Integration on Manifolds

MANIFOLDS

If U and V are open sets in R", a differentiable function
h: U— V with a differentiable inverse 2~': V — U will be
called a diffeomorphism. (‘‘Differentiable’” henceforth
means “C"".)

A subset M of R" is called a k-dimensional manifold (in
R") if for every point x € M the following condition is
satisfied:

(M) There is an open set U containing z, an open set V C R”,
and a diffeomorphism h: U — V such that

KU N M) = VN (RE X {0))
={yEV:iygtt =" =y" =0}

In other words, U M M is, “up to diffeomorphism,” simply
R* X {0} (see Figure 5-1). The two extreme cases of our
definition should be noted: a point in R” is a 0-dimensional
manifold, and an open subset of R" is an n-dimensional
manifold.
One common example of an n-dimensional manifold is the
109
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FIGURE 5-1. A one-dimensional manifold in R? and a two-dimen-
sional manifold in R
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n-sphere 8", defined as {z € R"': [z| = 1}. We leave it
as an exercise for the reader to prove that condition (1) is
satisfied. If you are unwilling to trouble yourself with the
details, you may instead use the following theorem, which
provides many examples of manifolds (note that " = g~(0),
where g: R"*! — R is defined by g(z) = {1?2 - 1).

5-1 Theorem. Let A C R" be open and let g: A — R?
be a differentiable function such that g'(x) has rank p whenever
g(z) = 0. Then g—*(0) 73 an (n — p)-dimensional manifold in
R™

Proof. This follows immediately from Theorem 2-13. ||

There is an alternative characterization of manifolds which
is very important.

5-2 Theorem. A subset M of R™ is a k-dimensional mani-
fold if and only if for each point x & M the following ‘‘coordinale
condition’ is satisfied:

(C) There is an open set U containing x, an open set W C RF,
and a 1-1 differentzable function f: W — R such that

) f(W) = MN T,

(2) f'(y) has rank k for each y & W,

(3) 7L f(W) — W s continuous.
[Such a funetion f is called a coordinate system around z
(see Figure 5-2).]

Proof. If M iz a k-dimensional manifold in R" choose
h: U — V satisfying (M). Let W = {a € R*: (a,0) € h(I))}
and define f: W— R” by f(a) = h~(a,0). Clearly f(17") =
M N U and f~! is continuous. If H: U—- R* is H(z) =
(R(z), . . . , k*¥(2)), then H(f(y)) = y for all y & W; there-
fore H'(f(y)) - f'(y) = I and f’(y) must have rank k.

Suppose, conversely, that f: W — R" satisfies condition (C).
Let z = f(y). Assume that the matrix (D;f'(y)),1 <1%4,7 <k
has a non-zero determinant. Define g: W X R** — R" by
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FIGURE 5-2

g(a,b) = f(a) + (0,b). Then det g’(a,b) = det (D;f¥(a)), so
det g'(y,0) # 0. By Theorem 2-11 there is an open set V,’
containing (y,0) and an open set V' containing ¢(y,0) = z such
that g: V,"— V,' has a differentiable inverse h: V' — V.
Since f~! is continuous, {f(a): (a,0) € Vy'} = U N f(W) for
gsome open set U. Let Vo=V, NU and V; = g (V).
Then VM M is exactly {f(a): (a,0) € V1} = {g(a,0): (a,0)
E Vl;r 80

(Ve M) = g7 (VaN\ M) = g7 ({g(a,0): (a,0) € V,})
= VN (R* X {0}). ]

One consequence of the proof of Theorem 5-2 should be
noted. If fy: Wy— R" and fy: W, — R" are two coordinate
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systems, then
e fu [T (fo(Wy) — R¥

is differentiable with non-singular Jacobian. If fact, f5'(y)
consists of the first & components of A(y).

The half-space H* C RF is defined as {z € R*: zF > 0}.
A subset M of R" is a k-dimensional manifold-with-
boundary (Figure 5-3) if for every point £ & M either condi-
tion (M) or the following condition is satisfied:

(M') There is an open set U containing z, an open set
V C R”, and a diffeomorphism A: U — V such that

MU N M) = VN HF X {0})
={yeEV:y 2 0andy**' = - - - =y =0}
and h(z) has kth component = 0.

