m(P)).
(J (P) is called the Thompson subgroup of P.)
(a) Prove that J(P) is a characteristic subgroup of P.

(b) For cach of the following groups P list all abelian subgroups A of P that satisfy
d(A) =m(P):  Qg, Dg, Dig and QD,g (where QD is the quasidihedral group

of order 16 defined in Exercise 11 of Section 2.5). [Use the lattices of subgroups for

these groups in Section 2.5.)

(c) Show that J(Qg) = Qg, J(Dg) = Ds, J(D1¢) = D16 and J(QDje) is a dihedral
subgroup of order 8 in Q Dyg.

(d) Prove thatif Q0 < P and J(P)is asubgroup of Q, then J(P) = J(Q). Deduce that if
P is a subgroup (not necessarily normal) of the finite group G and J (P) is contained
in some subgroup Q of P such that Q < G, then J(P)<4G.
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In this section we prove a partial converse to Lagrange’s Theorem and derive numerous o
consequences, some of which will lead to classification theorems in the next chapter. Hola

(M- 4
Definition. Let G be a group and let p be a prime. ' F
(1) A group of order p* for some a > Q1is called a p-group. Subgroups of G which Sﬁ sol
are p-groups are called p-subgroups. P S

(2) If G is a group of order p*m, where p t m, then a subgroup of order p* is called
a Sylow p-subgroup of G. :
(3) The setof Sylow p-subgroups of G will be denoted by Syl,(G) and the number §7¢’ , I )
of Sylow p-subgroups of G will be denoted by n,(G) (or just n, when G is
clear from the context). ] 7[“/‘4; ;
Theorem 18. (Sylow’s Theorem) Let G be a group of order p*m, where p is a prime
not dividing m. ‘
1) Syl%)w p-subgroups of G exist, i.e., Syl,(G) # 2. i Yl‘n(G)fO)
(2) If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then there
exists g € G such that Q < gPg~!,ie., Q is contained in some conjugate of
P. In particular, any two Sylow p-subgroups of G are conjugate in G. TR
(3) The number of Sylow p-subgroups of G is of the form 1 + kp, i.e., \5 ! P

n, = 1(mod p).

Further, n, is the index in G of the normalizer Ng (P) for any Sylow p-subgroup
P, hence n, divides m.
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We first prove the following lemma:

‘iéinma 19. Let P € Syl,(G). f @ is any p-subgrou
ce P < Ng(P)itis clear thaf P N Q.S H, so
we must prove the reverse inclusion. Since by definition H =< Q, this is equivalent to

showing H < P. We dothis by demonstrating that P H is 5?*”"%”“" of G containing
both P and H: but P is a p-subgroup of G of largest possible order, so we must have

PH = P,ie,H <P. , .
Since ;-le< Ng(P), by Corollary 15 in Section 3.2, PH is a subgroup. By Propo-

sition 13 in the same section Pl = |P||H|
\PH= 1o al

All the numbers in the above quotient are powers of p, $0 PH 1(51 a p-group. Moreover,
P is a subgroup of PH so the order of PH is divisible by p%, the.Ia‘rgest p(')wer.of
p which divides |G|. These two facts force |[PH| = p® = |P|. This in turn implies
P = PH and H < P. This establishes the lemma.

Proof of Sylow’s Theorem (1) Proceed by induction on |G|. If |G| = 1, there is nothing

pof G,then QNNG(P) = onp,

Proof: Let H = Ng(P)N Q. Sin

order less than |G|.
If p divides | Z(G)|, then by Cauchy’s Theorem for abelian groups (Pro peﬁﬁeﬁ,l,’
Section 3.4) Z(G) has a subgroup, N, of order p. Let G = G/N, sothaf |G| = p*=ln,
Nc ¢ G By induction, G has a subgroup P of order p*~'. If we let P be the subgroup of G
., .~ containing N such that P/N = P then |P| = |P/N|-|N| = p® and P is a Sylow
' p-subgroup of G. We are reduced to the case when p does not divide | Z(G)|.
Let g1, 82, ..., & be representatives of the distinct non-central conjugacy classes
of G. The class equation for G is

Gl =1Z(G)|+ ) _IG : Cg(gi)l-
i=1
If p | |G : Cg(gi)l for all i, then since p | |G|, we would also have p | 1Z(G)|,

a contradiction. Thus for some i, p does not divide |G : Cs(g)l. For this i let
H = Cg(g;) so that

|H| = p*k, where p k.

