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Introduction

Geometry is a good way of dealing with infinite sets. Thus, to study infinite groups, we want to
impose some kind of geometric structure on the underlying sets. There are many ways to do this:
topological groups, algebraic groups, group schemes, etc. The nicest kind of geometric object, is
that of a manifold. Their properties most closely resemble our everyday intuition about curves and
surfaces.

A Lié' group is a group which is also a manifold. Tangent spaces may be viewed as linear
approximations of manifolds. The tangent space of a Lie group (at the identity element) can be
given extra structure (coming from the group operation) making it into a Lie algebra. In other
words, Lie algebras are linear approrimations of Lie groups.

Therefore, to properly understand the origin of Lie algebras we must first understand something
about Lie groups, and therefore we begin by studying manifolds.

1 Lecture 1

1.1 Manifolds

Reference: Spivak, Calculus on Manifolds, Ch. 5.

Throughout, we say that a function f : R” — R is differentiable (of class C*) if all of the
partial derivatives of f exist to any order. A function F': R" — R™, F(z) = (Fi(z),..., Fn(z)) is
differentiable if all the component functions F; are. Another word for differentiable is smooth.

Definition 1.1. Let U,V < R™ be open sets. Then a map f: U — V is a diffeomorphism if f is
differentiable and invertible, and f~! is differentiable.

Definition 1.2 (Manifold in R™). A subset M of R" is a k-dimensional manifold if Yo € M the
following condition holds: 3 open sets U, V, < R" and a diffeomorphism h,: U, — V, such that
x € U, and (see Figure 1)

ho(Us 0 M) = Ve (RS x {0)) = {y € Vi | g = - = yu = O}.

Remark 1.3. 1. As we have defined it, the manifold (given as a certain subset of R™) does not
depend on the choices of (U, V,, h,) at each x. Such triples just have to exist.

2. The restriction of h, to U, n M followed by projection 7y to the first £ components provides
each point in this portion of the manifold with coordinates: ¢ = mpohy(a) = (a1, az,...,a)
for some ay € R. We call the pair (U, n M, ¢,) a coordinate chart.

3. An abstract manifold is defined differently, (as a second countable topological space with a
smooth atlas). However, the Whitney Embedding Theorem says that any abstract manifold
of dimension m can be embedded into R?”. Thus the “concrete” definition given here is
equivalent to the abstract one.

Example 1.4. Any open subset of R” is an n-dimensional manifold.

Example 1.5. Any singleton {z} is a zero-dimensional manifold.

HeLje” (pronounced LEFE) refers to the Norwegian mathematician Sophus Lie, who himself called them continuous
groups.



Figure 1: Manifold visualization

Example 1.6. Any linear subspace V of R" is a k-dimensional manifold, where k = dimg V.

Exercise 1.7. Prove that if M is a k-dimensional manifold in R™ and N is an [-dimensional
manifold in R™ then M x N is naturally a (k + [)-dimensional manifold in R™*",

How do we prove that something more interesting is a manifold?

Theorem 1.8 (Implicit Function Theorem). Let n = p = 0 be integers. Let A < R™ be an open

subset and g: A — RP be a differentiable function such that ¢'(x) = (Sgl
L

> has rank p whenever
tj

g(z) = 0. Then g~*({0}) is an (n — p)-dimensional manifold.

For a vector z = (z1,2,...,7,) € R" we write |z| = \/27 + 23+ --- + 22 for the standard
Euclidean norm.

Example 1.9. The n-sphere S" = {z € R"™! | |z|> = 1} is a manifold. To prove it, let g: R*"*! — R
defined by g(z) = |z[*> — 1. Then ¢'(z) = Vg(z) = [2z1 2z2 -+ 2zp41]. If ¢'(z) = 0 (the zero
vector) then z; = 0 for all 4, hence g(x) = —1. So whenever g(z) = 0 we have ¢'(z) # 0 (thus,
viewed as a 1 x (n + 1)-matrix, has rank 1). By Theorem 1.8, g=1({0}) = S™ is an n-dimensional
manifold.

Exercise 1.10. The special linear group, denoted SLs(R), is the set of all real 2 x 2 matrices of
determinant one. Show that SLs(R) is a 3-dimensional manifold. (The set of all real 2 x 2-matrices
can be identified with R*.) Can you generalize this to SL3(R)? SL,(R)?

Definition 1.11. A morphism of manifolds (or differentiable map, or smooth map)
f: M — N,

where M and N are manifolds of dimension k and ¢ respectively, is a function such that Vo € M,
the function (see Figure 2)

fo=hpwy o fohy': Vo (R x {0}) — Vi n (R x {0})

is differentiable. If furthermore f is invertible and its inverse is a morphism of manifolds, then f
is an isomorphism of manifolds (or diffeomorphism). When such an f exists, M and N are called
diffeomorphic.
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Figure 2: Morphism visualization
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Definition 1.12. A Lie group G is a group which is also a manifold such that the maps,
G x G — G by (g,h) — gh

and

G—>Gbyg—g!

are differentiable maps (i.e morphisms of manifolds). A map ¢: G — H is a morphism of Lie
groups if it is a morphism of manifolds and a group homomorphism.

Example 1.13. (R", +) is a Lie group.

Example 1.14. S' = U(1) = {z € C | |z| = 1} is a 1-dimensional (real) Lie group with respect to
multiplication.

Example 1.15. GL(n,R) = {A € M,(R) | det(A) # 0} is an open subset of M, (R) = R", soit is a
manifold. Matrix multiplication (respectively, matrix inverse) is given by polynomials (respectively,
rational functions) of the entries and are therefore smooth maps. Thus GL(n,R) is a Lie group.

Why is it open? det: R" — R is continuous which implies that det™ (R\{0}) is open in R"".

Example 1.16. SU(2) = {A e M3(C) | AA* = A*A = I, and det(A) = 1} is a 3-dimensional Lie
group diffeomorphic to S? (see Example 2.5(5) in Kirillov, Jr.).

Remark 1.17. For the definition of complex Lie Groups, replace ”differentiable” with ”complex
analytic”. Unless otherwise emphasized, any theorem about Lie groups holds in both the real and
complex cases.



2 Lecture 2

2.1 Connectedness

Let M be a manifold. Define a binary relation ~ on M by Vz,y € M:

x ~ y < 3 continuous map v: [0,1] — M with v(0) = z,v(1) =y

r~y

Figure 3: An example and nonexample

If z ~ y we say that x is connected to y.
Exercise 2.1. Prove ~ is an equivalence relation.

The equivalence classes
[z] ={ye M |y~ z}
are connected components. The set of equivalence classes of M/ ~ is denoted by mo(M). If x ~ y
for all z,y € M we say that M is connected.

Example 2.2. The n-sphere S™ is a connected manifold for any n > 1.

Proof. Let z,y € S™, © # y. We will show & ~ y. By transitivity of connectedness, it suffices to do
this in the case x + y # 0, that is, for non-antipodal pairs of points. For such x,y the straight line
in R"*! through 2 and y does not pass through the origin. Define ~: [0,1] — S™ by

1—-t)z+1ty
(t) = ooty
0w+ iy
The numerator defines a line segment in R"*!. Dividing by the norm forces |y(t)| = 1 so that
v(t) € S™ for all ¢ (see Figure 4). Then ~ is a continuous function such that v(0) = z and (1) = y.
Thus = ~ . O

The following simple fact can be used to show that a manifold is disconnected.

Lemma 2.3. Suppose f : M — N is a surjective continuous map between manifolds. If M is
connected, then N is connected. (Equivalently, if N is disconnected, then M must be disconnected.)

Proof. fo is a continuous map from [0, 1] to NV connecting f(x) and f(y) whenever ~: [0,1] — M
is a continuous map connecting x,y € M. O



Figure 4: Visualization of v used to prove S™ is connected

Tn+1 S -1

Figure 5: The n-dimensional hyperboloid H"

Exercise 2.4. The n-dimensional hyperboloid H" = {z € R"™! | 2} + -+ + 22 = 22 | — 1}
is an n-dimensional manifold by the implicit function theorem applied to the function g(x) =
xi+---+a22—22 , —1. Prove that H" has two connected components. (See Figure 5.) Hint: The
projection map R"*! — R onto the last coordinate is a continuous map. Likewise, the projection
map R — R™ onto the first n coordinates is continuous.

Definition 2.5. A subset N of a manifold M < R" is an open submanifold if there is an open
subset U of R™ such that N = U n M.

Proposition 2.6. Let M < R" be a manifold and x € M. Then the connected component [z] is
an open submanifold.

Proof. For any y € [z] pick an open set U, < R™ as in the definition of a manifold. Then any
z € M n Uy is connected to y, hence to x (see Figure 6). So M n Uy, < [z]. Let U = Uyey) Uy-
Then U is open in R” and U n M = [z]. O

Yy

h(z) hiy)

Figure 6: Visual justification that for any z € M n Uy, z ~ y

10



2.2 Connected Lie Groups

Definition 2.7. A Lie group G is connected if it is connected as a manifold.

Notation 2.8. If G is a Lie group then G° denotes the connected component of G that contains
the identity element. G° = [es].

Remark 2.9. By Proposition 2.6 above, G° is an open submanifold of G.

Example 2.10. Any finite group G can be viewed as a 0-dimensional Lie group by placing its

elements on the real line:
e

[ ] [ ] [ ] [ ] [ ]
In this case the connected component G° = {e} only contains the identity element.

Example 2.11. The orthogonal group O(n,R) is the group of orthogonal matrices:
O(n,R) = {Ae M,(R) | ATA=1=AAT}.

One can show, using the implicit function theorem, that O(n,R) is a manifold of dimension
n(n—1)/2. Since matrix multiplication and inverse are smooth, O(n,R) is a Lie group. This group
has two connected components consisting of orientation-preserving and orientation-reversing trans-
formations respectively. In more detail, the determinant map det : O(n,R) — {£1} sends an orthog-
onal matrix A to det(A) which is £1 since 1 = det(I) = det(AAT) = det(A) det(AT) = det(A)>2.
Since det is surjective and continuous and {£1} is disconnected, O(n, R) must have at least two con-
nected components by Lemma 2.3. Moreover O(n,R)? c {4 € O(n,R) | det(A) = 1} = SO(n,R)
which is the special orthogonal group.

In fact, SO(n,R) is connected, hence O(n,R)? = SO(n,R). Furthermore, the matrix g =
diag(—1,1,1,...,1) is orthogonal of determinant —1. Multiplication by g provides a diffeomorphism
between the two connected components.

Theorem 2.12. Let G be a Lie group. Then G° is a normal subgroup and is itself a Lie group.
The quotient group G/G° is discrete, meaning each coset gG° is an open submanifold of G.

Proof. e € G° by definition. If f: M — N is continuous then = ~ y in M = f(z) ~ f(y) in
N (Exercise). In particular, f([z]) < [f(x)]. Apply to i: G — G, i(g) = g~ ' gives i(G%) = G°.
Similarly, m: G x G — G, m(g,h) = gh = m(G° x G°) <= [m(e,e)] = G°. Lastly, fix g € G,
c(h) = ghg™" Then ¢(G°)) < [c(e)] = [e] = GY. Thus G° is a normal subgroup. Since gG° = [g
each coset in G/GY is an open submanifold by Proposition 2.6, so G/GY is discrete. O

Example 2.13. Let G = O(n,R). Then the determinant map det : G — {£1} is surjective with
kernel equal to G°. Thus G/G? =~ {£1}.

3 Lecture 3

3.1 Simple Connectedness

Let M be a connected manifold and fix xg € M, called a base point.

Definition 3.1. A path in M is a continuous map ~: [0,1] — M such that (0) = xg. v is a loop
if v(0) = v(1). The constant loop ~yp is given by vo(t) = zo Vt € [0, 1].

11



Figure 7: Example of a path « with base point zg

Two paths are homotopic if one can be continuously deformed into the other. The precise
definition is as follows.

Definition 3.2. Let g and x; be points in M. Two paths v,d in with v(0) = 6(0) = zo and
v(1) = §(1) = 21 are homotopic if 3 continuous map h: [0,1]> — M such that

h(0,s) = xo and h(1,s) = x; for all s € [0,1],

and
h(t,0) = ~(t) and h(t,1) = §(¢) for all ¢t € [0, 1].

-

h(—, s) intermediate path

Figure 8: Example of homotopic paths

Definition 3.3. M is simply connected if every loop in M is homotopic to the constant loop.
(Note: this is independent of the choice of zg)

Example 3.4. In figure 9 we see that R? is a simply connected manifold, while S! is not.

Example 3.5. The projective plane RP? (in the Poincaré model) is D' but opposite points on S*
identified: D'/ ~ where x ~ y iff |z| = |y| = 1 & = + y = 0. Then P! is not simply connected. See
figures 10a and 10b.

Definition 3.6. The product of two loops 7,0 in M is y*4d: [0,1] > M

ot o<t<i
yeay = {700 0Stss
§( I<t<i



() 8 (P

Figure 9: An example and non-example of simply connected manifolds

(b) A loop not homotopic to 7

(a) Depiction of RP? with identical points labeled
Figure 10

Exercise 3.7. Homotopy defines an equivalence relation on the set of loops in M. The set of
equivalence classes is denoted (M, xp).

Exercise 3.8. 71 (M, xg) is a group with respect to the operation:

[7][8] = [ = 6].
m1(M, xg) is the (1st) fundamental group of M (a.k.a. Poincaré group of M).
Exercise 3.9. m (M, zo) = m1(M,yo) for any xo,yo € M (Recall: we assume M connected).
Example 3.10. 71 (P?) =~ Z/2Z, notice [y]? = [yo0] in figure 11
U

Figure 11

Example 3.11. 71(S') =~ Z. The correspondence is the winding number.

3.2 The Universal Cover

Some convenient terminology:

13



e A subset U ¢ M of a manifold M in R™ is open in M, or simply open (when no confusion
can arise), if U = M n A for some open set A — R™.

e A neighborhood (abbreviated nbh) of x is a set containing x.

Definition 3.12. Let M be a connected manifold. A cover (]\7, p) (covering space) for M is a

connected manifold M together with a morphism p: M — M such that: Yz e M , 1 connected open
neighborhood U = M of z such that every connected component of p~!(U) diffeomorphically onto

U. (]\7 ,p) is a universal cover if it is simply connected. Often we just write M for (M, p).

Example 3.13. (R, p) is a universal cover for S' where p: x — €27,

T, >

Figure 12: Visualization of (R,p) as covering space over S!

Theorem 3.14. Every connected manifold has a universal cover. Moreover, it is unique up to
diffeomorphism.

Proof (sketch). Pick a base point xog € M. Define M to be the set of homotopy classes of paths in
M starting at xo (see Figure 13). Define p : M — M, p(y) = 7(1). One can show that this is a
universal cover. O

Figure 13: Visualization of Homotopy Classes

Theorem 3.15. Any morphism of connected manifolds f: M — N can be lifted to a morphism of
their respective universal covers f: M — N.

Theorem 3.16. If G is a connected Lie group, then its universal cover G has a canonical structure
of a Lie group such that

14



i) p: G—Gisa morphism of Lie groups
ii) kerp = m(G,e).
Moreover, ker p is a discrete subgroup of C:’, and kerp C Z(C:’) the center of G.

Example 3.17. G = S x S! x Z. The connected component at the identity element is G0 =
S1 x S! x {0}. The universal cover of G¥ is GO = R2. See Figure 14.

(-' =S+ 2

o &> D =&
ES

«— Gofiﬁ S\XS

2
1]
[ |

|

/})/N 2
& =

R

Figure 14: G = S' x S' x Z

4 Lecture 4

4.1 Coordinate Systems

A coordinate system is a local parametrization of a manifold. Coordinate systems are used to
construct tangent spaces.

Let M be a manifold and = € M. Let (U, V,, h;) be a triple as in the definition of a manifold.
Let W, be the image of the projection of V, n (Rk X {O}) to the first k components.

Definition 4.1. The map f, : W, — M given by f.(a1,a2,...,ax) = hy(a1,...,ax,0,...,0)
(with n — k trailing zeros) is called a coordinate system around x.

Since h, is a diffeomorphism, the derivative hl (y) has rank n at all y € V,,. Consequently f.
has rank k at any point in W,. Furthermore f; ! : F,(W,) — W, is continuous. The following

theorem shows that the data {(Ux, Ve, hl‘)}meM can in fact be replaced by the data {(Wx, fz)}xeM.

15



Theorem 4.2 (See Spivak, Theorem 5-2). A subset M of R™ is a manifold iff Yx € M there is
an open set U < R™, x € U, and an open set W < RF and an injective differentiable function
f: W — R"™ such that

1) fW)=MnU
2) f'(y) has rank k Yy e W
3) f~t: f(W) — W is continuous.

4.2 Tangent Space

Definition 4.3. Let M k-dimensional manifold, x € M, f: W — R™ be a coordinate system
around z, and a = f~'(x). Since f’(a) has rank k, the image of f’'(a): R¥ — R" given by the

matrix
difi(a) dafi(a) -+ Oxfi(a)

Oifn(a) O2fnla) -+ Orfu(a)
is a k-linear subspace of R™ called the tangent space of M at the point x, denoted T, M.
Often we draw/think of T, M as the affine space = + f(a)(R").
Note 4.4. By the chain rule, T, M is independent of the choice of coordinate system f.

Example 4.5. Let us describe the tangent space of S? at (0,0,1). Let W = {(s,t) | s> + t? < 1}
and f: W — R3, f(s,t) = (s,t,+/1 — s2 — t2). Then f is a coordinate system around = = (0,0, 1).
Let a = (0,0) (notice f(a) = x).

Osf1 Och 10

flla)=|0sf af2| =0 1

Osfz Oifs 0 0
1 0
so T,5% = f'(a)(R*) =R [0 | ®R | 1
0 0

Example 4.6. (See Figure 15.) A coordinate system for the 2-dimensional torus M embedded in
R? is given by (here R > r > 0 are the two radii):

f(s,t) = (R +rcoss)cost, (R+rcoss)sint, rsins), (s,t) € (—m,m)*

This is a coordinate system around any point except for the point f(w,7) = (r — R, 0,0). To
get a coordinate system around that point one can use the same expression for f but change
the domain to (0,27). We can use this coordinate system to find the tangent space for a point
p=(x,y,2) = f(s,t). As an example, take s = 7/3 and t = 7/4. The derivative (matrix) of f is

(R—rsins)cost —(R+rcoss)sint
f'(s,t) = | (R—rsins)sint (R +rcoss)cost
T COS 8 0

Thus the tangent space T,M at p = f(7/3,7/4) = (R +1/2)/v2, (R+1/2)/V2, 1/3/2) equals

(R—7v/3/2)/v2 —(R+7/2)/v2
T,M =R | (R—rvV3/2)/V2| +R | (R+7/2)/V/2
/2 0
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Figure 15: Torus with R = 3 and r = 1.

4.3 Vector Fields

Definition 4.7. A vector field on M is amap F': M — R" such that F(z) € T, M forallz € M. Fis
called differentiable if for every coordinate system f: W — R" at any z € M, a — f'(a)(F(f(a)))"
is a differentiable vector field on W.

4.4 The Derivative (Differential) of a Morphism

If f: M — N is a morphism of manifolds there is an induced linear map df = f. = f'(p): T,M —
Ty N given as follows

a:U—-R" afa)=p
B:V—R" B(b) = f(p)
T,M = o (a) (RF)
TN = 5'(b) (R)
Define f’(p) by the formula
(B~ o foa)(a) = (B'()" o f(p)od(a).