It is important to note that conditions (M) and (M')
cannot both hold for the same z. In fact, if hy: Uy — V; and
hs: Us— V, satisfied (M) and (M), respectively, then
hs o by~ ! would be a differentiable map that takes an open set
in R* containing h(z), into a subset of H* which is not open in
R*. Since det (haohy™') # 0, this contradicts Problem
2-36. The set of all points z € M for which condition M’ is
satisfied is called the boundary of M and denoted M. This

[
oy

FIGURE 5-3. A one-dimensional and a two-dimensional manifold-
with-boundary in R®,
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must not be confused with the boundary of a set, as defined in
Chapter 1 (see Problems 5-3 and 5-8).

Problems. 5-1. If M is a k-dimensional manifold-with-boundary,

5-2.

5'30

5-4.

5-5.

prove that aM is a (k — 1)-dimensional manifold and M — M is
a k-dimensional manifold.
Find a counterexample to Theorem 5-2 if condition (3) is omitted.
Hint: Wrap an open interval into a figure six.
(a) Let A C R™be an open set such that boundary 4 isan (n — 1)-
dimensional manifold. Show that N = 4 \U boundary A is an
n-dimensional manifold-with-boundary. (It is well to bear in mind
the following example: if 4 = [z € R*: |z| <1 or 1 < |z| < 2}
then N = A U boundary A is a manifold-with-boundary, but
aN # boundary A.)

(b) Prove a similar assertion for an open subset of an n-dimen-
sional manifold,
Prove a partial converse of Theorem 5-1: If M C R" is a k-dimen-
sional manifold and z € M, then there is an open set A C R" con-
taining z and a differentiable function g: A — R"* such that A N\ M
= ¢~1(0) and g¢'(y) has rank n — k when g(y) = 0.
Prove that a k-dimensional (vector) subspace of R” is a k-dimen-
sional manifold.

FIGURE 5-4
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5-6. If f: R"— R™, the graph of fis [(z,4): ¥ = f(z)}. Show that
the graph of f is an n-dimensional manifold if and only if f is
differentiable.

5-7. Let K" = [z ER™ 2! =0andz? ... 2" 1 >0|. f M CK"
18 a k-dimensional manifold and N is obtained by revolving M
around the axis z' = . . . = z"~! = 0, show that N is a (k + 1)-
dimensional manifold. Example: the torus (Figure 5-4).

5-8. (a) If M is a k-dimensional manifold in R” and k¥ < n, show that

M has measure 0.
(b) If M is a closed n-dimensional manifold-with-boundary in
R", show that the boundary of M is aM. Give a counteraxample if

M is not closed.
(e) If M is a compact n-dimensional manifold-with-boundary

in R", show that M is Jordan-measurable.

FIELDS AND FORMS ON MANIFOLDS

Let M be a k-dimensional manifold in R” and let f: W — R”
be a coordinate system around z = f(a). Since f'(a) has rank
k, the linear transformation fx: R*; — R", is 1-1, and f«(R*,)
is a k-dimensional subspace of R";. If g: V — R” is another
coordinate system, with z = g(b), then

gx(R¥) = fe(f™" 0 g)u(R%) = fu(R%,).

Thus the k-dimensional subspace f«(R*;) does not depend on
the coordinate system f. This subspace is denoted M, and
is called the tangent space of M at z (see Figure 5-5). In
later sections we will use the fact that there is a natural inner
product T, on M, induced by that on R".: if v,w &€ M, define
T.(v,w) = (v,w),.