Since g; ¢ Z(G), |H| < |G|. By induction, H has a Sylow p-subgroup, P, which of

course is also a subgroup of G. Since |P| = p%, P isa Sylow p-sub i
completes the induction and establishes (1), Ve e REmet G T

Before proving (2) and (3) we make some calcul

ations. :
p-subgroup, P, of G. Let ions. By (1) there exists a Sylow
{Ply PZ,-.., Pr)zs

be the set of all conjugates of P (ie., § = (gPg~! | g & G}) and let Q be any p-

subgroup of G. By definition of S, G, hence also st :
S as a disjoint union of orbits under this action by %’. acts by conjugation on S. Write

S=O]UO2U...UOS
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to prove. Assume inductively the existence of Sylow p-subgroups for all groups of {,_ I. 'f}‘

by A

i

i



s does (note that by definit; atr does not depend on Q but the number

of Q-orbits nition, G .
; » G has only one orbiton S buta subgroup Q of
G may have more than one orbit). Renumber the elements of S if necessary so that the

tfirrst s ;lemel'n.s of S are representatives of the Q-orbits: P € O;,1 < i <. It follows
Oc;nb rﬁsosmoy ﬁat 10 = 1Q : Ng(P)). By definition, No(P;) = Ng(P) N Q
and by Lemma 19, Ng(P)N Q = p, 0 Q. Combining these two facts gives
01 =10: PNy, l1<i<s. (4.1)
We are now in a position to

prove that r = 1(mod p). Since Q was arbitrary we
may take Q = P above, so that (1) gives

1Oy =1.
Now, foralli > 1, P, # P,so P NP < Pi. By (1)

|o,'|=|P1:P1r\P,'|>1, 251'5.9.

Since P, is a p-group, | P, : Py N P;| must be a power of p, so that

pllOi, 2<i<s.
Thus
r=|01+ (0| +...+10)) = 1(mod p).

We now prove parts (2) and (3). Let Q be any p-subgroup of G. Suppose Q is
not contained in P; forany i € {1,2,...,r} (ie., Q £ gPg~! for any g € G). In this
situation, Q N P; < Q for all i, so by (1) ‘

Oil=|Q : QNP >1, 1<i<s.

; 1i, so p divides |O1]+...+|O;| = r. This contradicts the fact that
Frr:sllznllgdo;l;(():earilembeﬁ r does nlot depend on the choice of Q). This contradiction
< ~! for some g € G.

PTOV;Z gec_ tﬁ::gall Sylow p—fubgroups of G are conjugaltf, let O be any Sylov&.' p-

subgroup of G. By the preceding argumen_t,1 0 < ng. for spr}rlle g € 62 Sflr:;e

lgPg™!| = |Q| = p*, we must have’ng = Q. This establis e;gal.‘(( )9 te:

theorem. In particular, S = Syl,(G) since every Sylow p-subgroup of G is conjugate
to P, and so n, = r = 1(mod p), which is the first part of 3). 6 shows that
Finally, since all Sylow p-subgroups are conjugate, Proposition 6 shows tha

n,=|G: Ng(P)| forany P € Syl,(G),

completing the proof of Sylow’s Theorem.

f her with Corollary 14 shows
jugacy part of Sylow’s Theorem togethe . .
that I:r(t);eni)h; ;;1}2;0;{1815283;01)”” of a group (for the same prime p) are isomorphic.
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