4.5 Vector Fields on Lie Groups
Fix g € G. There are three maps G — G:

Ly: h— gh
Ry: h— hg™!
Ady: H — ghg™!
They are morphisms of manifolds = have differentials.
Example 4.8. dL,: T'G — T,G, x — g.x

Definition 4.9. A vector field F' on a Lie group G is left-invariant if g.F(z) = F(gz) for all
g,z €.

fithis mapping is single-valued
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Definition 4.10. The Lie algebra of a Lie group G is defined by
g = Lie G = {all left-invariant v.fields on G}.

Theorem 4.11. v — v(1) is a linear isomorphism of g with T1(G).

Proof. Let x € T1(G) Define v(g) = g.z. Then v is left invariant. Uniqueness is obvious. O

5 Lecture 5

5.1 Classical groups

The following is an assortment of Lie groups called classical groups. These are the most important
but not an exhaustive list; the are many more. (Once we classify simple complex Lie algebras
we can give a general definition of classical Lie group: A connected Lie group is classical if its
complexified Lie algebra is a classical Lie algebra.)

e The general linear group:

GL(n,R) = {all invertible n x n matrices with real entries},

e The special linear group:

SL(n,R) = {Ae GL(n,R) | det A = 1}.

e The orthogonal group:

O(n) = {Ae GL(n,R) | ATA = AAT = I,,}
={Ae GL(n,R) | (Az, Ay) = {x,y) Vx,y € R"},

where (-, -) is the standard dot product: the unique (up to change of basis) positive definite,
non-degenerate, symmetric, bilinear form on R™.

e The special orthogonal group:

SO(n,R) = SL(n,R) n O(n).

e The orthogonal group of signature (p,q):

O(p,q) ={Ae GL(n,R) [ (Az, AY)pq = <, Y)pa};

where (-,), 4 is the (unique up to change of basis) nondegenerate, symmetric, bilinear form

on R™ of signature (p,q): {z,y)pq = Dby Tili — figﬂ Y-
e The corresponding “special” version is as expected:

SO(p,q) = O(p,q) n SL(n,R).
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e The symplectic group:

Sp(n) = {A e GL(2n,R) | w(Az, Ay) = w(z,y) Y,y € R*}
={AeGL(2n,R) | ATJA = J},

where w is the (unique up to change of basis) non-degenerate, skew-symmetric, bilinear form
on R?" given by w(z,y) = D1 (TiYitn — YiTi+n), and J is the Gram matrix of the form given
n In

n

by 2n x 2n-matrix [ 0 .
_ On

e The unitary group:
U(n) ={Ae GL(n,C) | A*A = AA* = I,,},

where A* = AT hermitian adjoint (conjugate-transpose).

e The special unitary group:
SU(n) =U(n) n SL(n,C).

Exercise 5.1. Special symplectic group? Show that Sp(n,R) < SL(2n,R), so it is already ”spe-
cial”.

5.2 The Exponential Map

How can one prove that the above matrix groups are actually Lie groups? There are three methods.

Method 1: Implicit function theorem (see Theorem 1.8). For example, O(n,k) = {A = (a;;) | AAT = I1,}
is defined by n(n + 1)/2 equations in k" (since AAT is symmetric). Compute Jacobian of

this system and show it has full rank (i.e. rank n(n 4 1)/2). This can be computationally
difficult.

Method 2: Observe that O(n,k) forms a closed subset of GL(n,k) and use a theorem about closed Lie
subgroups (next time).

Method 3: Using the so called the exponential map as a coordinate system around the identity element
of G.

To define this exponential map, first recall that GL(n,R) is an open subset of R"™. Hence the
identity map GL(n,R) — GL(n,R) is a coordinate system around the identity map. Its derivative
is the identity matrix. Therefore the Lie algebra of GL(n,R), identified with the tangent space at
the identity, is all of R™. In other words,

gl(n,R) := Lie algebra of GL(n,R) = T1GL(n,R) = {all n x n matrices}.

The power series
xn
n!

expla) = 3.
n=0

i for any n x n matrix 2. So it defines a smooth (in fact,

converges absolutely in matrix norm
analytic) map of manifolds:

exp: gl(n,R) — gl(n,R).

The matrix norm is |z| = SUD,egn |y|=1 [TV
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Furthermore,
© k+1,.k
(1)
log(1 :§ Ay
og(1l + x) ?

k=1
is smooth (in fact analytic) near 1 € gl(n,R), where “near” means in the matrix norm.

Theorem 5.2.
1) log(exp(z)) = x and exp(log(x)) = x whenever defined.

2) exp(0) = 1,exp’(0) = Id, where exp/(0) denotes the derivative of exp at 0.

3) If xy = yx then exp(z + y) = exp(x) exp(y). If xy = yx then log(zy) = log(z) + log(y) near
1.

4) For fized x € gl(n,R) t — exp(tx) is a morphism of Lie groups R — GL(n,R) (a one-
parameter subgroup).
5) exp(AzA~1) = Aexp(z)A~! and exp(at) = (exp(z))!

Theorem 5.3 (Thm 2.30 in Kirillov, Jr.). For each classical group G < GL(n,R) there is a vector
space g < gl(n,R) such that for some neighborhood U of 1 in GL(n,R) and some neighborhood u
of 0 in gl(n,R) the logarithm and exponential maps restrict to diffeomorphisms

log

T

UnG ung

\_/

exp

Proof. This is done case by case. We will look at a few cases in the next lecture. O

Corollary 5.4 (Corollary 2.31 in Kirillov, Jr.). Each classical group G < GL(n,R) is a Lie group
with tangent space TG =~ g and dim G = dim g.

Proof. exp: ung — U n G is a coordinate system around 1 € G, by Theorem 5.3. Furthermore,
exp/(0) = Id which has full rank, hence has full rank when restricted to u n g. Let g € G be
arbitrary. Then the composition

Lyoexp:ung—->UnG

is a coordinate system around g. So every g € G has a coordinate system so by Theorem 4.2, G is

a manifold. The multiplication map G x G — G is the restriction of the multiplication in GL(n,R)

hence is smooth. Similarly the inverse map G — G, g — ¢~ ', is smooth. Thus G is a Lie group.
For the second part,

exp,: Tog — TG
I I

exp’(0) g
I
Id
This gives an isomorphism between g and T1G. In particular dim G = dim 771G = dim g. 0

Similarly one can show that the classical groups G ¢ GL(n,C) are Lie groups.
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6 Lecture 6

6.1 Classical Groups (continued)

First we begin with two examples with tangent spaces.

Example 6.1. T,R* = R* because Id: R* — R* is a coordinate system around a. Id(zy,...,z) =
1 0

(z1,...,71) and Id'(a) = = I}, and I(R¥) = R¥. Similarly 7,C* = CF.
0 1

Example 6.2. T'U(1) =iR=R. U(l) ={2e€C|zz* =1={ze€C| |z] = 1}. Now ¢: (—¢,¢e) —
U(1) with o(t) = €*™ is a coordinate system around 1 € U(1), ¢(0) = 1, '(0) = 2mi (1 x 1 matrix).

¢'(0)(R) = 2mi - R = iR
AN

T, u@) =ik

Definition 6.3. A neighborhood (nbg) of a point x € R™ is an open subset U < R”™ such that
zelU.

Recall from last time, Theorem 5.3.

Proof of thm 5.5.
G = GL(n,k)
By properties of exp and log.
G = SL(n,k)
For any x € gl(n,k) we have the identity
exp(Tr(z)) = det(exp(x)) (6.1)

For any A € GL(n,k),

exp(AzA™!) = Aexp(z)A~?

Proof of Equation 6.1. So 6.1 holds for x iff it holds for AzA~!. Find A € GL(n,C) such that
AzA~' = s + n where 5,1 € gl(n,C), s diagonal, n strictly upper triangular, sn = ns. Then use
that

exp(s + n) = exp(s) exp(n).

Easy to check 6.1 for s and n = holds for s + n = holds for . O
Thus for X € GL(n,k) near 1, X = expz for some z € gl(n, k).

det(X) = det(exp(z))
= exp(Tr(z)).
So det(X) = 1 < Tr(xz) = 0, so statement is true with g = {z € gl(n, k) | Tr(X) = 0}.
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Notation 6.4. sl(n,k).
G =O0(n,k) = {X € GL(n,k) | XX = I}
For X € GL(n,k) near 1 write X = exp(x), z € gl(n,k) by properties of exp. Then

XX'=IT=1T=X"""=XX)"
= X'X=XX'=1
= 0=1logl =logX +log X! =z + 2

Conversely if x + 2' = 0 then z and 2! commute = exp(X)exp(z!) = exp(z + ') = exp(0) = I.
So statement true with g = o(n,k) = {z € gl(n,k) | z + 2! = 0} set of skew-symmetric matrices.
G = SO(n,k)

g = so(n,k) = sl(n,k) n o(n, k). However!

4+t =0=Trz=0

So actually so(n,k) = o(n,k). Which makes sense because SO(n,k) = O(n,k)° the connected
component of I.

G =U(n),SU(n)

u(n) # su(n)

G = Sp(n,k)

sp(n, k)

G = Sp(n)

sp(n)

Read about the previous few in the book. ]

7 Lecture 7

7.1 Submanifolds
— Open
— Immersed

— Embedded

Recall:
A subset N of a manifold M < R" is an open submanifold if N = M n U for some open subset U
of R™.

Example 7.1. M = S' < R?, U = {(z,y) | y > 0}, N = M n U is an open submanifold of S'.
Example 7.2. GL(n,k) is an open submanifold of k™.

Example 7.3. Every connected component of a manifold is an open submanifold. In particular
GO is an open submanifold of G.

Definition 7.4. A morphism of manifolds f: X — Y is an immersion if fi: T, X — Ty)Y has
full rank (= dim X)) for every z € X.
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Figure 16: Visualization of an open submanifold

Example 7.5. f: S' > R% f(cos®,sinf) = (cosf,sin 26)
o 0> [C089:| _ 2, a) = {—sma} .5 =R [—sma

sin 0 cos a cosa

—sina (i) —sina 0
by f <t' [ cos a ]) =t [QCOSQa] 7 [O] for ¢ # 0.

LAE§HEMW=W$Wm

Proof of ().
(+): M L N=R2
al t6=1d

W — W =R?
(57 fa) = (B71) o’ s0 BB~ fa) = f'a’. Now since § = 1d, (fa) = f'o’

—sina [ ., (|—sina
[QCOSQa] =/ <{ cosa })

Definition 7.6. The pair (X, f) is an immersed submanifold of Y. By abuse of terminology we
sometimes say f(X) is an immersed submaniofld.

O

Definition 7.7. If f: X — Y is an immersion such that

1) f is injective

2) f: X — f(X) is a homeomorphsim,
then f is an embedding and we say f(X) is an (embedded) submanifold of Y.
Example 7.8. f: R — S! c R? is an immersion

Example 7.9. f: R — R2? ¢+ (¢,sint) is an embedding. The graph of y = sinx is a submanifold
of R2.

Example 7.10. f: R — R?

making f differentiable and injective. Then f is not an embedding since f: R — f(R) is not a
homeomorphism.
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Example 7.11. f: R — S' x S' f(t) = (e%,e") where a,b € R\{0} such that a/b is irra-
tional. Then f is an injective immersion, but f(R) is dense in S' x S! so f: R — f(R) is not a
homeomorphism = f not an embedding.

Definition 7.12. A closed Lie subgroup H of a Lie group G is a subgroup which is also a subman-
ifold.

Example 7.13. Any linear subspace U of a vector space V is a closed Lie subgroup.

Example 7.14. G° is a closed Lie subgroup of G using the indetity map embedding G° — G by
T — x.

Example 7.15. If G; and G2 are Lie groups then G x {1} and {1} x G2 are closed Lie subgroups.

Theorem 7.16 (Thm 2.9 in Kirillov).

1) Let H be a closed Lie subgroup of Lie group G. Then H =V n G for some closed subset
V cR™ (i.e. H is closed in G)

2) Conversely, any subgroup H of a Lie group G such that H is closed in G, is a closed Lie
subgroup.

Proof. Skipped. H
Example 7.17. Sp(n,k) is a closed Lie subgroup of GL(2n,k).

Proof. Know Sp(n,k) subgroup. VA € GL(2n,k): A € Sp(n, k) iff w(Ax, Ay) = w(z,y) Vz,y € k2"

e (Ax)t - J - Ay=a2t - J yVo,yek®™ < A'JA=J, J = [_OI Ig] So let V = {A € May, (k) |
A'JA = J}. Then V is a closed subset of My, (k) = k@™ and Sp(2n,k) = V A GL(2n,k).
Similar for other classical Lie groups. O

Further Reading

7.2 Quotient Groups and Homogeneous Spaces

[Corollary 2.10, read yourselves]

Definition 7.18. Let F' be a manifold. A morphism p: T'— B of manifolds is a fiber bundle over
B with fiber F if

1) p is surjective,

2) p is locally trivial: Each x € B has a neighborhood U and a diffeomorphism 7y : p~1(U) —
U x F called a local trivialization, such that

T
UxF v p Y U)=T

N

U

commutes i.e. pl,-1y = prio Tu.
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3) At every z € M, the map Ty, : p~L({z}) — F given by Ty.(z, f) = f is a homeomorphism.
4) Whenever U n'V # &, for any x € U n V, the map TV_; o Tus : F — F is smooth.
B=base space, F=fiber, T'=total space.

Example 7.19. Let F, B any manifolds p: F' x B — B, (z,y) — y is the trivial fiber bundle over
B with fiber F.

Example 7.20. Tangent bundle on S?
TS? ={(z,v) |zre S*veT,S%, p:TS*—S% (z,0)—x
is a fiber bundle with fiber R2.

Example 7.21. M any manifold. Tangent bundle on M :
TM = {(z,v) |xe M,ve T,M}, p:TM — M, (z,v)—x
is a fiber bundle with fiber R*, k = dim M.

Theorem 7.22 (Thm 2.11 in Kirillov).

1) Let G be a Lie group of dimension n, and H < G a closed Lie subgroup of dimension k. Then
the set of left cosets G/H = {gH | g € G} has a natural structure of a manifold of dimension
n—k, such that the canonical map p: G — G/H, g — gH is a fiber bundle with fiber H. Also
T7(G/H) =~ T'G/T'H (1=p(1)=H).

2) If H normal, closed Lie subgroup of a Lie group G, then G/H has a canonical structure of a
Lie group, and p: G — G/H gives an isomorphism T7(G/H) = T'G/T1 H.

Proof. Beyond scope of class. O

2.3 Homomorphism Thm. Read yourselves.

7.3 Homogeneous Spaces

Let M be a manifold. Let Diff (M) be the group of diffeomorphisms ¢: M — M.

Definition 7.23. An action of a Lie group G on M is a group homomorphism p: G — Diff (M)
such that the map G x M — M, (g,x) — p(g)(z) is a morphism of manifolds

Notation 7.24. g.x := p(g)(x)
Example 7.25. GL(n,R) acts on R"
Example 7.26. O(n,R) acts on S™~L.
Example 7.27. G acts on G via Ad,L,R g — Adg.
Example 7.28. GL(n,R) acts on the set of flags in R™:
Fun(R) ={(Voc Vi c---c V) | Vg subspace of R",dim V = d}

Note 7.29. F»(R) = RP? and g.(Voc Vi ---c Vp,) := (gVh < gVi < --- < gV},) Vg € GL(n,R).
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Theorem 7.30 (Thm 2.20 in Kirillov). Let M be a manifold with an action of a Lie group G.
Then Ym € M, the stabilizer Stabg (m) = Gy, = {g € G | gom = m} is a closed Lie subgroup of G

and the map
G/Gp — M  gG, — gm

18 an injective 1mmersion.
Proof. Future (7) O

Corollary 7.31 (Cor 2.21 in Kirillov). Each orbit O,, := {g.m | g € G} is an immersed submanifold
of M, and T,,Op, = T1G/T1Gyy,. If Oy, is a submanifold then G/Gy — O, is a diffeomorphism.

Definition 7.32. A G-homogeneous space is a manifold with a transitive action of G.

Corollary 7.33. Let M be a G-homogeneous space and fic x € M. Then G — M, g — g.m is a
fiber bundle with fiber Gp,, and M =~ G/G,, as G-homogeneous spaces.

Example 7.34. SO(n — 1,R) — SO(n,R) — S" 1 where SO(n — 1,R) is the stabilizer of m =
(0,0,...,1). So
SO(n,R)

n—1 ~
o= SO(n —1,R)

Example 7.35. GL(n,R) acts transitively on F,,(R). Pick standard flag
VSt = ({0} c <(B1> .- C <<Bl, . ;n—1> C Rn)

Then the stabilizer Stabgr,, r) (VSt) = B(n,R) all invertible upper triangular matrices so

GL(n,R)
Fa(R) = ————
(R) B(n,R)
which equips F,(R) with the structure of a manifold of dimension n? — n(n2+1) = ”(n2_1)

8 Lecture 8

8.1 The General Exponential Map

Let G be a Lie group (not necessarily classical) and g = T1G its Lie algebra.

Goal: Define a map exp: g — G which generalizing matrix exponential map.
0 xk
gl(n,R) > GL(n,R) xw—e" = Z —
= k!

The problem is z* has no meaning in general.
Definition 8.1. A one-parameter subgroup of G is a morphism of Lie groups v: R — G.

Let v : R — G be a one-parameter subgroup of G. In particular 7(0) = 1, the identity element
in the group G. So, the derivative at zero is a linear map +(0): ToR — T1G. Since TyR can be
identified with R and 717G can be identified with the Lie algebra of G, we obtain a linear map
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4(0): R — g. But a linear map R — g is determined by the value at 1 € R and is really the same
thing as an element of g. In this way we regard +4(0) as an element of g. Thus we have a map

{one-parameter subgroups of G} — g (8.1)

In fact, this map is a bijection. This gives a third way to think about the Lie algebra of G, the
previous two being the space of all left-invariant vector field (the official definition), and the tangent
space at the identity of G.

To prove it, we need the following theorem from differential equations, which we will not prove
here.

Theorem 8.2 (Local Integrability of Vector Fields on Manifolds). Let v be a vector field on a
manifold M and let p € M. Then there exists an open interval I < R contatining 0 and a smooth
map v : I — M satisfying the differential equation:

{ww=vmu» 52)
p

Moreover, if ¥ : J — M is another local solution to that differential equation, then v =% on I n J.
We can now prove that (8.1) is a bijection.

Proposition 8.3 (Prop 3.1 in Kirillov). Let G be a Lie group, g = T\G, and x € g. Then there
exists a unique one-parameter subgroup v, of G such that 4,(0) = x.

Proof. Let vy be the left invariant vector field on G with v, (1) = z. Let v: I — G be a solution to

the system
{ww—%@w) 53
p

We claim that
v(s+t) =~(s)y(t) when s,t,s+tel. (8.4)

To show this, fix s and let
at) =~(s)v(t),  B() =~(s+1).
Then

Ly © 7)'(t
L(s) )* (t) by the chain rule
L

7(8)) ( )

(’y(s )y(t ) by left invariance of v,
= v(a(t)).

=
=
(

at

On the other hand _

Bt) = (s +t) =va(v(s +1)) = va(B()).
Thus a and S satisfy the same differential equation and «(0) = $(0) = v(s). By the uniqueness
part of Theorem 8.2, «(t) = [B(t). This prove the claim (8.4). We leave it as an exercise to

show that v extends uniquely to a one-parameter group R — G. Taking ¢ = 0 in (8.3) we have
§(0) = (1) = . .
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Definition 8.4. The exponential map exp: g — G is defined by exp(z) = v,(1).