Suppose that A is an open set containing M, and F is a differ-
entiable vector field on A such that F(z) € M. for each
r&e M. If f-W— R"™ is a coordinate system, there is a
unique (differentiable) vector field G on W such that f«(G(a)) =
F(f(a)) for each a € W. We can also consider a function F
which merely assigns a vector F(z) € M, for each z € M;
such a function is called a’ vector field on M. There is still
a unique vector field G on W such that f+(G(a)) = F(f(a)) for
a & W; we define F to be differentiable if @ is differentiable.
Note that our definition does not depend on the coordinate
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FIGURE 5-5

gystem chosen: if g: V — R”™ and g.(H (b)) = F(g(b)) for all
b € V, then the component functions of H(b) must equal the
component functions of G(f'(g(b))), so H is differentiable
if G is.

Precisely the same considerations hold for forms. A func-
tion w which assigns w(z) € AP(M,) for each z & M is called
a p-form on M. If f: W — R"is a coordinate system, then
f*w is & p-form on W; we define w to be differentiable if f*w is.
A p-form w on M can be written as

w = z Wi, ... cdz™ A - o A da

Here the functions wy,, . .., ;, are defined only on M. The
definition of dw given previously would make no sense here,
since D;(wi,....;,) has no meaning. Nevertheless, there is a
reasonable way of defining dw.
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5-3 Theorem. There is a unique (p + 1)-form dw on M
such that for every coordinate system f: W — R™ we have

MHdw) = d(f*w).

Proof. If f: W — R" is a coordinate system with z = f(a)
and vy, . . . Wp41 © M;, there are unique wy, . . . ,wpq1in
R*, such that fy(w:) = v; Define dw(z)(v1, . . . Wpi1) =
d(f*w)(a)(wy, . . . ,wp41). One can check that this definition
of dw(z) does not depend on the coordinate system f, so that
dw is well-defined. Moreover, it is clear that dw has to be
defined this way, so dw is unique. ||

It is often necessary to choose an orientation u, for each
tangent space M, of a manifold M. Such choices are called
consistent (Figure 5-6) provided that for every coordinate

(a)

(b)

FIGURE 5-6. (a) Consistent and (b) inconsistent choices of orien-
tations.
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system f: W — R" and a,b & W the relation

[fe((e)a)s - - - fx((er)a)] = nycay
holds if and only if

(fe((en)s), . - - Jfa((er)s)] = prpy.

Suppose orientations yu, have been chosen consistently. If
f: W— R" is a coordinate system such that

[f*((el)a), vy Je((er)a)] = Ki(a)

for one, and hence for every a € W, then f is called orien-
tation-preserving. If f is nof orientation-preserving and
T: R* — R is a linear transformation with det 7 = —1, then
fo T is orientation-preserving. Therefore there is an orienta-
tion-preserving coordinate system around each point. If fand
g are orientation-preserving and z = f(a) = ¢(b), then the
relation

[f«((e1)a), . . . Sa((er)a)] = uz = [gx((er)s), - - . ,gx((er)s))

FIGURE 5-7. The Maibius strip, a non-orientable manifold. A
basis begins at P, moves to the right and around, and comes back to P with
the wrong arientation.



Integration on Manifolds 119
implies that

[(g7 o eller)a)y - - . (g™ e Nxller)a)] = [(e)s, - . - ,(ex)s],

so that det (7" o f)’ > 0, an important fact to remember.

A manifold for which orientations u, can be chosen con-
sistently is called orientable, and a particular choice of the
pz 18 called an orientation u of M. A manifold together with
an orientation g is called an oriented manifold. The classical
example of a non-orientable manifold is the Maébius strip.
A model can be made by gluing together the ends of a strip of
paper which has been given a half twist (Figure 5-7).

Our definitions of vector fields, forms, and orientations can
be made for manifolds-with-boundary also. If M isa /-dimen-
sional manifold-with-boundary and z € aM, then (aM), is
a (k — 1)-dimensional subspace of the k-dimensional vector
space M,. Thus there are exactly two unit vectors in M,
which are perpendicular to (ad).; they can be distinguished
as follows (Figure 5-8). If f: W — R" is a coordinate system
with W C H* and f(0) = z, then only one of these unit vectors
i8 fi (vy) for some vy with v* < 0. This unit vector is called the
outward unit normal #n(z); it is not hard to check that this
definition does not depend on the coordinate system f.