Example 8.5. G =U(1) = {z € C | |z| = 1} is real 1-dim Lie group. We have seen g = iR. Given
x € iR, the corresponding 1-parameter subgroup is

tx

vz(t) = e

because 7, (s +1) = e(H)T — 576l — o (5)v,(t) and 7, (t) = ze'® so 4,(0) = z. So the exponential
map in this in this case is iR — U(1) by = — 7;(1) = €” i.e. the usual one.

Example 8.6. SO(3,R) it Lie algebra so(3,R) has a basis {J;, Jy, J.}:

00 O 0 0 1 0 -1 0
Jo=10 0 -1|, Jy,=10 0 0}, J.=|[1 0 0
01 0 -1 0 0 0 0 0
One can show that
1 0 0

v5,(t) =0 cost —sint
0 sint cost

Indeed it’s a morphism of Lie groups and 7, (0) = J;. So exp(tJy) = v, ().

8.1.1 Properties of the Exponential Map
Exercise 8.7. Let G be a Lie group and = € T1G. Then for any real numbers s,t we have
Vs (t) = Yz (st).
(Hint: Take %|t:0 on both sides and use uniqueness.)
Theorem 8.8 (thm 3.7 in Kirillov). The general exponential map satisfies the following:
1) exp,(0): g —» T1G = g is the identity map

2) exp is a diffeomorphism between some neighborhood of 0 in g and some neighborhood of 1 in
G. The inverse is denoted by log.

3) exp((t+ s)x) = exp(tx) exp(sx) Vs,t e R, xz € g
4) If ¢: G1 — G is a morphism of Lie groups, then
exp(p«(z)) = p(exp(z)) Vz e g, = T1G1(Recall: ¢, = dp(0))

5) For X e G,y e g Xexp(y)X ! = exp(Ad X.y)

Proof.

1) By Exercise 8.7, we have exp(tz) = 71,(1) = vz(t) for z € g and ¢t € R. Now differentiate with
respect to ¢t and take ¢ = 0 to get exp’(0) - & = 4,(0) = .

2) Immediate by inverse function theorem and part 1).

3) Follows from the fact that ¢t — exp(tzx) is a one-parameter subgroup.

4) Follows from the uniqueness of the one-parameter subgroup: Let x € g;, consider v: R —» G —
G2 by t — 7(t) — ©(7z(t)). This is a one-parameter subgroup of G2. Hence 7(0) = ¢4 (%2(0)) =
@«(r). So by uniqueness of a one-parameter subgroup of G2 with ¥(0) = @.(x). So v = 7,, () in
Ga. This shows that ¢ 0y, = 7, (»)- Now evaluate both sides at ¢ = 1.

5) Follows from 4) by G — G by Y > XY X! = (Ad X)(Y). O
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Further Reading

8.2 Classes of Manifolds

1) Complex manifold M < C™: Coordinate systems ¢: U — M where U < C? are holomorphic
2

functions.

(2) C*-manifolds M < R™: Coordinate systems ¢: U — M where U < R?, are differentiable of

class C*.
o0
!
Ok

c* =

= smooth functions

CUJ

continuous functions
1st order differentiable functions
all partial derivatives up to order k exist and are continuous

all partial derivatives exists (= continuous)

all real analytic functions (functions with Taylor series expansions)

One could imagine a theory of C*-Lie groups for k € N U {00, w}, in the real case. However

we have:

Theorem 8.9 (Deep Theorem (see Remark 2.2)). Let G be a real Lie group of class C°. Then
there is a Lie group G' of class C* such that G =~ G’ as C°-Lie groups. Moreover, G' is unique up
to isomorphism of of C¥-Lie groups.

The conclusion to be drawn from this is ”every real Lie group is a C“-Lie group”. it suffices to

consider

— Complex Lie groups

— Real Lie groups

We may WLOG assume all maps involved have Taylor series expansions.

9 Lecture 9: The Bracket (Commutator)

Let G be a Lie group and g = T1G. The vector space g is equipped with a canonical bilinear
operation, denoted [z,y] for x,y € g and is called the bracket on g.
There are two equivalent ways to introduce it.

9.1 First Method to Introduce the Bracket: via the Logarithm

Recall exp is locally a diffeomorphism.

exp: g > G

Let U < g be a neighborhood of 0 and V' = G neighborhood of 1 such that exp|y: U — V is a
diffeomorphism with an inverse denoted by log. consider the map

p:gxg—G by (z,y)— exp(z)-exp(y).
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Then for (z,y) € ¢~ (u(z,y)) for some u(z,y) € g. Explicitly,

p(z,y) = log(exp(x) exp(y))

defined for (z,y) € ¢~ 1(V) < g x g. p is a real analytic (or holomorphic) function and thus has a
Taylor series at (0,0).

Lemma 9.1. u(x,y) = z+y+A(z,y)+--- where, \: g x g— g is a skew-symmetric bilinear map.

Proof. General Taylor series:

1

1 1
o Lo+ ﬂLl(z) + aLQ(@Q) + -

f(z)

Where L is a multilinear function of k variables. In our case

z=(z,y)egxg=RF xR
= (2,0) + (0, ).

So
w(z,y) = co+ a1 (z) + aoly) + %(Qﬂl’?w) + M, y) + Qa(y,y) + -+

for some linear functions «q, o and bilinear functions ()1, A, Q2. Observe
p1(x,0) = log(exp(x) exp(0)) = z

So ¢cg = 0, ai(x) = z, and Qq1(z,x) = 0. Similarly p(0,y) = y, which gives as(y) = y and
Q2(y7y) =0. LaStIY7

w(x,z) = log(exp(z) exp(z)) = log(exp(2x)) = 2.

So A(z,x) = 0 Yz € g which implies A(z + y,z + y) = 0 Vz,y € g. Now since A is bilinear we have,
Alz,y) + Ay, z) = 0. O

Definition 9.2. The skew-symmetric bilinear function A: g x g — g as introduced above is called
the commutator (or bracket).

Notation 9.3. [z,y] := A(z,y).
Proposition 9.4.
1) Let ¢: G1 — Gy be a morphism of Lie groups, and ¢: §; — @9 its differential. Then
px([2,9]) = [0+ (2), 0 (y)]
for any z,y € gy.
2) Ady([z.y]) = [Ady(x), Ady (y)] for any g€ G,y € g.

3) Let X = exp(x) and Y = exp(y). Then the group commutator [X,Y] = XY X 1Y~ equals
exp([z,y] + terms of higher order).
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Proof. 1) Recall for z € g,
exp(p«(x)) = p(exp(x))

hence

exp(u(p«(2), px(y))) = exp(px«(z)) exp(p«(y))
= p(exp(z) exp(y))
= p(exp(u(z,y)))
= exp(p«(u(z,9)))-

Now apply log to both sides.
2) Ady: G — G is a morphism of Lie groups. Apply 1).
3) Explicit calc. O

Corollary 9.5. If G is a commutative Lie group then [z,y] =0 for all x,y € g.
Proof. Use 3) from above. O
Example 9.6. Let G <« GL(n,R) and g < gl(n,R). Then,

exp(z)=1+z+---) exply)=1+y+--)
This implies that
exp(z) exp(y) exp(—z) exp(y) = (1+z+--- )(1+y+-- )(1—z+--- )(1-y+ ) = 1+(zy—yz)+- -
So [z,y] = zy — yz.

9.2 Second way to Introduce the Bracket: via Derivations
9.2.1 Derivations on an Algebra

If A is an (not necessarily associative) algebra, a derivation on A is a linear map D : A — A
satisfying D(ab) = D(a)b + aD(b) for all a,b € A. Let Der(A) denote the set of all derivations of
A. Tt is easy to see that Der(A) is a subspace of Endgr(A) (the space of all linear maps from A to
itself). If D and E are two derivations on A we define their commutator as

[D,E]=DoFE—FEoD.

Lemma 9.7. [D, E] € Der(A) for all D, E € Der(A).

Proof. (D o E)(fg) = D(E(f)g + fE(9)) = D(E(f))g + E(f)D(9) + D(f)E(g) + fD(E(g)) so
when we switch D and F and subtract the middle two terms cancel, giving the result. O

One checks the identities

[D,FE] =—[E, D] skew-symmetry
[D,[E,F]]+ [E,[F,D]] + [F,[D,E]] =0  Jacobi identity
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9.2.2 Vector Fields as Derivations

Let M be a manifold, C*(M) the algebra of smooth real-valued functions on M with pointwise
operations, Vect(M) be the vector space of smooth vector fields on M.

Lemma 9.8. There is an isomorphism of vector spaces
Vect(M) — Der (C*(M)), X — Dx

where
(DxN)@) = Fleaf (1(0)) = F'0)- Xy,

and v : R — M is any smooth map with v(0) = p and §(p) = X,. (Here X, € T,M denotes the
tangent vector of the field X at p.)

Remark 9.9. As can be seen from the last expression, the result does not depend on the choice
of v satisfying the given conditions.
Proof. That X — Dy is a linear map is easy to see. Suppose that Dx = Dy for some vector fields
X.,Y. Then
f'p)- Xp = f'(p)- Yo (9-1)

for all smooth functions f on M and all p € M. Here we can think of f’(p) as the gradient of f
at p, which is a row vector, while X, and Y, are column vectors upon which f’(p) acts via matrix
multiplication (dot product). By varying the smooth function f appropriately, we can get any row
vector to appear as f’(p). Then (9.1) implies that u - (X, —Y,) = 0 for any row vector u, hence
X, =Y,

(We skip the proof of surjectivity) O

9.2.3 Bracket on Vector Fields

Combining these results we may define a bilinear operation on Vect(M) as follows: For two vector
fields X,Y € Vect(M ), define [ X, Y] to be the unique vector field such that

Dixy) = [Dx, Dy]

Exercise 9.10. If X and Y are left invariant vector fields on a Lie group G, then the vector field
[X, Y] is also left invariant.

9.2.4 Explicit Form of Bracket on 771G Using Exponential Map and Differentiation

Let G be a Lie group and in this section put g = T1G, the tangent space at identity. We know that
X — X(1) gives a bijection between left invariant vector fields on G and T7G. Thus we should be
able to define a bracket on T7G.

Recall that if u € T1G is a tangent vector, the corresponding left invariant vector field X, is
defined by X, (g) = (Lg)« - u.

Thus the corresponding derivation D,, = Dx, on C*(M) satisfies

d /
(DuNW) = |, f(expltw) = /(1) -u.
Therefore [u,v] must be the unique tangent vector that satisfies

([Du, Do) £)(1) = /(1) - [, 0]
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for all f e C*(M).
To find an explicit expression for [u,v] we compute:

d
(DuDy f)(1) = i tZO(va)(exp(tu))
- % t:O(eXp(t“)il (Dyf))(1) by G-action on C*(M)
- % 40 (Dv(exp(—tu)f))(l) by left invariance of D,
d d
" dtli—ods s=o(eXp(_tu)f) (exp(sv))
d d
= dtli—ods szof(exp(tu) exp(sv))
- % tzof/(exp(tu)) . % o exp(tu) exp(sv)
"(1) 4 d o d o d
=/ (1)£’t:0 exp(tu)% 420 exp(sv) + f'(1) - %’t:o% 0 exp(tu) exp(sv)

The second derivative term cancels when we switch u and v and subtract, giving:

([Du, D] f)(1) = £/(1) - %‘t:Odis (exp(tu) exp(sv) — exp(sv) exp(tu))

for all f e C®(M). We conclude that the Lie bracket on 771G can be computed as follows:

s=0

[u,v] = (exp(tu) exp(sv) — exp(sv) exp(tu)), Yu,v € T1G. (9.2)

i‘ d
~ dtl=o0ds

s=0
10 Further Reading

10.1 Computing Differentials Using Curves

Let ¢: M — N be a morphism of manifolds. Let p € M and z € T,M. To find dy,(x), also denoted
¢«(z), let v: k — M be any morphism with v(0) = p, and dyg = V. Then d(pov)o = dp,odyy =
dyp(x), where the first equality is by the chain rule. On the other hand
d
d(@ov)o = 2 l—0w(7(t))

This is particularly useful for Lie groups: If x € g then ~,: k — G, 7,(t) = exp(tz) is a natural
curve through 1 € G with derivative z. So given a Lie group G, a manifold M and a morphism of
manifolds ¢: G — M its differential at 1 can be computed as follows:

d
i =dp1: g =T, ()M py(x) = %\t=090(exp(m))-

10.2 Differential of Ad
Recall Adg: G — G by x — gxg~!. Its differential is
Adg: g—g.
So Adg e GL(g), and Ad: G — GL(g). So its differential is ad = Ad,: g — gl(g).

VHere we identify Homy (k, T, M) with T, M
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Lemma 10.1.
1) adz.y = [z,y]
2) Ad(exp(X)) = exp(ad )

Proof. 1) For g € G consider Adg: G — G. By formula for ¢, its differential is given by Adg: g —

g by

d d _
(Adg)(y) = < li=o(Ad g)(expty) = —|i=og exp(ty)g !

By the same formula again, ad: g — gl(g) is given by

d d d d
adz.y = %L@:Oahzo exp(sx) exp(ty) exp(—sz) = %\s:oalt:o exp(ty + ts[z,y] +---) = [z, y].

Where the second last equality is by Proposition 9.4 part 3).
2) Immediate by X exp(y)X ! = exp(Ad X.y) which was proved earlier. O

Theorem 10.2 (Jacobi Identity). Let G be a Lie group and g = T1'G Then the skew-symmetric
bilinear map [-,-]: g x g — g satisfies the Jacobi Identity:

[z, [y, 2]l + [v, [2, 2]] + [z, [z, y]] = 0.
This identity can also be written (using skew-symmetry and bilinear-ity):

[, [y, 21] = [, 9], 2] = [y, [, 2]]

adz.[y, z] = [adz.y, 2] + [y, ad z.2]
ad[z,y] =adzrady —adyadx

Proof. Since Ad: G — GL(g) is a morphism of Lie groups, its differential preserves the commutator
by Proposition 9.4 1). But the commutator on gl(g) is [A, B] = AB — BA by example 9.6. So

ad[z,y]y = [adz,ad y]gg) = adzrady — adyad =.
Applying both sides to z € g we get

[, [y, 21] = [[2, 9], 2] = [y, [, 2]]

The other forms left as an exercise. O

11 Lecture 10: Lie Algebras

11.1 Lie Algebras and Homomorphisms

Definition 11.1. A Lie algebra g over a field k is a vector space g together with a bilinear map
[]:gxg—g

satisfying

i) [z,y] = |y, x] (skew-symmetry)¥

VIf chark = 2 this condition is replaced by [z,z] = 0.
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i) [z, [y, z]] + [y, [z, z]] + [z, [z, y]] = O (Jacobi identity)

A homomorphism of Lie algebras 1: g; — g is a linear map satisfying

P([z,y]) = [d(), (y)].

If ¢ is moreover bijective, it is an isomorphism. Two Lie algebras g1, go are isomorphic, written
g1 = go, if there exists an isomorphism ¢ : g1 — go.

Example 11.2. Let A be any associative algebra over k (i.e. a ring containing k). Then define
[a,b] = ab — ba.
This operation turns A into a Lie algebra, denoted £(A).
Exercise 11.3. Show that (A, [-,-]) defined above is indeed a Lie algebra.
Definition 11.4. The general linear Lie algebra over k is
gl, = gl(n,k) = L(M,(k)).

More generally, we may consider

gl(V) = L(End(V)) V any vector space over k.
Clearly, if V is finite-dimensional, then

gl(V) = g(n,k) where n = dimy V.

Example 11.5. Any vector space V' can be regarded as a Lie algebra by defining [z,y] = 0
Vae,yeV.

Definition 11.6. A Lie algebra g is abelian if [z,y] = 0 for all z,y € g.

Example 11.7. On R3 we may take [u,v] = v x v. This is a Lie algebra. In fact, it is isomorphic
to the Lie algebra so(3) of all skew-symmetric 3 x 3-matrices. An isomorphism is given by

ey — Jy, ey Jy; e3— J,

where J , . are the natural basis elements of s0(3). This shows that the next natural Euclidean

space where we can define the cross product isn’t R* but rather R because dim so(4) = % = 6.

(This is just one perspective; there are several distinct ways to generalize the cross product on R3.)

11.2 Subalgebras and Ideals
Definition 11.8. Let g be a Lie algebra over k. A linear subspace h g is a
e (Lie) subalgebra if [x,y] € b for all z,y € b.
e (Lie) ideal if [x,y] € h for all x € g,y € b.
Exercise 11.9. If h ¢ g is an ideal then g /b is a Lie algebra with operation
[+ b,y +b] = [z,y] + b

for all z,y € g.
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Exercise 11.10. (First Isomorphism Theorem) If ¢ : g — b is a Lie algebra homomorphism, then
ker(yp) is an ideal of g, im(y) is a subgalgebra of b, and

g/ ker(p) = ¢(g)-

Example 11.11. Let ¢ : gl(n,k) — k be given by ¢(A) = Tr A. This is a Lie algebra homomor-
phism. The kernel is

ker(p) = sl, = sl(n,k) = {A € gl(n,k) | Tr A = 0}.
By the first isomorphism theorem gl(n,k)/sl(n, k) = k.

Definition 11.12. Let g be a Lie algebra. The center of g is

3(g) ={zeg|lz,y] =0 Vyeg}
Exercise 11.13. 3(g) is an ideal of g.

Exercise 11.14. The center of gl(n,k) is kI,, (the set of scalar multiples of the identity matrix).

11.3 Products of Lie Algebras

If g1, go are Lie algebras, the cartesian product g; x go is Lie algebra with bracket

[(z1,22), (y1,92)] = ([71, 1], [72, y2])

The projections 7; : g1 X g2 — @; are Lie algebra homomorphisms and the triple (g1 X g2, 71, 72)
satisfies the universal property: Given any Lie algebra h and homomorphisms ; : h — g; there is
a unique homomorphism ¢ : g1 x ga — b such that ; = m; o .

Even though there are Lie algebra homomorphisms ¢; : g; — g1 x g2 sending z to (z,0) and (0, x)
respectively, the triple (g1 % g2, t1,t2) does NOT (in general) satisfy the dual universal property:

Exercise 11.15. Show that if g is non-abelian, then (g x g, ¢1,¢2) is not a coproduct in the category
of Lie algebras.

Conclusion: The category of Lie algebras has finite products but does not have finite coproducts.
Nevertheless it is common to see the notation g; @ go instead of g; x go in the literature.

12 Further Reading
12.1 Lie Subgroups and Lie Subalgebras
Theorem 12.1 (Thm 3.22). Let G be a Lie group and g = Lie (G).
(1) If H is a Lie subgroup of G then T1H is a Lie subalgebra in g.
(2) If H is a normal closed subgroup of G then b = T1H is a Lie ideal of g and Lie (G/H) =~ g/b.

Conversely, if H is a closed Lie subgroup in G, such that H and G are connected and b = T H s
an ideal tn g, then H is normal.
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Proof. We only prove part (1) here. If x € T1H then the one parameter subgroup v: R — H
with 4(0) = x is also a one parameter subgroup of G and hence «(t) = exp(tx) by uniqueness. So
exp(tz) € H Yt € R. In particular for x,y € T\ H:

log(exp(x) exp(y) exp(—x) exp(—y))
belongs to h hence by commutator formula, [z,y] € 71 H. Similarly for part (2). (Read in book!) [

Theorem 12.2 (Thm 3.35 in Kirillov). Let G be a connected Lie group. Then its center
Z(G) ={g9€ G| gh=hg for all he G}
is a closed Lie subgroup with Lie algebra 3(g).

12.2 Connection Between Lie Groups and Lie Algebras

Let G be a Lie group. Then g = LieG = 171G with the bracket discussed previous lecture is a
Lie algebra. Every morphism ¢: G; — G2 of Lie groups gives a homomorphism of Lie algebras
©x: 81 — 8. Moreover, (9 01), = @y 0 Yy, Idy = Id. In other words, Lie is a functor from the
category of Lie groups to the category of Lie algebras.

Theorem 12.3 (Thm 3.40). For any Lie group G there is a bijection between connected Lie sub-
groups H < G and Lie subalgebras h < g given by H — h = LieH =T1H.

Sketch of proof. An inclusion ¢ : H — G of a subgroup yields an inclusion ¢, : h — g of Lie
algebras. For the converse, we have seen a special case: If b is one-dimensional, say h = Rx then
we may take H to be the image of the exponential map ¢ — exp(tx). This is a connected subgroup
of G (being the image of the connected set R under a continuous map). The general case is not
proved in the book and is more difficult. It relies on Frobenius integrability criterion which is a
generalization of the “integrability of vector fields” theorem from differential equations. O

Theorem 12.4. Let Gy and G be Lie groups and g; = Lie G;.
(1) If Gy is connected this functor is faithful, that is, Hom(G1, G3) — Hom(g,, g) is injective.

(2) (Thm 3.41) If Gy is connected and simply connected then the functor is fully faithful, that is,
Hom(G1,G2) =~ Hom(g;, g2).

Proof. See Section 3.8 of the book. O

Theorem 12.5 (Thm 3.42, Lie’s 3rd Thm). Any finite dimensional real Lie algebra is isomorphic
to the Lie algebra of a Lie group.

Idea of proof. Show that every Lie algebra is isomorphic to a subalgebra of gl(n,k). (Ado’s Theo-
rem"!). Then use theorem 12.3. O

Corollary 12.6 (Cor 3.43). ) For any finite dimensional Lie algebra g over R, there is a unique up
to isomorphism connected simply-connected Lie group G with Lie (G) =~ g. Furthermore, any other
connected Lie group G' with Lie algebra g is of the form G/Z for some discrete central subgroup
Z c(@.

Since the functor from connected simply connected Lie groups to real Lie algebras is fully
faithful (Theorem 12.4 and essentially surjective on objects (Theorem 12.6), we obtain:

Corollary 12.7 (Cor 3.44). The category of finite dimensional Lie algebras over R is equivalent
to the category of connected simply-connected Lie groups.

ViTf 3(g) = 0, then = +— ad z is injective.
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12.3 The Baker-Campbell-Hausdorff Formula
Recall: 1[z,y] (z,y € g) is the quadratic term of the Taylor expansion of log(exp(z) exp(y)) at 0.

Question 12.8. Do higher order terms give more information? Or does the bracket completely
determine the multiplication in G?

Theorem 12.9 (Baker-Campbell-Hausdorff). For small enough x,y € g we have,

exp(z) exp(y) = exp ( i fin(, y))
0

where
po(z,y) = 0,
i) =2+,
pa(z,y) = %[%y],
pal,) = 75 (el ] + [yly, 1),

In general, for n =0 py, is a universal (=independent of g) expression, in a linear combination of
commutators of degree n.

Corollary 12.10. The group operation in a connected Lie group can be recovered from its Lie
algebra.

12.4 Complex and Real Forms
Definition 12.11. The complexification of a real Lie algebra g is
gc == g®rC
with bracket determined by
[t@Ny@u] = [r,y]® . Va,yeg, A\ peC.
g is a real form of g¢.

Under the isomorphism g ®@rC = g®i g, we can also write it

[z + iy, z +iw] = [z, 2] — [y, w] + i([y,z] + [:n,w]) Va,y,z,weg.

Example 12.12. g = u(n) — g¢ = gl(n,C). With

1 1
X = §(X+X*) + §(X—X*)
with the first piece in u(n) and the second piece in iu(n). This is clear because X is hermitian <
1X skew-hermitian.
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Example 12.13. su(n) and sl(n,R) are two (different) real forms of sl(n,C), because
sl(n,C) = sl(n,R) @ isl(n,R) = su(n) ®isu(n).

Remark 12.14. Let G be a connected complex Lie group, g = Lie (G). Let K < G be a closed
real Lie subgroup in G such that ¢ = Lie (K) is a real form of g (i.e. #®r C = g). Then K is said
to be a real form of G.

So, the above example shows that SU(n) and SL(n,R) are two real forms of SL(n,C).

Since unitary matrices preserve the standard Hermitian inner product on C", it is not hard to
see that SU(n) is a (closed) and bounded set, hence SU(n) is a so called compact real form of
SL(n,C).

13 Lecture 11: Solvable Lie Algebras and Lie’s Theorem

13.1 The Derived Subalgebra
The following lemma is easy to check.
Lemma 13.1. I,J < g ideals. Then
I+J={x+y|lazel,yel}
InJ
[1,J] = Span {[z,y] |z € I,y J}
are ideals.
Definition 13.2. ¢’ = [g, g] is the derived subalgebra (or commutant) of g.
Note that, somewhat confusingly, the derived subalgebra is actually an ideal of g.
Lemma 13.3.
(i) g/[g,9] is abelian
(ii) If I < g is an ideal such that g /I is abelian, then [g,g] < I.

Example 13.4. Let g = gl(n,k), then [g, g] = sl(n, k)
(<): This is clear as Tr(zy — yx) = 0 for every z,y € gl(n, k).
(D): For ¢ #* j E” — Ejj = [Eiijji] € gl and Ez'j = %[E” — Ejiji'] € g/

13.2 The Derived Series

We construct the following sequence of subspaces of a Lie algebra g:

Dg=g
D'g=[g,g]=¢
D*g = [[g,9),[9,0]] = [¢, 9]

D'g=[D'""g.D'"g]

Notice that g = D°g > D' g > D?g o ---. This sequence is known as the derived series of g.
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Exercise 13.5. Show that Dg is an ideal of g for every i > 0.
Definition 13.6. g is solvable if there exists n = 0: D" g = 0.
Proposition 13.7. Let g be a Lie algebra, then TFAE:
(i) g is solvable;
(ii) There is a sequence of subspaces
g=a’oaloa’>..-0d"=0
such that [af, a*1] c a'™! i =0,...,k — 1 and a*/a"*! is one-dimensional;

(iii) There is a sequence of subspaces

g=a"oadloa?>.. . 0d" =0
such that [af, a1 c a't!, i =0,...,k — 1 and a’/a’*! is abelian.
Proof. Observe the condition [af,a’*!] < a’*! for 4 = 0,1,...,k — 1 implies that each a’*! is a

subalgebra of g and is an ideal of a’.

(i) = (ii): Let b! be any subspace in g/g’ of codimension one and let a' be the inverse image of
b! in g under the canonical map g — g/g’. Then [g,a'] = g’ < al. In particular a! is a (codimension
one) subalgebra of g hence is itself solvable. By induction on dim g, the subalgebra a' has such a
chain of subspaces.
(ii) = (iii): Trivial.

(iii) = (i): Since a’/a’*! is abelian, Lemma 13.3(ii) implies that [a’, a’] = a’*! foralli = 0,1,..., k—
1. We show by induction on i that Dig — a’ for all i = 0,1, ..., k. It is trivial for i = 0. For i > 0
we have D'g = [D""lg, D'"'g] < [a*~!,a* '] < a’. Therefore D*g = 0 and g is solvable. O

13.3 Lie’s Theorem
The following is the key result that is needed to prove Lie’s Theorem.

Theorem 13.8. Assume that k is algebraically closed and chark = 0. Let V # 0 be a finite-
dimensional vector space over k. Let g be a solvable Lie subalgebra of gl(V'). Then there exists a
nonzero vector v € V. which is a common eigenvector for all elements of g.

Proof. By Proposition 13.7(1)=>(ii), there exists an ideal a < g of codimension one. By induction on
dim g there exists a nonzero vector v’ € V' and a linear functional X : @ — k such that av’ = A(a)v’
for all a € a. Consider the subspace

W ={weV|aw = Aa)w Va € a}.

Since v' € W, W # 0. Pick = € g\a; then g = a®kz. We claim that W < W. For any a € a and
w e W we have
azw = zaw + [a, r]w = N a)zw + \([a, z])w

(we can write this because [a,z] € a). So the claim will follow if we show that A([a,z]) = 0 for all
a€ a.

Pick any nonzero w € W and let W; = Span{w, zw, z%w, ..., 2" 'w}. Since V is finite-
dimensional, the ascending sequence W7 < Wy < --- must stabilize. Let n be minimal such that
Wy = Wypiq1. Then dimW; =i for 1 <i < n.
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We show that any a € a preserves W, and in the basis w, zw, . .., z" !

matrix with all diagonal elements equal to A\(a). That is, we show

w, a is an upper triangular

az'w € Ma)z'w + W; Yaea,i>0.

1

For i = 0 this holds since aw = A(a)w. For i > 0 we have az'w = xaz’'w + [a, z]2*~'w hence, by

induction,
az'w € z(A(a)z" " w + Wi—1) + A[a,z])z"'w + Wiy < Ma)z'w + W

since xW;_1 < W;. Thus the trace of a on W, is n\(a), for all a € a. Since both x and a € a
preserve W,,, we have nA([a, z]) = Trw, ([a,z]) = 0. Since chark = 0 this implies that A([a,z]) = 0
for all @ € a. This proves the claim that W < W. Since k is algebraically closed, there exists an
eigenvector v for x in W. Since g = a@ kz, v is a common eigenvector for all elements of g. O

Lie’s Theorem is frequently stated in terms of representations.

1. A representation of a Lie algebra g is a vector space V together with a Lie algebra homomor-
phism py : g — gl(V). We say that the representation is complez (resp. finite-dimensional,
etc.) if the vector space V is.

2. A subrepresentation of V' is a subspace U such that py(z)U < UVx € g. (Then U becomes a
representation by py(z) = pv(x)}U.)

3. If U is a subrepresentation of a representation V' then the quotient space V /U is a represen-
tation by py i (x)(v +U) = (py(z)v) + UVz e gve V.

When no confusion can arise we frequently use module notation:
zw = py(x)v, Vreg veV.
Note that with this notation we have
[z,y]v =2xyv—yzv
forall z,yegand ve V.

Corollary 13.9 (Lie’s Theorem). Any complex finite dimensional representation V' of a solvable
Lie algebra g has a flag (sequence of subspaces)

F=0=VcViclhc cV,=V)
which is

g-stable: .V, cV, Vzeg

and complete : dimV,; =i

Remark 13.10. Consequently, choosing a basis for V; and extending to Vs, then extending to
V3, and so on, produces a basis for V' in which the matrix py(z) is upper-triangular for every
x € g. Thus, Lie’s theorem is a generalization of the linear algebra result that commuting complex
matrices can be simultaneously upper-triangularized.
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Proof. Since g is solvable, the image in gl(V') under the representation map py is a solvable Lie
subalgebra of gl(V'). By Theorem 13.8, there is a vector v € V such that kv is a subrepresentation
of V. By induction on dim V, the representation W = V' /kov has a flag

OIWOCW1C---CWn=W,

such that z.W; ¢ W;Vz € g and dim W; = iVi. Define V;11 = {u € V | u + kv € W;} be the inverse
image of W; in V and let V{; = 0. Then

0O=VoycVi=kvcVocVzc..-c V1 =V

is a g-stable complete flag for V. O

14 Lecture 12: Nilpotent Lie Algebras and Engel’s Theorem

14.1 Lower Central Series
Dog=g, Dig=[g,D;—1g] for i > 0.
Definition 14.1. g is nilpotent if there exists n > 0: D, g = 0.
Proposition 14.2. Let g be a Lie algebra, then TFAE:
(i) g is nilpotent
(ii) There is a sequence of subspaces
g=ay>a;2a2>---2a,=0
such that [g,a;] € a;41,1=0,...,k— 1.
By induction it can be shown that D' g c D; g, so nilpotent implies solvable.
Example 14.3. g = gl(n,k). Consider,
b = {upper triangular matrices} = span,{E;; | i < j}'i
n = {strictly upper triangular matrices} = span, {E;; | i < j}
We claim that b is solvable and n is nilpotent.
Proof of claim. We will instead prove a more general statement. Let V' be a vector space and let
Fo(0cVichhc cli=V)

be a flag (not necessarily complete). The standard flag in k™ is given by V; := span{ey, ..., e;}.
Put
b(F) ={xegl(V)|aVicV Vi}
nF)={xegl(V)|aV; c V;_1 Vi}
ay(F) = {z e gl(V) | 2Vi < Vip Vi}
with V, = 0 for k£ < 0. Note that b(Fsq) = b, n(Fgq) = n. Abbreviate a; = ai(F). Obviously,
ap - ag < agye and [ag, a¢] < ag4e, hence n(F) is nilpotent. Since diagonal entries of zy and yx

coincide for z,y € b(F) (check!). We have D'b(F) < a1, and by induction, D'6(F) < ag;. This
implies that b(F) is solvable. O

ViiThis called the standard Borel subalgebra, of gl(n, k)
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14.2 Engel’s Theorem

The adjoint representation of a Lie algebra g is g itself with

pg=ad:g—gl(g), (adx)(y) = [z,y]

That [adz,ady] = ad[z,y] is equivalent to the Jacobi identity (assuming [z,y] = —[y,z]). The
map ad is also called the adjoint action of g (on itself).

Theorem 14.4 (Key Result for Engel’s Theorem). Let k be an arbitrary field. Let V # 0 be a finite
dimensional vector space. Let g < gl(V') be a Lie subalgebra consisting of nilpotent transformations.
Then there exists a nonzero vector v € V such that xv =0 for all x € g.

Proof. We use induction on n = dim g. The conclusion is trivial for n = 0,1 so suppose n > 1. Let
I < g be a maximal subalgebra. Consider g as a representation of I via restriction of the adjoint
action. Then [ is a subrepresentation, hence g/ is a representation of I. Explicitly, we have a Lie
algebra homomorphism p : I — gl(g/I) given by p(a)(x + I) = [a,z] + [ for all a € I,z € g. Since
a is nilpotent, z — [a,z] = aox —zoa = (L, — R,)(x) is nilpotent (binomial theorem implies
(Lo — Ry)?*1 = 0 if a* = 0). Thus, by the induction hypothesis applied to p(I), there exists a
nonzero z + I € g/I such that p(I)(z + I) = 0. That is, [I,z] < I. That implies that the vector
space I @ kz is a subalgebra of g strictly containing I. By maximality of I, g = I @ kz. Let

W={veV]|av=0Vace I}

By the induction hypothesis applied to I, W # 0. Furthermore, W is z-invariant: if v € W and
a € I then azv < zav + [a, z]v = 0 (because [a, z] € I). Since z is nilpotent, z|y is nilpotent, so
there exists v € W such that zv = 0. Then gv = 0. O

Corollary 14.5. Let k be an arbitrary field. Let V # 0 be a finite dimensional vector space. Let
g < gl(V) be a Lie subalgebra consisting of nilpotent transformations. Then there exists a complete
flago=Vogc Vi c---cV, =V such that xV; c V;_1 for all x € g.

Remark 14.6. The conclusion is equivalent to there being a basis for V in which all x € g are
strictly upper-triangular.

Corollary 14.7. If g  gl(V') consists of nilpotent transformations, then g is nilpotent.

Proof. Pick a basis in which all x € g are strictly upper-triangular. Then g is contained in a
nilpotent Lie algebra hence is nilpotent. O

Theorem 14.8. If g is a finite dimensional Lie algebra, the g is nilpotent iff Vo € g, the map
adz: g — g, y+— [x,y], is nilpotent.

Proof. If g is nilpotent, then (ad x)"(y) € D,g = 0 for n » 0. Conversely, if ad = is nilpotent for all
x € g, then adg = g/3(g) is nilpotent by Corollary 14.7. That implies g is nilpotent. O

15 Lecture 13: The Radical; semisimple Lie Algebras; Semi-Direct
Products and Levi’s Theorem

15.1 The Radical of a Lie Algebra
Definition 15.1. A Lie algebra g is called semisimple if {0} is the only solvable ideal in g.
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Definition 15.2. A Lie algebra g is called simple if it is non-abelian and {0} and g are the only
ideals.

Lemma 15.3. g simple = g semisimple.

Proof. Let {0} # I < g be a solvable ideal. g simple = I = g = the ideal [g,g] is proper
= [g,8] =0 = g abelian, which is a contradiction. O

Example 15.4. sl(2,C) is simple. Use the map ad h.

Proposition 15.5. Let g be a finite-dimensional Lie algebra. Then the set of all solvable ideals of
g has a unique mazximal element.

Definition 15.6. The unique maximal solvable Lie algebra of g is called the radical of g and is
denoted rad (g).

Proof. Let rad (g) be the sum of all solvable ideals of g. We need to show rad (g) is itself solvable.
I+J J
I InJ

are solvable = I + J solvable. By induction, any finite sum is solvable. g finite

If I and J are solvable ideals of g, then Since J is solvable, TA7 is solvable.

Since I and

dimensional implies there exists N > 0 such that DV I = 0 for all solvable ideals of g (N = dim g).
So DV rad (g) = 0. O

Exercise 15.7. rad (g /rad (g)) = 0, i.e. g/rad (g) is semisimple. (Note g is semisimple iff rad (g) =
0)

Definition 15.8. A finite-dimensional Lie algebra g is reductive if rad (g) = 3(g)-

16 Lecture 14: Jordan Decomposition and Cartan’s First Crite-
rion

Recall that any matrix « € M, (k) is similar to a matrix in Jordan canonical form:

A1

A1

A 1

Ak
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Such a matrix can be written:
N O 0 1 O

)\1 1

i Al ;

where the first is diagonal and the second is nilpotent, and these matrices commute.
When k is algebraically closed, another word for diagonalizable is semisimple.

Definition 16.1. A € End(V), V vector space over k (algebraically closed) is semisimple if A is
diagonalizable.

Theorem 16.2 (Jordan Decomposition). V' finite dimensional vector space over an algebraically

closed field k. Let A€ End(V). Then
a) There exist unique linear maps As, Ap, € End(V') such that
D) A=A+ A,
i) AsA, = A, A
iii) As is semisimple and A,, is nilpotent.
b) There exists P(T) = Pa(T) € C[T] and Q(T) = Qa(T) € C[T] such that
i) As = P(A) and A, = Q(A)

i) ged(P(T),Q(T)) = T in particular P(0) = Q(0) = 0. Hence, if B € End(V) commutes
with A, then B commutes with As and A,.

(ad A)g = ad(As)
(ad A),, = ad(A4,)

In particular, if A is semisimple (respectively nilpotent), then ad A is semisimple (respectively
nilpotent).

Proof. a,b) A € End(V) define a k-algebra morphism
eva: k[T] — End(V)
Z c,IT" — Z cn, A"

= cA(T) =]](T — a;)™ where a; € k. The Sun-Tzu-Aryabhata’s Remainder theorem gives:




by
F(T) + (ca(D) = (F(T) + I, .., f(T) + Ii).-
a; mod I; Vi
=0 modT
and As: P(A), A, = Q(A). correspondingly,

So the system has to be a solution mod (ca(7T)). Put Q(T') =T — P(T)

k
V= EI—)VZ
i=1
where V; = {v e V' | (A —a;)™v = 0}. Then Agly, = a;1dy; Viie. (A—a;)Idy, = 0. This implies
A, is diagonal on each V;, thus A; is semisimple.
Then A,, = A — A, is nilpotent on each V;

(Anlv,)™ = (Aly; — Asly)™ = (A —a;)™ = 0.