Suppose that g is an orientation of a k~dimensional manifold-
with-boundary M. Ifz € oM, choosery, . . . W € (OM),
so that [n(z), vy, . . . we_1] = pe. If it is also true that
[n(x), wy, ... wr_1) = u;, then both [vy, . . . ,wp_y] and
[wy, . . . awp_1] are the same orientation for (8M),. This
orientation is denoted (du),. It is easy to see that the orienta-
tions (du),, for x € M, are consistent on M. Thusif M is
orientable, M is also orientable, and an orientation u for M
determines an orientation du for 9M, called the induced
orientation. If we apply these definitions to H* with the
usual orientation, we find that the induced orientation on
R¥! = {z € H*: ¥ = 0} is (—1)* times the usual orienta-
tion. The reason for such a choice will become clear in the
next section.

If M is an oriented (n — 1)-dimensional manifold in R", a
substitute for outward unit normal vectors can be defined,
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Fell) = niy)
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FIGURE 5-8. Some outward unit normal vectors of manifolds-with-
boundary in R®,

even though M is not necessarily the boundary of an n-dimen-
sional manifold. If [21, . . . ,wa—1] = ug, we choose n(z) in
R”™, so that n(z) is a unit vector perpendicular to M, and
[n(z), vy, . . . ,wa—1] is the usual orientation of R",. We still
call n(z) the outward unit normal to M (determined by ).
The vectors n(zx) vary continuously on M, in an obvious sense.
Conversely, if a continuous family of unit normal vectors n(x)
is defined on all of 3, then we can determine an orientation of
M. This shows that such a continuous choice of normal
vectors is impossible on the Mébius strip.  In the paper model
of the Mobius strip the two sides of the paper (which has
thickness) may be thought of as the end points of the unit
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normal vectors in both directions. The impossibility of
choosing normal vectors continuously is reflected by the
famous property of the paper model. The paper model is
one-sided (if you start to paint it on one side you end up
painting it all over); in other words, choosing n(z) arbitrarily
at one point, and then by the continuity requirement at other
points, eventually forces the opposite choice for n(z) at the
initial point.

Problems. 5-9. Show that M. consists of the tangent vectors at (
of curves ¢ in M with ¢(t) = z.

5-10. Suppose € is a collection of coordinate systems for M such that
(1) For each x & M there is f € € which is a coordinate system
around z; (2) if f,g € €, then det (/™" o g)’ > 0. Show that there
is a unique orientation of M such that f is orientation-preserving
if fE e.

5-11. If M is an n-dimensional manifold-with-boundary in R", define
ur a8 the usual orientation of M, = R"; (the orientation u so
defined is the usual orientation of M). If z € M, show that
the two definitions of n(z) given above agree.

5-12. (a) If F is a differentiable vector field on M C R", show that
there is an open set A DM and a differentiable veector field F
on A with F(z) = F(z) for z € M. Hint: Do this locally and
use partitions of unity.

(b) If M is closed, show that we can choose 4 = R™.

5-13. Let g: 4 — R? be as in Theorem 5-1.

(a) Ifz € M = g~'(0), let h: U — R be the essentially unique
diffeomorphism such that goh(y) = (y*~?*), ... ,y") and
h(0) = z. Define f: R*? - R" by f(a) = h(0,a). Show that fs
is 1-1 so that the n — p vectors fy((€1)0), . . . ,fa((en—p)o) are
linearly independent.

(b) Show that orientations u. can be defined consistently, so
that M is orientable.

(e) If p = 1, show that the components of the outward normal
at z are some multiple of Dyg(z), . . . ,Dug(z).

5-14. If M C R™ is an orientable (n — 1)-dimensional manifold, show
that there is an open set A C R™ and a differentiable g: 4 — R'so
that M = g~%0) and g’(z) has rank 1 for z € M. Hint: Prob-
lem 5-4 does this locally. Use the orientation to choose consistent
local solutions and use partitions of unity.

5-15. Let M be an (rn — 1)-dimensional manifold in R®, Let M(e) be
the set of end points of normal vectors (in both directions) of
length & and suppose & is small enough so that M(g) is also an