Hence A = A; + A, by construction [As, A,] = [P(A),Q(A)] = 0. To show uniqueness, suppose
A=S+Nalso. Then A = A;+A,=S5S+N = A;— S = N— A, is both semisimple and nilpotent
= they are 0.

c) adA = ad(As + Ay) = ad(As) + ad(Ay,) as in part ¢) we get ad(As) is semisimple, ad(A,,)
nilpotent, and they commute. So by uniqueness (ad A); = ad(As) and (ad A),, = ad(A4,,). O

Note 16.3. If ¢: End(V) — End(W) is linear and satisfies A is semisimple (nilpotent) implies
1 (A) is semisimple (nilpotent), and [A, B] = 0 = [¢(A),¥(B)] = 0 then:

16.1 Cartan’s First Criterion

Proposition 16.4. Let k be an algebraically closed field of characteristic zero, and V be a finite-
dimensional vector space over k. Let g be a Lie subalgebra of gl(V'). Then

(a) If g is solvable, then Tr(xy) =0 for allz e g, ye g (recall g’ = [g,9]);
(b) If Tr(zy) =0 for all z,y € g, then g is solvable.
Proof. .... (to be typed up) .... O

Theorem 16.5 (Cartan’s First Criterion - algebraically closed field case). Let k be an algebraically
closed field of characteristic zero, and V' be a finite-dimensional vector space over k. Then g is
solvable if and only if Tr ((ad x) o (ad y)) =0 forallzegandyeg.

Proof. 1f g is solvable, then ad g < gl(g) is solvable hence the conclusion follows from part (a) of
Proposition 16.4.

Conversely, if Tr ((adz)(ady)) = 0 for all z € g, y € ¢/, then ad(g’) is solvable by part (b) of
Proposition 16.4. Since ad(g’) = ¢'/3(g’) and 3(g’) is abelian hence solvable, it follows that g’ is
solvable. Say D"(g') = 0. But then D"*'g = D"(g’) = 0 so g is solvable. O
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17 Lecture 15: Cartan’s Second Criterion

This lecture will focus on a method for checking whether or not a given Lie algebra is semisimple
or solvable based on the so called Killing"'!! form.

17.1 Invariant Symmetric Bilinear Forms

A symmetric bilinear form b: gx g — k is a function satisfying b(A\x + py, z) = \b(z) + ub(y, 2)
and b(x,y) = b(y,x) for all z,y € g and A\, pu € k.

Definition 17.1. A symmetric bilinear form b: gx g — k is

(i) invariant if
b(ly,z],2) = b(y,[2,2])  Va,y,z€g, (17.1)

(ii) non-degenerate if Vo € g\{0}Jy € g : b(z,y) # 0.

3 b

Remark 17.2. The reason for the name “invariant” is as follows. First, a vector v in a represen-

tation of g is called invariant if z.v = 0 for all x € g (recall we write z.v for py(z)v). Now if V is a
representation of g then one can verify that the space of all bilinear forms on V is a representation
of g with action (z.b)(v,w) = —b(z.v,w) — b(v,z.w). When V = g is the adjoint representation,
this is equivalent to (z.b)(y, z) = —b([z,y],2) — b(y, [z, z]). Then (17.1) is equivalent to z.b = 0
(check!), i.e. b is an invariant vector of the representation (V ® V')*.

Definition 17.3.

(i) Given a finite-dimensional representation V' of g the trace form on g (with respect to V) is
bV: gxg— k7
bv(fC, y) =Tr (pv(ﬁ)pv(y)), VZL‘, Yyeg.

(ii) The trace form on g with respect to the adjoint representation is called the Killing form and
is denoted by x or k9. Explicitly:

k(z,y) = Tr (ad(z) ad(y)), Vz,ye€g.

Exercise 17.4. Show that the trace form (with respect to any finite-dimensional representation
V') is an invariant symmetric bilinear form on g.

Lemma 17.5. Ifb: g x g — k is an invariant symmetric bilinear form on g and I g is an ideal,
then
It ={zeg|blx,z)=0Vzel}

s an tdeal in g.
Proof. x € I'-, we show that [z,y] € I'* for all y € g. Indeed, for all z € I we have
b([,y], 2) = b(x, [y, 2]) = 0
hence, [z,y] € I*. O

Corollary 17.6. g = ker(b) is an ideal in g.

viliWilhelm Killing (1847 — 1923)
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Example 17.7. Let g = ka @ kb be a two-dimensional vector space with bracket uniquely deter-
mined by the condition [a,b] = a. This is the unique non-abelian Lie algebra of dimension 2 up to

1] and

isomorphism (exercise). In the ordered basis (a,b) the matrices for ada and adb are [0 0

[_01 8] respectively. Thus it is easy to check that x(a,a) = k(a,b) = 0 and k(b,b) = 1.

Example 17.8. a) The space of column vectors k™ is a representation of g = gl(n, k) called the
vector representation (or the tautological representation). The trace form is just b(x,y) =
Tr(zy). When n = 2, put

qF o
[ [

with respect to the ordered basis (e, f, h, I), the Gram matrix of the trace form on gl(2,k) is

0 1f{(0 1
For example, by2(e,e) = Tr ([0 O} [0 0}) =0.

b) By a similar but much longer calculation one can see that the Gram matrix of the Killing
form x on gl(2,k) is

0 400
4 0 0 0
0 0 820
00 00

17.2 Further reading: reductive Lie algebras

Theorem 17.9. If there exists a representation V of g such that the trace form by is non-
degenerate, then g is reductive i.e. rad (g) = 3(g)-

Proof. rad (g) o 3(g) is always true, so all that remains is to show the reverse containment. That
is, we must show [g,rad (g)] = 0.
(1) z € [g,rad (g)] acts by 0 on any irreducible W (the proof of this is omitted. This implies
that = € ker(by ).
(2) For
0-W >V ->W -0

we have that by = by + by by

XW’ % YW’ * _

(3) By induction on dim V' we show that x € ker(by) = {0} = = = 0. O

Theorem 17.10. Each classical Lie algebra g < gl(n,k) is reductive.

Proof. bgn is non-degenerate = g reductive. ]
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17.3 Cartan’s Criteria

Lemma 17.11. Let I be an ideal of a finite-dimensional Lie algebra g with Killing form k9. Let
k! be the Killing form on I regarded as a Lie algebra in its own right. Then k! (x,y) = k%(z,y) for
allx,yel.

Proof. Choose a linear complement V to I in g. Thus g = I @V as vector spaces. Consider a basis
for g which is the union of bases for I and V. Let =,y € I. In the chosen basis,

_Az Bz _Ay BZJ
ad””_[o 0]’ ady_[o o]’

for some matrices A, B;, Ay, By of appropriate size. Note that A, and A, are the matrices for
adlz: 1 — I and ad’y : I — I, where ad! denotes the adjoint representation of I. We have

(ad z)(ad ) = [AxOAy AxoBy]

so that
K9z, y) = Tr ((adz)(ad y)) = Tr(A,4,) = Tr ((adI z)(ad! y)) = wl(z,y).

O]

Lemma 17.12. Let g be a finite-dimensional Lie algebra with nonzero radical. Then there exists
a nonzero abelian ideal of g.

Proof. Let I be the radical of g. Since I is an ideal of g, so is [I,I] (by the Leibniz Rule form of
Jacobi identity: [z, [y, z]] = [[x,y], 2] + [y, [z, z]). Repeating this argument we see that each term
of the derived series for [ is an ideal of g. In particular the last nonzero term of the series is an
abelian ideal of g. O

Theorem 17.13 (Cartan’s Criteria). Let k be any field of characteristic zero. Then:

a) g solvable iff x(g,[g,9]) = 0;
b) g semisimple iff k non-degenerate.

Proof.

a) We proved this in the previous lecture in the case when k is algebraically closed. In general, let
g = k ® g be the Lie algebra over the algebraic closure k of k. (This process is called extension of
scalars. The Lie bracket on gis [A®z, p ®y] = (Ap) ® [z,y] for all 2,y € g and A\, u € k.) Then

g solvable < g solvable
— k(g,[8,8]) =0 by last time
= r(g,[g9,9]) = 0.

b) We prove the contrapositive. Suppose g is not semisimple. By Lemma 17.12, there exists a
nonzero abelian ideal a of g. Now for any = € g and a € a, the composition (ad z)(ad a) maps g into
a, since a is an ideal. Since a is abelian, (ad a)(ad x)(ad a) is identically zero. Thus (ad z)(ad a) is
nilpotent, hence has trace zero. Thus k(z,a) = 0 for all x € g and a € a. Since a # 0, this shows &
is degenerate.

For the reverse implication, suppose g is semisimple. Consider the space I = {z € g | k(z,y) =
OVy € g} (this is called the radical or kernel of the form x). We claim that I is solvable hence equal
to zero. First, I is an ideal by associativity of x. By Lemma 17.11, (I, [I,1]) = (I, [I,I])
k(I,g) = 0. By part a), I is solvable. Since g is semisimple, I = 0. Thus,  is non-degenerate. []
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Proposition 17.14. Ifg is semisimple, and I < g is an ideal, then I = {x € g | k(x,y) = 0 Vy € I}
is an ideal of g, and g = I ® I+.

Proof. I+ is an ideal by Lemma 17.5. We claim that I n I+ = {0}. Let z,y,2 € I n I*. Then
m(x, [y,z]) = 0 simply because z € I+ and [y, 2] € I. By Lemma 17.11, et (z, [y, z]) = 0 too.
By Cartan’s First Criterion, applied to I n I', we conclude that I n I+ is solvable. Since g is
semisimple, I n I+ = 0.

Next we show that I + I+ = g. Let {x;}, be a basis for I and extend it to a basis {z;}?,
for g. By Cartan’s Second Criterion, x is non-degenerate. Therefore there exists a corresponding
dual basis {z}"_; (g — ¢*, z — k(z,-) is an isomorphism, so to the linear functional & € g*,
&I (x;) = d;5, there corresponds a 2/ € g satisfying r(z;,27) = &/(z;) = 6;;). Then, clearly, 27 € It
for j = m +1,m + 2,...,n. This shows that dimI* = n —m. Since I n I+ = 0 we have
dim( + I*) =dimI +dimI* =m + (n —m) =n. Thus g = I + I*.

O

We can now prove the following theorem, which motivates the name “semisimple”.

Theorem 17.15. Let k be a field of characteristic zero and g be a finite-dimensional Lie algebra
overk. Then g is semisimple iff g = 1 ® 1o ®- - - ® Iy, where I; are simple (as Lie algebras) ideals.
Moreover, in this case every ideal of g is equal to @jes I; for some subset S < {1,2,... k}.

Proof. Suppose g is semisimple. Let I} be a minimal nonzero ideal of g. If I; = g we are done.
Otherwise, by Proposition 17.14, g = I @ I*. Since any solvable ideal T f would be a solvable ideal
of g, I f is also semisimple. By induction on dim g we are done.

The converse is an exercise (see below).

For the last claim, first suppose that I is a simple ideal of g. Then [g, ] = (—D?zl[lj,f]. By
simplicity of I, all but one summand is zero. Say [I;,I] # 0. Then [I;,I] = I = I; by simplicity of
I and I;. Now suppose [ is any ideal of g. Then g=1® I L and any ideal of I is an ideal of g. In
particular, I is semisimple. Say I = J; @ J, for some simple ideals J; of I. But then J; are simple
ideals of g hence each J; is equal to one of the I;’s. This proves the claim. ]

Exercise 17.16. Let k be a field of characteristic zero and g be a finite-dimensional Lie algebra
over k. Suppose that g g =11 @ [o @ --- @ I}, where I; are simple (as Lie algebras) ideals. Prove
that g is semisimple.

18 Lecture 16: Semisimple Lie Algebras; the Casimir Operator

Before moving on we point out two important corollaries of previous lecture.
Corollary 18.1. [g,g] = g if g is semisimple.
Proof.
l9,0] = [®;1;, ®rli]

= ®@;k[Lj, Ix] since for j # k [Ij, Iy < I n I, =0

= &1, 1]

= ®I;

= g .

50



Corollary 18.2. If g is semisimple, then I and g/I are semisimple for any ideal I of g.

Proof. If I is any ideal of g then g = I @ I with respect to the Killing form. Then for any ideal .J
of I we have [g,J] = [I,J]®[I+,J] < J since [I+,J] = I+ ~n I = 0. Furthermore, g/I = I+ which
is an ideal of g hence semisimple by the previous part. ]

We also prove the following uniqueness theorem for the Killing form on a simple Lie algebra.
Here we do need algebraically closed field to ensure the existence of at least one eigenvalue.

Proposition 18.3. Let g be a simple finite-dimensional Lie algebra over an algebraically closed
field of characteristic zero. Then there exists a unique (up to monzero scalar multiple) invariant
nondegenerate symmetric bilinear form on g.

Proof. We know the Killing form x is one such form. Suppose 5 : g x g — k is another. Then
we have two vector space isomorphisms k1 : g — g%, © — k(x,-) and similarly 5, : g — g*. Let
zo € g\{0} be an eigenvector of the non-singular transformation 8y 'y of g. Thus 1 (20) = AB1 (o)
for some nonzero A € k. This means x(xg,y) = A\3(zo,y) for all y € g. Let

I={zeg ‘ Kk(z,y) = AB(z,y) Vy € g}

We claim [ is an ideal of g. For any x € I and y, z € g we have

ﬁ([x,y],z) = K(l’, [y7 Z]) = )\B(CE, [y,Z]) = )\,8([13,?/],2)

Thus [z,y] € I for all z € I, y € g. So [ is an ideal of g. Since g is simple and [ is nonzero
(containing xg), we have I = g. This shows that k(z,y) = A3(z,y) for all z,y € g. O

18.1 The Casimir Operator

Let g be a finite-dimensional Lie algebra, and suppose (-, -) is a non-degenerate invariant symmetric
bilinear form on g. For example, if g is semi-simple we could use {(z,y) = k(z,y) (the Killing form)
and if g = gl, we can use (x,y) = Tr(zy). (One can show that the existence of such a form is
equivalent to that rad (g) = 3(g) i.e. g is reductive.)

Let V' be a representation of g. The Casimir operator (on V with respect to {-,-)), denoted
Cy € Endg(V), is defined by

Cy = Z pv (i) py (2),

=1

where {x;}"_, is a basis for g and {2}, is the corresponding dual basis with respect to (-, -).

Proposition 18.4 (Properties of the Casimir operator). (a) The Casimir operator Cy is inde-
pendent of the choice of basis {z;}I' | for g;

(b) Cy opy(z) = py(x)oCy for all x € g. In other words, Cy is an intertwining operator from
VitoV.

Before the proof, to put the second property in context, we give the following definition.

Definition 18.5. Let g be a Lie algebra and V, W be representations of g. An intertwining operator
T :V — W is a linear map such that

Topy(z)=pw(x)oT, Vzeg.
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Another term for intertwining operator is morphism of representations. The category of rep-
resentations of g, denoted Repg, is the category whose objects are representations V' of g, and
morphisms V' — W are the intertwining operators. Thus the Casimir operators are canonical
intertwining operators from any representation to itself. They play a critical role in the study of
semisimple (and more generally, reductive) Lie algebras.

Proof of Proposition 18.4. (a) Let {y;}"_; be another basis for g, and {y*}" ; the corresponding
dual basis with respect to By. Then

yi = Y aikte Y = ) bypa
k k
and furthermore

8ij = Wi’y = D aibjlwr, 'y = awbjn,
k,l k

which is to say ABT = I where A = (a;;) and B = (b;;). By matrix theory, this implies BT A = I
as well, which can be written

> bikai = 6. (18.1)

The Casimir operator with respect to the y-bases equals

18 1)
ZPV v)pv(y') = > aiwbapy (zi)pv (2) Z%PV w)pu(') = Cy.
il Kl

(b) Let x € g. We will use that for any x € g we have
T = Z<xa $i>$i7
i

= Yo ai (18.2)

The first equality follows from writing x = Zj cjz? and then calculating that (z,z;) = ¢;. The
second one is proved similarly. Put p = py for brevity. We have:

[Cv, p(x)] = Z[ﬂ(xi) p(@)]p(a’) + p(ai)[p(z"), p(x)] Dby Leibniz’ Rule
= Zp [wi, 2], a7)x;) p(a') + p(ai)p(([a', 2], )27
— Z [z, 2], 27) + ([2?, 2], 7)) p(z)p(x") = 0

where, in the last equality, we used that {[27, 2], z;) = (w;, [27,2]) = —{x;, [7,27]) = =[x, 2], 27)
by symmetry and invariance of the form, and by anti-commutativity of the bracket.

19 Lecture 17: Chevalley-Eilenberg Cohomology

Let g be a Lie algebra and M be a representation of g. We use module notation: z.v = py(x)v for
regandve M.
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19.1 Cochains

Definition 19.1. Let i be a non-negative integer. An i-dimensional cochain for g with values in
M, or i-cochain for short, is a linear map

fiNg— M
In more concrete terms:

e a 0-cochain is an element v € M (because /\0 g = k and a linear map k — M is determined
by the image of 1),

e a l-cochain is a linear map f:g — M,
e a 2-cochain is a bilinear map f : g x g — M such that f(x,y) = —f(y,x) for all z,y € g.

In general, for i > 1 an i-cochain can be viewed as a multilinear map f : g — M which is alternating
i.e. switching any two arguments results in the negative.
The vector space of all i-cochains is denoted by

Ci(g, M) = Homy (A" g, M).
19.2 The coboundary map

For each i-cochain f we define an (i + 1)-cochain df (or d'f when i needs to be specified) as follows:

e If v € M is a 0-cochain, we define dv € C'(g, M) = Hom(g, M) by
(dv)(z) = z.v
o If f:g— M is a 1-cochain, we define df € C%(g, M) by
(df) (w1, 22) = @1.f(22) — @2 f(21) — f([21,22])
o If f:gxg— M is a 2-cochain, we define df € C3(g, M) by

(df)(z1, 22, 3) = 21.f (T2, x3) — T2. f (21, 23) + 3. f (21, X2)
— f([z1,22],23) + f([21, 23], 22) — f([22, 23], 21).
Here is the general definition:
Definition 19.2. Let i be a non-negative integer. The (i:th) coboundary map is the map
d=d :C'g,M)— C""(g, M)
given by
i+1

(df)@rl,xg,...,aa+1)** }:(-—1)T+1 (f(xl,...,fr,...,xi+1)

r+s ~ ~
+ Z f xrvl's] xla-”vxrv"’7$Sa‘°'a$i+1)a
1<r<s<n

for all f € C(g, M). A hat means the variable should be omitted from the list of arguments.
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The fundamental property of the coboundary map is that applying it twice gives you zero:
Lemma 19.3. For any non-negative integer i, we have
d*lod =0.
Proof. We only prove this for ¢ = 0 and ¢ = 1 which are the only cases that we will need anyway.
For ¢ =0, let v € M be a 0-cochain. Then we have

(dldov)(xl, x9) = x1.(x2.0) — o.(1.0) — [z1,22].0 =0

precisely because M is a representation of g: x1.x2.v—x2.21.v = [py(x1), pv(z2)]v = pv ([21, z2])v =

[z1, z2].v.
1 F02r i=1,let f:g— M be a l-cochain. Then
(dd" f) (w1, 9, w3) = 1. (w2. f (w3) — w3.f (22) — f([22, 23])

— xo. (w1 f(x3) — @3.f(x1) — f(

+a3.(v1.f(22) — 2. f (1) — f(

— ([w1, w2]. f(23) (

+ ([z1, 23] f (22) — 2. f(

f(a1) (

- ([Cﬂz,iv:%]-

19.3 Cocycles, Coboundaries, and Cohomology
For convenience, if i is a negative integer we put C*(g, M) = 0 and d* = 0.
Definition 19.4. Let ¢ be a non-negative integer.

e An i-cochain f € C(g, M) is called an i-cocycle if df = 0. The space of i-cocycles is denoted

Z'(g, M) = ker(d")

e An i-cochain f € C'(g, M) is called an i-coboundary if f = dg for some g € C*~'(g, M). The
space of i-coboundaries is denoted

Bi(g, M) = im(d" 1)

Note that, since d o d = 0, every i-coboundary is an i-cocycle. Thus the following definition
makes sense.

Definition 19.5. The ¢:th cohomology group of g with values in M is defined as the quotient vector
space
Z'(g, M)

H'(g, M) = Bilg, M)’
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The zeroth cohomology group is already somewhat interesting. Since B%(g, M) = im(d~!) = 0,
we have H?(g, M) = ker(d®) = {ve M | z.v = 0 Vo € g}. This is the space of all g-invariants in M
and is usually denoted by M?$.
Of particular interest to us will be the first and second cohomology groups:
ker(d!) _ ker(d?)

Hl(gaM):mv HQ(gvM)* im(dl)'

Exercise 19.6. Show that for the adjoint representation M = g, Z'(g,g) = Der(g) and B'(g,g) =
ad g (the space of inner derivations). Conclude that H'(g,g) = Der(g)/ad g, sometimes called the
space of outer derivations.

20 Lecture 18: Whitehead’s First Lemma

In general, cohomology can be thought of as measuring the obstruction to carrying out certain
constructions. Thus, vanishing of cohomology means there are no obstructions; a desirable prop-
erty. Whitehead’s First and Second Lemma are two fundamental results about the vanishing of
cohomology for semisimple Lie algebras.

Theorem 20.1 (Whitehead’s First Lemma). Let g be a semisimple Lie algebra over a field of
characteristic zero, and let M be a finite-dimensional representation of g. Then

H'(g, M) = 0.

In this section we will prove this theorem.
We need two lemmas. The first one is a variant of the Jordan decomposition over not necessarily
algebraically closed fields.

Lemma 20.2 (Fitting’s Lemma). Let T be a linear transformation of a finite-dimensional vector
space V' over a field of characteristic zero. Then there exists a decomposition

V=WweWn
into two subspaces V; such that T(V;) < V; fori =1,2; T|y, is nilpotent and Ty, is invertible.

Proof. Let p(z) be the minimal polynomial of T. Write p(z) = z%(x) where d is as large as
possible. By the Remainder Theorem, the natural map k[z]/(p(z)) — k[z]/(z?) x k[x]/(¢q(z)) is a
ring isomorphism. For i = 0, 1, let e;(x) € k[z] such that

eo(z) =0 mod g(z) ei(x) =1 mod g(x)

{eo(x) =1 mod z¢ {el(x) =0 mod z¢
and define V; = ¢;(T)V. We have ¢;(T)? = ¢;(T), eo(T) + e1(T) = 1 and ey(T)e1(T) = 0 (since
when T is replaced by z the corresponding congruences hold modulo p(z)). Hence V = V@ V;.
Since ¢;(T") is a polynomial in 7" hence commutes with T, it is clear that T'(V;) < V; for i = 0, 1.
Since eg(z) = q(x)a(x) for some a(x) € k[z] we have TV, = p(T)a(T)V = 0 so Ty, is nilpotent.
Since ¢(z) is relatively prime to x we can write b(x)q(z) + c¢(z)z = 1 for some b(x),c(z) € k[x]
(Bezout’s identity). Thus for v = e1(T)w € Vi we have v = b(T)q(T)e1(T)w + ¢(T)Tv = ¢(T)Tv
since z? divides e;(x) and g(x)z? = p(x). Thus Ty, is invertible. O
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The second result we need is a property of the trace of the Casimir operator. A representation
V is called faithful if py is injective.

Lemma 20.3. Let g be a semisimple Lie algebra, and V' a faithful representation of g, and {(x,y) =
Tr (pv (x)pv (y)) be the trace form (it is non-degenerate, invariant, symmetric, bilinear.) Let Cy
be the corresponding Casimir operator. Then Tr(Cy) = dimg. In particular, if g # 0, then Cy is
not nilpotent.

Proof. Tr(Cy) = >, pu (i) pa(z?) = 3w, %) = dim g. O
We are now ready to prove Theorem 20.1.

Proof of Whitehead’s First Lemma. Let f : g — M be a 1-cocycle. Thus f is a linear map satisfying
f([z,y]) = 2. f(y) —y.f(x) Va,yeg. (20.1)

We must show that f is a 1-coboundary. That is, we must find v € M such that
f(z) =zw (20.2)

for all z € g.

Let I = ker pps. Then, in module notation, xz.v = 0 for all z € I and all v € M. By Proposition
17.14 and Corollary 18.2, there exists a semisimple ideal § of g such that g = I @b as vector spaces.
It suffices to find v € M such that (20.2) holds for all = € h because I = [I,I] (by Corollary 18.1)
hence, by (20.1), f(I) = f([L,I]) =I1.f(I) —I.f(I) = 0. So (20.2) would then hold for all = € g by
linearity.

First, suppose that [ = g, i.e. h = 0. In this case we may simply take v = 0, since then (20.2)
holds trivially for all x € b.

So we may assume I # g. Note that M is a faithful representation of § with representation
map p = pM’b :h — gl(M). Let {x;}™, be a basis for h and {z°}", be the corresponding dual
basis with respect to the trace form (z,y) = Tr (p(z)p(y)), z,y € b. By Lemma 20.3, the Casimir
operator Cyr = Y, p(x;)p(x") associated to b, is not nilpotent.

Thus, if M = My @® M; is the Fitting decomposition of M relative to Cj; (Lemma 20.2), we
have M; # 0. Write f(x) = fo(x) + fi(x) where f;(x) € M;. It is easy to check that f; both satisfy
(20.1). If dim M; < dim M for both i = 0,1 it therefore follows by induction on dim M that there
exist v; € M; such that f;(x) = z.v; for all x € h. Taking v = vy + v; we have (20.2) for all x € b.

So the case that remains is that My = M. That is, Cjs is invertible. Consider the following
element of M:

w = Zmlf(:nz)

96



For any x € h we have

Tw = Z[x ;). f(2") + z;.(z.f(2")) since M is a representation of h
= Z< z, ;) 20y f(2') + sz(:vf(x’)) by dual basis property (18.2)
= Za:] — g, [z, 27] >x + sz z.f(x )) by linearity of f and invariance of (-, )
= Zx] + xj. (33 f (x”)) by dual bases property (18.2) and bracket anti-commutativity

= ij. l‘].f (z)) since f is a l-cocycle

= Cum(f(x)) by definition of Cy;.
Thus, define
v = Oy (w).

Since Cyy commutes with all p(x), = € b, the same is true of the inverse of Cs. Consequently, for
all z € b,
z.v = p(x)Cifw = Cyfplz)w = Cyf (rw) = f(x).

21 Lecture 19: Abstract Jordan Decomposition

In this lecture we assume that k is algebraically closed.
Recall that in this case, the words “semisimple” and “diagonalizable” when talking about linear
operators on a finite-dimensional vector space.

Lemma 21.1. Assume k is algebraically closed. If D € Der(g) and D = Dy + D,, is the Jordan
decomposition of D, then Dy and D,, belong to Der(g).

Proof. Write g = @, 8, where gy = {z e g | (D —\)"(2) = 0,N » 0}. Then Dsz = Az for all
x € gx. For z,y € g we have the identity

N
(0~ 0t ) () = 35 ()0 =04, (0= )]
k=0

which can be proved by induction on N. This proves that [gx, g,] C g4

Soifx € gy and y € g, then Dy ([z,y]) = (A+p)[2,y] = [Az,yl+ [z, py] = [Ds(2), y]+ [z, Ds(y)].
By bilinearity, Ds € Der(g). Then D, = D — D, € Der(g) as well. O

Exercise 21.2. Prove the above identity.

The following proposition shows that in a semisimple Lie algebra over k = k, any element can
be decomposed in a way that is similar to the Jordan decomposition for a linear transformation.

Proposition 21.3. Let g be a semisimple Lie algebra over k =k and let x € g. Then there exists
a unique pair (s, T,) € g2 such that © = x4 + xp, [Ts,2,] = 0, adxs is semisimple and ad z,, is
nilpotent. Moreover, for any y € g such that [y, x] = 0 we also have [y, zs| = 0 and [y, x,] = 0.
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Proof. Let D = adx and let D = Dg+ D,, be the Jordan decomposition of D. Since D € Der(g) we
have Dg, Dy, € Der(g) by Lemma 21.1. By Whitehead’s First Lemma (Theorem 20.1) and Exercise
19.6, Der(g) = ad g. Thus there exist x5 € g and x,, € g such that ad(xzs) = D, and ad(z,) = D,.
Now adx = D + D,, = ad(xs) + ad(x,) = ad(xs + x,). Since ad is injective (its kernel equals 3(g)
which is a solvable ideal of g hence zero since g is semisimple), we obtain x = x4 + x,. Similarly,
0 = [Ds, D] = [ad(zs),ad(zy)] = ad[zs, zy,] implies [xs,z,] = 0. And adzs = Dy is semisimple,
ad x,, = D, is nilpotent. This shows existence. If (Z,, Z,,) is another such pair, then ad Zs + ad Z,,
is the Jordan decomposition of ad x, hence adZ; = ad x; and ad Z,, = ad x,, by uniqueness. Thus
Ts = x5 and T, = x,. Lastly, if [y,2] = 0 then 0 = ad[y,z] = [ady,adz]. So ady commutes
with ad z. By the usual Jordan decomposition, ad y therefore also commutes with the semisimple
and nilpotent parts, i.e. with ad(zs) and ad(zy). So 0 = [ady,ad(zs)] = ad[y, zs] which implies
[y,xs] = 0. Similarly [y, z,] = 0. O

The abstract Jordan decomposition behaves well under representations:

Theorem 21.4. Let g be a semisimple Lie algebra and V a representation of g. Then

pv(zs) = py(x)s, pv (Tn) = pv (T)n, (21.1)
where all subscripts refer to the abstract Jordan decomposition.

Proof. Put p = py. Let ad denote the adjoint representation of the Lie algebra p(g). We have
ad p(x) = ad p(xs) +ad p(zy) since = x5+ x,. Let y1,...,y, be a basis for g such that ad(zs)y; =
Aiyi. That is [zs, yi] = Niviyi. Applying p this gives [p(zs), p(yi)] = Xip(y;). Therefore ad p(xs) is
semisimple. Similarly ad p(zy) is nilpotent, and they commute and sum to ad p(x). By uniqueness
of the abstract Jordan decomposition, we have ad p(zs) = ad p(z)s and ad p(z,) = ad p(z),. Since
the image of p is isomorphic to a quotient of a semisimple Lie algebra, it is semisimple by Corollary
18.2. Therefore ad is injective. Thus we conclude that (21.1) holds. O

Later on we will prove the following result. It actually requires some more work (Weyl’s Theo-
rem).

Theorem 21.5. Suppose k = k. If g = gl(V) is a semisimple Lie subalgebra then the usual and
abstract Jordan decompositions coincide.

Once we establish this theorem, it means that representations map the abstract Jordan decom-
position to the concrete (linear) Jordan decomposition.

22 Lecture 20: Weyl’s Theorem on Complete Reducibility. Short
Exact Sequences of Lie Algebras.
22.1 Complete Reducibility

Definition 22.1. A representation V is irreducible if V' # 0 and the only subrepresentations are
{0} and V. A representation of is completely reducible if

V=V

n
i=1

where V; are irreducible subrepresentations.
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If V and W are representation of a Lie algebra g then the space Hom(V, W) of all linear maps
from V to W is also a representation of g with action

(z.f)(v) = z.(f(v)) — f(z.v), Vx e g, f € Homg(V,W),veV.

Exercise 22.2. Check that this makes Hom(V, W) into a representation of g. (That is, check that
[2,y].f = zy.f—yx.f)

Note that x.f = 0 for all € g is equivalent to that f is an intertwining operator. The space
of intertwining operators from V' to W is denoted Homg(V, W). And the space of g-invariants of a
representation V is V9 = {v e V | z.v = 0 Vz € g}. Thus we have Hom(V, W)? = Homgy(V, W).

Theorem 22.3 (Weyl’s Theorem on Complete Reducibility). Let g be a semisimple Lie algebra.
Then every finite-dimensional representation of g is completely reducible:

where V; are irreducible subrepresentations.

Proof. Let V' be a finite-dimensional representation of g and let U < V be a subrepresentation.
By induction on dim V' it suffices to show that there exists a subrepresentation U’ of V such that
V=UaU.

Let

V= {f € HOHI(‘/, U) | f‘U = kIdU}a

U ={f €eHom(V,U) | f|, =0} 7.
Let p: V — U be any linear projection, i.e. p|y = Idy. Then p € ¥ and in fact the image of p in
the (one-dimensional) quotient space ¥'/% is a basis.

For z € g and u € U we have (z.p)(u) = z.(p(u)) — p(z.u) = x.u — z.u = 0. Thus x.p e %Z. Let
©:g— % be given by ¢(z) = x.p for x € g. We show that p e Z'(g,%):

o([z,y]) = [z,ylp=2.yp—yap
= z.0(y) — y-o(x).
By Whitehead’s First Lemma (Theorem 20.1), there exists 7 € % such that ¢ = d°T. That is,
z.p=aT forall x € g. Let 1 =p—T. Then x.m = 0 for all x € g. By the comment preceeding
the statement of the theorem, this means that 7 is an intertwining operator from V to U. Also,
72(v) = 7(v) for all v € V which means 7 is a projection. Let U’ = ker(7). Since 7 is an intertwining
operator, U’ is also a subrepresentation of V. By standard linear algebra arguments, V = U @ U’.
(Any vector v € V can be written v = 7(v) + (v — 7(v)) and w(v — 7(v)) = 0so v —7w(v) € U'. If
veU N U’ then v = w(v) =0.) O

22.2 Short Exact Sequences
Let I, g and g be any three Lie algebras. A short ezact sequence (SES)
0—I-53-5g—0

is a sequence of Lie algebras and Lie algebra homomorphisms such that the kernel of each map is the
image of the previous map. This means that ker(:) = im(0) = 0 so ¢ is injective; im(7) = ker(0) = g
so 7 is surjective; and ker(m) = im(¢) which means that +(I) is an ideal of g and g/c(I) =~ g.
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Proposition 22.4. Given a SES
0—I-5§-"5g—0
the following are equivalent:
(i) g ~ g xq I for some a.

(i) There exists a Lie algebra map o : g — § called a section such that mo o = Id,.

23 Lecture 21: Whitehead’s Second Lemma and Levi’s Theorem

23.1 Whitehead’s Second Lemma

Theorem 23.1 (Whitehead’s Second Lemma). Let g be a semisimple Lie algebra over a field of
characteristic zero, and let M be a finite-dimensional representation of g. Then

H?%(g, M) = 0.

Proof. Let I = kerpp;. By Proposition 17.14 and Corollary 18.2 we have g = I @ b for some
semisimple subalgebra b of g. Let {z;}"™, be a basis for h and {z'}", be the dual basis for h with
respect to the non-degenerate invariant symmetric bilinear form (x,y) = Tr (p(x)p(y)), z,y € b,
p= pM‘h. Let Cyr = X% p(xi)p(x?) be the corresponding Casimir operator.

Let fe Z%(g,M). Thus f: g x g — M is a bilinear map satisfying f(z,y) = —f(y,z) and

y1-f (1, y3) — yo-f(y1,y3) + y3.f(y1, y2) +
— f([yr, v2l,u3) + f(lyes vels v2) — f([y2 ys],y1) = 0.

This may be written without minus signs in a cyclic permutation way reminiscent of the Jacobi
identity:

y1-f (y2,y3) + f (y1, [y2, y3])
+y2.f (y3,91) + [ (y2, [y, 11])
+ys.f(y1,y2) + f(ys, [y1,92]) = 0.

Now choose y3 = 2 and act (via the representation) by z;, then sum over i to get:
0=>" {wi.yrf(y% 2') + i f (y1, [y22'])
i

+ xi-yz-f(l‘i,yl) + ﬂfi-f(?/% [l‘i@i])
+ . f (2, [y, y2])} + Cu (f(y1,92))

Now use the module identity z.y.v = y.v.x + [x,y].v in the first and second line (ignore the colors
for now):

= Z {yl.xi.f(yg, &) + @i, 1] f (y2. ') + i f (y1, [y2, 27])
+ ny’Lf(xz)yl) + [xl7y2]f<xl7 yl) + xi'f(y27 [xia yl])

@i f (ol v]) | + O (F(91,92))- (23.1)
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We have, using the dual basis properties (18.2),
Z[xiayl] 927 Z< l”uyl 1"]>1‘] y27 ij ?/2, yhdjj])
i .3
and

Z[xiayZ] ') Z< zi, y2), 27 f (2, 1) ng [y2,27], 1)

i

thus four terms (red and blue) in (23.1) cancel out pairwise, Wthh yields
Cu(flyr,y2)) + Z {yl-xi‘f(y% ) + yooxi- f(2', y1) + m f (2, [y, yz])} =0. (23.2)

First let us consider the case that h # 0. Let M = My @ M; be the Fitting decomposition of
M relative to Cyy (Lemma 20.2). Since Cjy is an intertwining operator, the M; are actually g-
subrepresentations of M (the action of I is zero anyway and Cj; commutes with p(x) for any = € b).
Since h # 0 and M is a faithful representation of b, the Casimir Cjy is not nilpotent (Lemma 20.3).
Thus, M; # 0. Suppose that My # 0 as well. Write f(z,y) = fo(z,y) + fi(z,y) for unique bilinear
functions f; : g x g — M;. Since f is a 2-cocycle it is immediate that each f; is a 2-cocycle with
values in M;. Thus, by induction on dim M, there are g; € C'(g, M;) such that d'g; = f;. Taking
g = go + g1 we obtain that d'g = f and thus f € B%(g, M). So we may assume that My = 0. That
is, the linear operator Cj; : M — M is invertible. In this case we define g : ¢ — M by

= Z C’]\_/[1 (xlf(:):’, y))
i=1

Then we have

(d'9)(y1,y2) = y1.9(y2) — y2.9(y1) — 9([y1, v2])
Z yr.@i f (2, y2) — yowi f(2',y) — i f (28, [y, v2]) = Fyr,y2)

by (23.2).
It remains to deal with the possibility that h = 0. That is, x.v =0 for all x e gand v € M. In
this case the identity for f can be written

F(lyrsv2l,ys) + f([yz,wsl o) + F([ws, val y2) =0 (23.3)
Put .# = Hom(g, M), regarded as a representatin of g, and define F' € Hom(g, .#) = C'(g, .#) by
F(z)(y) = f(x,y). Then (23.3) implies that F € Z'(g, .#). Indeed,

F([y1,y2]) (w3) = f([y1, y2), y3)

while

(y1.F (y2) — y2.F (1)) (y3) = yrFeyzs7s) — f (2. [y1, )

— Y. s) + £ (y1, [y2, ys])

= —f(lys, v1l v2) — f([y2, ysl, v1)-
Therefore, by Whitehead’s first lemma (Theorem 20.1), there exists g € .# such that d’g = F
Written out, this is saying (z.g)(y) = f(z,y). By the definition of g action on .# = Hom(g, M)
this means z. (g(y)) - g([w, y]) = f(z,y). Since g is acting trivially on M, this is equivalent to that

2.9(y) — y.9(z) — g([z,y]) = f(z,y). That is d'g = f (now viewing g € Hom(g, M) = C*(g, M)).
Thus f € B*(g, M). O
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It is natural to wonder about the third cohomology group. Although we won’t discuss it further
here, in general it is nonzero, even for a semisimple Lie algebra.

23.2 Semi-Direct Products of Lie Algebras

Definition 23.2. If a Lie algebra g is a vector space direct sum of a subalgebra a and an ideal I,
then g is said to be the (internal) semi-direct product of a and I and we write

g=axl.
(or I x a.)
Note that if g = a x I then the adjoint action on g gives a map
a:a— Der(I), a(a)(z)=[a,x]el
and the bracket in g can be expressed as

la + 2,b+y] = [a,b] + ([a,y] + [z, ] + [z, y])
= [a,0] + (a(a)(y) — a(b)(z) + [z, y])
for any a,be a and x,y € 1.

We can use this formula the basis for an external semi-direct product of any two Lie algebras
(not a priori subalgebras of the same Lie algebra).

Definition 23.3. Let a and I be any two Lie algebras, and a: a — Der(]) be a Lie algebra
homomorphism. Define a x, I to be the Lie algebra with underlying vector space a @ I with
bracket

[a+2,b+y] = [a,b] + (e(a)(y) — a(b)(z) + [2,y])

for any a,be a and z,y € I.

Exercise 23.4. Let g = a x, I. Show that g is indeed a Lie algebra and that d=ax{0}isa
subalgebra of gand I = {0} x I is an ideal of I. Conclude that g is the internal semi-direct product
of a and I.

Thus we can go back and forth between internal and external semi-direct products.

23.3 Levi’s Theorem

We define
gss = g/rad (g)

This is the largest semisimple quotient of g.

Theorem 23.5 (Levi’s Theorem). Suppose chark = 0. Any finite-dimensional Lie algebra g is
the semi-direct product of a semisimple and a solvable Lie algebra. More precisely, there exists a
semisimple subalgebra g% of g such that g = g% @rad (g) as vector spaces. Equivalently, there is a
Lie algebra homomorphism « : gss — Der(rad (g)) such that

0= gss X rad (g) .

Proof. ]
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24 Lecture 22: Cartan Subalgebras and the Root Space Decom-
position

24.1 Toral and Cartan Subalgebras

Let g be a semisimple Lie algebra over k and assume k is algebraically closed.
Then we have the abstract Jordan decomposition available for any element « € g.

Definition 24.1. Call x € g semisimple if ad x is semisimple, and nilpotent if ad x is nilpotent.
Definition 24.2. A subalgebra h c g is toral if

(i) b is abelian, and

(ii) b consists of semisimple elements of g.

Note that, when g # 0, there is always at least one nonzero toral subalgebra: If every x € g is
nilpotent then g is nilpotent by Engels theorem, hence solvable hence g = rad (g) = 0 which is a
contradiction. Therefore there exists x € g with x5 # 0. Then kx; is a toral subalgebra of g.

Definition 24.3. A subalgebra h < gis a Cartan subalgebra if b is toral and not properly contained
in another toral subalgebra.

In other words, a Cartan subalgebra is a maximal element of the family of all toral subalgebras
of g.

24.2 The Root Space Decomposition

Suppose we fix a toral subalgebra h < g. Eventually we will only be interested in the case of
a Cartan subalgebra but the contents of this section does not depend on any assumption about
maximality.

Let {h1,ha,...,h,} be a basis for h. Then {ad h;}!_; is a family of commuting diagonalizable
linear operators on g. So there exists a basis for g consisting of vectors that are common eigenvectors
for all the operators ad h;, i = 1,2,...,r.

Let x be such a common eigenvector. That means that there exist oy, as, ..., a, € k so that

[hi, z] = ayz, Vi=1,2,...,1

We wish to express this in a basis independent way. Notice that if h € h and we write h = ), ¢;hy,

¢; € k, then
x] = [Zcihi,m] = ch hi,z] = Z}czozZ

Thus if we define a linear functional « € h* = Hom(h, k) b,

Ck(hz) =
then we may express the property that x has as follows:
[h, 2] = a(h)x Vh € b. (24.1)
This is the basis independent form.
For any a € h* we put
={zeg||h,z] =alh)r Vhe b} (24.2)

The case a = 0 plays a special role, because gg coincides with the centralizer of b in g:

go = Cy(h) = {z e g|[h,z] =0 Vhe b}
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Definition 24.4. Let g be a semisimple Lie algebra over k = k and h — g a toral subalgebra.

1. A nonzero linear functional a € h* is a root (of g with respect to h) if g, # 0.
2. The set of roots of g is denoted by ® = ®(g) = ®(g, h) and is called the root system of g.
3. x € g is called a root vector if x € g, for some a € ®.

4. When « is a root, the vector space g, is called the root space associated to a.

Example 24.5. If b is one-dimensional, say h = kh, then a root of g with respect to § is essentially
just an eigenvalue of ad h acting on g. Similarly in this case a root vector is just an eigenvector of
ad h, and root spaces are eigenspaces of ad h.

As discussed above, in this new terminology we may say that g has a basis consisting of root
vectors. That can also be expressed as follows:

g=@ ga
aeh*

Since g, # 0 only for a € {0} U ® we obtain the so called root space decomposition of g with respect
to the toral subalgebra b:

g=Co(h) ® P ga (24.3)

acd

Example 24.6. Let g = sl3 and b be the set of diagonal matrices in g. Then ® = {g; —¢; | 1 <
i,7 < 3,i # j} where ¢; : h — k is defined by ¢;(diag(a1,az,as)) = a;. To see this it suffices to note
that F;; € Oe;—c; which follows from the computation

[h, Eij] = [Z CiEii7Eij] = CiEij - CjEi‘ = (82‘ - EJ)(h)E'Z
for any h = >, c;Ey € b.

This decomposition will play a key role in the classification of semisimple Lie algebras. Our
first steps towards that goal is the following proposition.

Proposition 24.7. Let g be a semisimple Lie algebra over k =k and b g a toral subalgebra.

(a) For all a, 8 € h* we have
[9a:88] < Gats- (24.4)

(b) If « € b* and a # 0 then every x € g, is nilpotent.

(c) Ifa,B € b* and o+ 3 # 0 then the spaces go and gg are orthogonal with respect to the Killing
form:

K(ga, 8p) = 0. (24.5)

Proof. (a) Let x € g4, y € gg and h € h then by the Lebniz rule form of the Jacobi identity:
(7, [z, y]] = [[h, 2], 9] + [, [h, y]] = b)) [z, y] + B(R) [z, y] = (o + B)(h)[z, y].

(b) Since g is finite-dimensional, ® is a finite set. Let a € h* be nonzero. Choose n to be a
large enough positive integer such that V3 € ® : § + na ¢ ®. Then (ad g,)" = 0.
(c) Let h € b be such that (a + 8)(h) # 0. Then for every x € g, and y € gg:

O‘(h)ﬁ(xvy) = ﬁ([h7$]7y) = _’{([lﬂ?h]?y) = _K(hv [hvy]) = —ﬁ(h)li(l’,y)
This implies that x(z,y) = 0. O

Corollary 24.8. The restriction of the Killing form r to Cyq(h) x Cy(h) is non-degenerate.
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25 Lecture 23: Properties of the Root Space Decomposition

Example 25.1. Let g = sl(n,C), then h = {diagonal matrices of trace 0} is a Cartan subalgebra.
Indeed, b is commutative, and if h € b,

adh: g—g
xz— [h,z] VYxeg

is diagonalizable h = eh = 2 h;Ei;. Then
7

(adh)(Ei;) = [b, Ey]
= th[Ekk, Ei;]
= (hi — hj) Eij.

So b is toral. Also, if € Cy(h), then [h,z] = 0 Vh € h. Pick h with distinct eigenvalues. This
implies any eigenvector for h is an eigenvector for . Which implies z is diagonal and thus in x € b.

Lemma 25.2. Cy(h) is a reductive Lie algebra.

Proof. If I is any ideal in Cy(h) then so is I+ (with respect to the Killing form on g) and Cy(h) =
I @ I'. Repeating this argument (the Killing form on g will be non-degenerate on both I and I+)
we can write Cy(h) as a sum of ideals which are either simple or one dimensional. The sum of the
one dimensional ideals make up the center. Thus Cy(h) is the sum of a semisimple Lie algebra and
a central ideal. O

Theorem 25.3. If h is a Cartan subalgebra then Cy(h) = b.

Proof. Let h < g be a Cartan subalgebra.

o=@ 000 a={reg|[ha]=alh)z Vheb}

ach*

Note, Cy4(h) = go. We claim that g, is toral. (Then, since h < g, and h maximal among toral
subalgebras, h = gy.) Let 2 € gg. Then (ad x)|4, is nilpotent. Otherwise, it has a nonzero eigenvalue
and (adzs)|g, # 0. This implies s ¢ b, and h@kz, is a toral subalgebra that strictly contains b
which is a contradiction. By Engel’s Theorem (Theorem 14.8), g, is nilpotent. By Lemma 25.2,
therefore g, is abelian.

It remains to show that g, consists of semisimple elements. Let x € g,. We want to show that
xn = 0. adzy, is nilpotent and g, is commutative; therefore, (ad z,)(ady) is nilpotent for every
y € go- Thus Tr ((ad z,)(ady)) =0 Yy € go. Hence, x,, = 0 since kg, x g, is non-degenerate. [

Fact: If h; and ho are two Cartan subalgebras of g, then there exists a Lie algebra automorphism
¢ of g such that ¢(h1) = by.

Definition 25.4. The rank of a semisimple Lie algebra g is rank g = dim § where b is any Cartan
subalgebra.

Example 25.5. ranksl(n,C) =n—1
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25.1 Representations of sl[(2,k)
Recall s[(2,C) has a basis {e, f, h}

01 00 1 0
Sl EO i R ()
with [e, f] = h, [h,e] = 2e, [h, f] = —2f.

Theorem 25.6. For each non-negative integer \ there exists an (A + 1)-dimensional irreducible
representation V() of sl(2,k). Furthemore, any finite-dimensional irreducible representation of
s((2,k) is isomorphic to V(X) for a unique non-negative integer \.

Proof. Let \ € Zxg, let Vi = k[z,y]) = ka* @k 'y @ --- @ ky” and define
pa: sl(2,k) — gl(V(A))

by
pae) =20, p(f) =90 pah) = 20, — i,
Note that dim V), = A + 1.

Exercise 25.7. V() is an irreducible representation of sl(2,k).

Conversely, let (V, p = py) be any finite dimensional irreducible representation of sl(2,k). Put
(E,F,H) = (p(e), p(f), p(h)) and for p ek put V[u] ={veV | Hv = pv}.
Step 1:

EV[p] < V]p+2]
FV{pl < Vip—2]
HV[pu] < V][]

hence, V' := (—B V[u] is a subrepresentation of V. Since V is finite dimensional and k is algebraically
nek
closed, 3 € k such that V[u] #0= V' # 0=V = V' since V is irreducible.
Step 2: 9\ € k and vy € V[A]\{0} with Fvy = 0. Indeed, pick any nonzero w, € V[u] some
p € k. Then E"w, € V[u+2n]. Since V is finite dimensional, eigenvectors are linearly independent,
= In >0 E"w, # 0, E"w, = 0. Put A = p+ 2n, V) = E"w,.
Step 3: Wy = span{F™v)},>0 is a submodule of V', hence V' = W,. Indeed

HF" vy = (A —2n)F"v)
FF" W, = F" 1y,
EF%) = Evy =0

and for n > 0:

EF"y = ([B,F] + FE)F" v,
— HF" Yoy + FEF" V.

Now HF" vy € Wy and by induction EF" vy € Wy. Thus HF" vy + FEF" 'V, € W,.
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Step 4: A€ Zpso, V=V[A|®V[A=2]®---®V[-A] and V[X — 2n] = kF"v). To see this, let
n be the smallest positive integer such that F"v) = 0. Then

0= EF"vy = |E, F"]vy
= (HF" '+ FHF" > + ... + F" ' H)v,
=A=2n—1)+A=2n—=2)+---+ N F" o,

This implies A =n — 1 =n = XA+ 1 and {vy, Fuy, ..., F*vy} is a basis.
Step 5: Define

1
O:V > V(A =Clz,y]x, Fuy — 748’\_",1;”.

A —n)!
Then
(P() @) (F"02) = B(F" 1 05) = a7y
while 1 ]
(A1) 0 BYF™02) = 0ol ™0) = e

Similarly ® o p(e) = pa(e) o @ and ® o p(h) = pr(h) o ®. This implies a bijective intertwining
operator. O
25.2 From Semisimple to Simple

g is finite dimensional semisimple Lie algebra over k and h g a fixed choice of Cartan subalgebra.
The following is easy to check:

Theorem 25.8 (Theorem 6.39 in Kirillov). Let g = [, g;- Then
i) Every Cartan subalgebra of g has the form b = [ [, h; where b; is a Cartan subalgebra of g;.

ii) Then ® = | |, ®; a disjoint union where ®; < (h;)* — @(bh;)* = b* is the root system of g;.

25.3 Coroots
Definition 25.9. For each a € R, there is a corresponding coroot a¥ = hq € b.

Let (, ) be an invariant non-degenerate symmetric bilinear form on g. We know that the
restriction to b is non-degenerate. This implies that h =~ h* by h +— (—, h). Let H, be the inverse
image of o under this map. Then

(Hp, h) = a(h) Vheh.
Also convenient to define h* by (o, 8) := (Ha, Hg) = a(Hp).

Lemma 25.10. (a,«) = (Hy, Hy) # 0.
2H,

(o, )

Then we can define h, =

Note 25.11.

i) The 2 is to get an integer later.
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ii) If g is simple we know that (-,-) is unique up to scalar i.e. (+,-)" = &(+,),& € k*. Then

W 2H! _ 261 H, _
N N L e R G

Hence, h,, is independent of (-, -).

26 Lecture 24: The Root System of a semisimple Lie Algebra

Today we discuss the connections between finite dimensional semisimple Lie algebras over k and
Root systems.

finite dimensional semisimple Lie algebra over k — Root systems ( — Dynkin diagrams) ix

Let g be a finite-dimensional Lie algebra over k, (-, ) is the Killing form, b a Cartan subalgebra
of g, and R root system of g.
Lemma 26.1 (sl(2,k) triples). Let a € R. Pick eq € g, where eq # 0. Choose f, € g_, by
2
(6047 foc) = .

(o, @)

(Recall by lemma 25.10 that (o, ) # 0.) Define sl(2,C)q := Ceq @ Cfy @ Chy, which is a Lie
subalgebra of g isomorphic to s((2,C).

Proof. Claim: [eq, fo] = (€, fo)Ha. Indeed for all h e b

(a.0)

[eowfoz] = (eomfa) ’ 2

Also,

[homeoa] = a(ha)ea = (Hayha)eoc =
Similarly [ha, fo] = —2fa- O
Lemma 26.2 (Lemma 6.43 in Kirillov). Let a € R. Then

V=kha ®@ go © 9
keZ
k#0

is an irreducible subrepresentation of g with respect to the adjoint action of sl(2,C), on g.

Tt turns out these maps are isomorphisms, but we save this for a later time.
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Proof. We check V' is a subrepresentation of g. We have eq. gro = [€as 8ral © 8(k41)a- Note that
V[0] = khq and V[2k + 1] = 0 since hq.x = 2kx for all z € g,,,. By Exercise 4.11 in the text, V' is
irreducible. O

Theorem 26.3 (Structure of semisimple Lie Algebras over k = k).

(1) R spans b* as a k-vector space and {ha}acr span b as a k-vector space.
(2) dimg, =1 for all « € R.
(3) Ya, B € R then

(4) For any a € R, the reflection

Sai b = b*

A A — Aha)a
N
-2

preserves R, i.e. so(f) € R Vo, B € R. In particular, —a = so(a) € R Va € R.
(5) Vae R (ka) n R = {a, —a}

(6) Yae R, VB € R such that 8 # ta then V = @rez 8p4k+q 95 an irreducible s1(2,k),, represen-
tation with respect to the adjoint action.

(7) If a, B € R such that o+ 3 € R, then [g,, 03] = 8015

Proof. (1) Suppose h € h with a(h) = 0 for all @ € R. Then adh: g — g is the zero map. This
implies h € 3(g) = 0= h = 0. Thus R spans h*. The final part comes from h < h* by b, — «a.

(2) By Lemma 26.2 and representation theory for s((2,k), V = kho ® D 914 9o has dim 1 for
all k,a = k=1 for all « € R.

(3) B(ha) is the weight of x € gz with sl(2,k)-action ha(z) = B(ha)x. By representation theory
of s[(2,k), they are all integers.

(4) = € gg has weight n := ((hs) suppose n > 0, Then f7: gz 5 93—an, 50 if 0 # v € gg then
95-na # 0. Which implies § — na € R with s,(8) = 8 —na. For n < 0 we use ef}, instead. (5)-(7)
Read yourselves. O

Example 26.4. g = s((3,k), h = kh; + khy with

1 0 0 00 O
hy=10 =1 0 and ha=10 1 0
0 0 O 0 0 -1

Note that
[hl, E12] = 2E12 and [hl, Elg] = —E12
so Ey2 € g, with a(h1) = 2 and a(hg) = —1. Similarly o3 € gg with 3(h1) = —1 and S(hz) = 2.
a a+pf
Now E13 = [Ei2, E23] € gorp- So R = {£a,+f,+(a + £)} and —a B with
—a—p —p
(o, B) = (Ha, Hg) = 2c0s(120°) = —1.
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27 Lecture 25: (Abstract) Root Systems

Definition 27.1. An (abstract) root system is a finite subset of a Euclidean space R < FE\{0}
where FE is a Euclidean space, such that

(R1) spangR = E;

2(av,
(R2) Yo, € R: nag = ((gj BB)) € Z;
(R3) Let so: E — E given by
2\
Sa(A) = A — (0.0) a.

Then s,(5) € R Vo, 5 € R.
(R4) Yae R (Ra) n R = {a, —a}.
Note 27.2. s, is the orthogonal reflection in the root hyperplane Lg:
Lo =at={\eE|(\a)=0}

Example 27.3. Let g be a finite dimensional semisimple Lie algebra over k and h < g Cartan
subalgebra. Then the set of roots of g with respect to b is a root system is a root system in hx
where

hr = spang{h, | a € R}

a real form of b i.e. hr ®rk = bh. b = {A € b* | A\(h,) € R Ya € R} (By a lemma (-, -) Killing form
restricted to by is a positive definite inner product.)

Notation 27.4. If v e V, A € V* we define (v, \) = (\,v) := A(v).

Definition 27.5. Let R — E be an (abstract) root system. The coroot a¥ of a € R is defined by
a € E* where
2(\, )

(,a)

v, \) =

Note 27.6.
(1) This is consistent with the Lie algebra definition of coroot:

2H,

Vo ha _
“ (a, )

where (H,, h) = a(h) Yh e b.
(2) Integrality says (o, Y )€ Z Yo, B € R and so(A\) = A — (A, a¥)Ha.

Example 27.7 (Root system of type A,,_1). Let {g;}]"; be the the orthonormal basis for R". Let

E={1,...,\) eR| Y A =0}
=1

R={e;—¢j|1<i,j<n,i+#j}.
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2(e, B)

Then R spans E over R. (g; —¢j,6i —¢j) =2 = (o,f) € Z Yo, € R = .5

= (a,p) € Z.

Now,

Sei—e; (A1 5 Ais e Ay A) = (A& —g5) - (60— €5)
= A= (A = A) (e — &)
=X —Nig; — Agj + Nigj + Ajgg
= AL A A A
= S¢,—¢; <> (1]) € Sp.

Clearly s,(8) € R. Lastly, R, n R = {£a} is clear. Fact: A,,_1 "is” the root system of sl(n,k).

Definition 27.8. An isomorphism from Ry c F1to Ry € F» is a R-linear isomorphism ¢: Fy — Fo
such that

i) p(R1) = Ro;
i) Nep(a)pp) = Nap for all a, B € Ry.

Example 27.9. R < F is isomorphic to ¢.R a root system by p: £ — E by A — c¢- A for all
c € R\{0}.

Definition 27.10. The Weyl group W = W (R) of a root system R c E is the subgroup of GL(FE)
generated by {s, | @ € R}.

Lemma 27.11. Let W be the Weyl group of a root system R c E.
1) W is finite;
2) W < O(E) the orthogonal group
3) Ifwe W, ae R then wsqw™ ! = Sw(a)-

Proof. 1) We know W (R) < R since so(R) < R, so we get a map ¢: W — Sg. We claim that ¢ is

injective. Suppose w € ker ¢, then w(«a) = « for all @ € R. By R spanning E we get that w = Idg.
2) Each s, is an orthogonal transformation (i.e, (s4(\), so (1)) = (A, p) for all A, u) = W < O(FE)
3) Consider the following calculation

(wsaw™)(A) = w(sa(w™ (V)
_ w<w1(>\) _ (w(A),a)a)
(

(a; @)
A w(a))
(w(e), w(@))
= Sw(a) ()\)

=\—2 w(«)
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28 Lecture 26: More on Root Systems

Theorem 28.1. Let «, 3 be non-parallel roots of a root system R. Let 6 € (0,2m) be the angle
2 2
between them. Then 6 € Z% v Zg and +{nag, nga} € {{0,0},{1,1},{1,2},{1,3}}.

Proof.

2(a, ) 2(8, @)

(8,8) (o, )
_ 4]al?|B]? cost
ICRER

=4cos’ 6

7 3 NapNBa =

28.1 Root Systems of Rank 2

AI X Al AQ B2 = CQ G2

Ar x Ay (or A; u A4y) < sl(2,k) x s((2,k)
Ag < sl(3,k)
By = Cy <> s0(5,k) = sp(4,k)
G2 < Der(0)

Where Der(0) is the Lie algebra of derivations of the octonions, which is one of the five exceptional
simple Lie algebras.

28.2 FEle;, Weyl chambers, and Positive Roots

Definition 28.2. Let R c E be a root system. The set of reqular vectors in E is

Frg ={T€ E|VaeR: (1,a) 7&0}=E\ULQ where Ly = o
aeR

The connected components of E,qg are called the Weyl chambers of R.
Given a Weyl chamber C, we associate a polarization of R:

R=R;uR_,where Ry ={aeR|+(a,7) >0}, 7€ Freg

Call a € R, (respectively R_) a positive (respectively negative) root.
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Remark 28.3. This doesn’t depend on the choice of 7 € C'. C, being defined as a set of linear
inequalities of the form (a,7) > 0 (or (e, 7) < 0), is intersection of (open) half-spaces. Therefore,
C' is convex. So if 7,7/ € C then the straight line segment [7,7'] < C. By the intermediate value
theorem, RT = R]:.

Remark 28.4.If 7 € E\; and a € R, then V3 € R:
(sa(7),8) = (T,54(B)) # 0

Now s4(f8) € R, hence s4(7) € Eyeg. Moreover, if 7,7’ belong to the same connected component C'
of Ereg. Let p = [0,1] — Eyeg be a path from 7 to 7/. Then s, o p is a path from s,(7) to sq (7).
So W acts on my(Ereg) = {C' | connected components}. Lastly, note that, the Weyl group acts on
R by root system automorphisms. (More generally we have O(E) — Aut(R)).

Theorem 28.5. The action of W on my(Ereg) is transitive. YC,C" € mo(Ereg) Jw e W: w(C) = C’.
Thus every root system has a unique polarization, up to a Weyl group automorphism of R.

Proof. Let C,C’ be any two Weyl chambers. Pick 7 € C, 7/ € C' such that 7 + 7/ # 0. Then the
line segment [7,7’] is contained in E\{0} and crosses some of the hyperplanes Lg,, Lg,,...,Lg,.
Claim: If C and Cs are adjacent, i.e. Lg = spang (C n C3), then 53(C1) = Cy. Pick 7 € O, the
line segment [7, s3(7)] only intersects Lz. Hence, (sg(7),a) and (7, a) have the same sign for all
ae R\{B}. Thus C' = sg, ---s5,(C). O

29 Lecture 27: Simple Roots

Last time discussed how any root system R has a unique (up to Weyl group automorphism) polar-
ization R = Ry u R_.

Definition 29.1. a € R is simple if it is not a sum of two positive roots.
Lemma 29.2. Every positive root is a sum of simple roots.

Proof. Let a € R. If « is simple we are done. If not, « = 8+ ~, for 8,7 € R.. Then pick
TeCir ={ e E|(\d)>0Vd € Ry}. Then (a,7) = (8,7) + (v,7) each of which is strictly
greater of zero = (8,7),(v,7) < (a,7). The set {(¢/,7) | ¢ € Ry} is finite; therefore, totally
ordered. So we proceed by induction (or by contradiction). O

Proposition 29.3. Every root is a unique combination of simple roots with integer coefficients:

-
o= Zniai, n; €2
i=1

Where I1 = {«, ..., .} is the set of simple roots. Moreover, « € Ry < +n; >0 Vi

Proof. With out loss of generality o € R..

Step 1: Linear algebra fact: If {v;}; € E is a set of vectors, all lying on the same side of some
hyperplane, such that (v;,v;) <0 Vi # j, then {v;}; is linearly independent. (Exercise)

Step 2: By Step 1, it suffices to show that (a;,c;) < 0 Vi # j. Fix i # j and let R’ =
(Za; + Zoy) N R. By Exercise 29.4 below, R’ is a root system of rank two. Let R, = R’ n R.
Then R’ = R/, u R" is a polarization of R’ and «;,a; are the two simple roots with respect to
this polarization. By the description of the root systems of rank two, it now follows that the angle
between «; and «; is obtuse, hence (o, ;) < 0.

O
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Exercise 29.4. If o, f € R, a # 0, then (Za + ZS) n R is a root system of rank 2.
Corollary 29.5. II is a basis for E over R, so |lI| = dim E' = rank R.

Proof. 1I linear independent and spans R over Z, and R spans E over R = II spans F over R. [

29.1 Simple Reflections
Definition 29.6. R =R, u R_, Il = {a1,...,a,}. Then s; = s,, are called simple reflections.

Proposition 29.7. Any simple reflection s; permutes the positive roots other than o, i.e. s;j(Ri\{a;}) =
R\fai},

Proof. Let p € Ry with g = Z;O=1 njaj n; = 0. Then s;(8) = B — (< B,a;)04. So if s;(f) € R_,
then n; < 0 for all j # 4. This implies that n; = 0 for all j # i. Thus § = nja; = [ = o;. ]

Corollary 29.8. The Weyl vector, p = %ZaeR+ « satisfies:
(pya; )y =1 Vi=1,...,r
equivalently s;(p) = p — ;.
Theorem 29.9.
i) The simple reflections generate the Weyl group.
ii) Vae RIwe W, a; e Il: a = w(wy).

ili) W acts simple transitively on mo(Ereg) i.e. if w(C) = C, then w = 1.

30 Example: sp(4,k)
For C* we have symplectic form w: C* x C* — C, i.e. w is
e bilinear
e non-degenerate
e skew-symmetric
sp(4,C) = {z € gl(4,C) | w(z.v,u) + w(v, z.u) = 0}.
Theorem 30.1. Over C all symplectic forms are equivalent (i.e coincide after a change of basis).

We have matrix for w:
J = (w(ei, e;))i;
ie., w(a,b) = a’ Jb.

Example 30.2. A good choice J = [ 0 12] or -0

—Ir 0
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As such
sp(4,C) = {z | (z.v)TJu + o1 J(z.u) = 0 Yu,v e CH}

={z | vTaT Ju + vT Jzu = 0 Yu,v e C*}

={z|2TJ+ Jz =0}

) _[A B ATCT012+OIQAB
YT lc p|||BT DT||-L o0 -, o|lc D
. 1A B||  r B T B T

—{x—[o D} C'+C=0,AA+D=0, B B—O}
B A |B=B"

"l c=cT| —4T

Now we claim we can generate a Cartan subalgebra b by the following two matrices (here and
everywhere else we adopt the convention that empty entries are supposed to be zero):

Now we construct matrices for generating the rest of sp(4,C):

0 1 1 0
0 O 0 0
Fip = Fi3 = Fiy = Fyy =

Fy = F, Fy = FL Fy = Fl Fyp = F,.
Recall: [Ejj, Epe] = 05 Ei — 050 Erj. Where Ej; are matrix units.
Note 30.3.
[hs,27] = [, KF]T
[

= 2l eg_, and (g,)" = g_,, when h c {diagonal matrices} (or {symmetric}).
Now we calculate the root decomposition.
[h1, Fi2] = [E11 — E33, E12 — Ey3]
= F192 — Fy3
=1 Fio;

[ha, F12] = [E22 — Ey4, E12 — Ey3]
= —E12 + E43 = (—1) . Flg.
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So Fis € g, and Fy € g_,, where a(h1) = 1 and a(hg) = —1. Similarly,

[h1, Fi3] = [E11 — E33, B3]
=2 Fi3;

[ha, Fi2] = [Ea22 — Eua, En3]
= 0.

So F13 € gz and F31 € g_g, where 3(h1) = 2 and B(hg) = 0. By similar calculations we get

[h1, F14] = [E11 — Ea3, E1q + Eg3] = -+ - = Fiu;
[ha, Er4] = Fl4;

with F14 € g, and Fy; € g_.,, where ~v(h1) = v(h2) = 1, and

s
[h1, Foa] = [E11 — E33, B2
[h2, F2a] = [E22 — Eus, B2
=2 Foy;
with Fhy € g5 and Fyo € g_gs, where d(h1) = 0 and d(h2) = 2.
Note 30.4. The following relations hold for our roots: o+ =~v, a+v=2a+ 9 = .

Thus R = +{a, 0,7 = a + 6,8 = § + 2a}. Using the trace form on hy = Rh; @ Rhg, we have
(hi, hj) = Tr(h;h;) = 25;5. By rescaling we define (h;, hj) := d;;
Now we work to find the coroots. H, = ajhi + azhe, by the definition of coroots we know that
1= Oé(hl) = (Ha,hl) = aj
—1 =a(hg) = (Hq, h2) = as.

2H,
This implies that Hy, = h1 —hy = oY = hy = r;,) = H, = hy — ho. Similarly, Hs = 2hs

(8] (0%

2H; 1
implies 0¥ = ———— = —Hs = hs.
implies (Hy, Hy) 2 5 2
Now we compute ng, and n.g:
2(9, @)
= =d(aY) =0(h1 — hg) = =2
Nsa (Oé,Oé) (O[ ) ( 1 2)

Note 30.5. (4,9) = 2(a, ).
So

408 0 = nosnga
= (-1)(-2)

cos’f =

N | =

Now (a,0) < 0 implies that cosf < 0. Hence, cosf = =0=3- %’r. A suitable choice for R

Sl
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Figure 17: Root System of sp(4, C)

would be Ry = {a,6,0 + a,6 + 2a} and II = {o, 0}.

The Weyl group W = (s1 = sq, S2 = Ss) such that s1s9 = P2, SO W =~ Dy the dihedral group
of order 8.

The Cartan matrix (which will be discussed more next time) is:

2 -1
-2 2|
31 Lecture 28: Cartan Matrices and Dynkin Diagrams
Let R root system c E; R, choice of positive roots; IT ¢ R, simple roots IT = {ay, -+ , o, }.

Theorem 31.1. R can be recovered from I and the numbers n,g € IL.

Proof. Recall R = W(II) and W is generated by the simple reflections (by Theorem 29.9). So if
a € R, then Jiq,... 05,5 € {1,...,r} such that a = s;, - - - 54,5, ().

Note 31.2. s, (o) = o — oy, ozivl>ai1 = a; — (najail)ozil.
By linearity, 57;251'1(0@) can be computed from Najaiy s Majag, s Mo, iy - By induction a can be
computed using only knowledge of II and nqg for o, 8 € II. O

Definition 31.3. The cartan matriz of R is defined by: A = (a;;)j ;_; where

2(aj’ ai)

Q5 = nOCjOCi = <ij,0[iv> = (Oé‘ CM‘) .
1y g

Corollary 31.4. R is uniquely determined by A.
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Example 31.5. We look at the cartan matrices for rank 2 root systems.

A1I_|A1: [2 O:|

0 2
A : —21 _21
By = C5 : :_22 _21:
G _—21 23_

Note 31.6.
i) a; = 2 for all i
ii) (aij, ;i) € {(0,0), (=1, =)} u ({=2, =3} x {-1}) v ({-1} x {-2,-3})}

iii) |aij| < |aji| < |az| > |aj|'

31.1 Rank 2 Dynkin diagrams

A1 Ll Al o o
A, —
By o=
Gs -

Definition 31.7. The Dynkin diagram D of R is a graph with vertex set II (often identified with
{1,...,r}) and edges of the following four kinds:

[ ] [ ]

tJ no—edge a,-j = aji =0
*—o

v aij = Qj; = -1

1

b1 (aij,a4;) = (—1,—2) note: |oy] > |y

{

2

<

(aij, a5) = (—1,-3) note: |a;| > |oy]
Main point: A, hence R, can be recovered from D.

Definition 31.8. A set S ¢ F is the orthogonal union of two subsets Si, Sy < S if
1) =508
2) ulvVYue Sy,veS,.

Notation: S = 57 S2

Definition 31.9. S c E decomposable if S = S|y Sa, S; # 0.
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32 Lecture 29: Classification of Root Systems

Lemma 32.1. Let R be a root system, I1 a set of simple roots, A the cartan matriz, and D the
Dynkin diagram. TFAE:

1) R is irreducible, i.e. R =Ry Ry = R1 = & or Ry = .
2) 1I is irreducible.

3) D is connected.

A
4) A is indecomposable, i.e. it cannot be written as a block diagonal matriz A = [ 01 /(l) ] even
2

after reordering I1.
Proof. Bonus Homework Question. O

Lemma 32.2. If R is a reducible subset of E: R = R | Ry with R; # 0, then R; are root systems
i E; = spanR;.

Proof. Bonus Homework Question. O
Corollary 32.3. Without loss of generality, we may assume R is irreducible.

Thus our goal should be to describe all connected Dynkin diagrams!

32.1 Coxeter Graphs

Definition 32.4. A cozeter graph T' = (I'g,I'1) is an undirected loopless graph such that each edge
e € I'y has multiplicity me € Z~g. By thinking of no-edge as multiplicity 0, we may think of

Iy < (Z0) <F20>

and the adjacency mattrix for I'

is symmetric with a;; € Zxo.

Example 32.5. Below are two examples of coxeter graphs.

Example 32.6. Forgetting the direction of a Dynkin diagram gives a coxeter-graph.
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32.2 Admissible Sets

Definition 32.7. An admissible set U = {ej,...,e;} < E is a set of linearly independent unit
vectors such that Vi # j:

1) cospi; = (ei, e5) < 0;
2) 4(ei,ej)* € {0,1,2,3}.
Example 32.8. The following will be our main example to consider U = {ﬁ | a e H}.

To any admissible set U, we can attach a coxeter graph I' = (I'g,I'1) where I'g = U and e;, ¢;
are connected by an edge of multiplicity 4(e;, e;)%. So we have the following commuting diagram:

I ~ U
$ Q¢
D ~ T

Theorem 32.9 (Classification of Root systems). Let R be any root system. Then its Dynkin
diagram D is a union of diagram of the following type:

AT‘(T>]—) *—o— —o—o
*—o— —0—x9

)
T>3) o—eo— —o—oLe

Ga
Moreover, any two from this list correspond to non-isomorphic root systems.

Remark 32.10. Types A through D are called classical types, and types E through G are the five
exceptional types.

Proof. We show that any connected admissible graph is one the above types (with orientation

removed). Let U = {ey,...,e,} be any admissible set, and I" be its coexeter graph. Then:
1) Any subset of an admissible set is admissible.
Proof of 1). Clear. O

2) c:= |{{ei,e;} | i # j and e;, e; connected}|. Then ¢ < r.
Proof of 2). Let e = Y e;. Then
0<(e,e)=r+ 22(61',6]') <7+ (—c).
i<j
Hence, ¢ < r. ]
3) T" has no cycles.
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Proof of 3). If T" — T is a cycle, by 1) I is an admissible graph, but this contradicts 2) because in
cycles ¢ = r. ]
4) The degree of any vertex (with multiplicity) is < 3.

Proof of 4). Suppose e € U has edges to n1,72, - - -, Nk, then 4(e, ;)% € {1,2,3}. By 3) (:,n;) = 0
Vi # j (else I would contain a cycle). W = span{n;} ¢’ := projy e = Zle(e,m)m. Now €’ # e
since {e,n1,...,nx} are linearly independent. Hence,

4=4-(ee)>4(e,e) = Z 4(e,m;)? = dege.
i=1
5) By 4) the only possible diagrams containing a triple edge is

—» .

6) If {m,...,mx} < U with their induced subgraph is

*—o— —0—0
m Mk

then they can be replaced by a single point, i.e. (U\{m1,...,nk}) v {n}, where n = Zle 7; 18, is
admissible. O
33 Lecture 30: Classification Proof Continued

Proof of Theorem 32.9 Con’t. 6) Linear roots can be deformed to a single point. U’ = (U\{n1,...,mx})u
{n} with n = Z§:1 Ni-
Proof of 6). Clearly, U’ is linearly independent. Now

)= md.m) =k+(k—-1)-(-1)=k—k+1=1

We want to show that 4(e,n)? € {0,1,2,3} for all ¢ € U'\{n}. Now any e € U'\{n} is connected

to at most one of the {n1,...,nx} (else there would be a cycle), so (¢,n) =0 or (g,n) = (e,n;) for

exactly one i. Hence, 4(g,n)% = 4(e,n;)? € {0,1,2, 3}. O
7) I contain no subgraphs of the form shown in Figure 19.

Figure 19: None of these can occur as subgraphs in an admissible graph.
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Ng—1

m

Figure 20: Any connected graph I" of an admissible set must be one of these.

Proof of 7). If we collapse lines to points as in 6), then we would reach a vertex of degree greater
than 3 from each of these graphs which is a contradiction to 4). O

8) Any connected I' of an admissible set must be of the form shown in Figure 20 9) The only
graphs of the second variety are

(type F4) —e—o—o
&

Proof of 9). Define € := >"_,ic; and n := Z;?:l gnj. Then

QPSR (p+1)
(ee) =Y = (i +1) = %
1 1

Similarly,
q(g+1
(n,m) = (2)
Now )
p°q
(e.m)* = P*a*(epma)* = -

By Cauchy-Schwarz:

e 2 p(p+1)q(qg+1)

7=(€ﬂ7) <(g,e)(n,m) = 5 5

This implies (p — 1)(¢ — 1) < 2, so either p =1 or ¢ =1 (Type BC,), or p=q =2 (Type Fy). O
10) The only T" of the fourth type is D,, or Fg, E7, Es.

Proof of 10). Define ¢ := f;ll i, N = ?;}jnj, and ¢ := 2;11 0. Then e, n, and ¢ are
necessarily orthogonal and linearly independent, and 1 ¢ span{e,n,(} as in 4) cos? §. + cos? 0, +
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cos? ¢ <1 where these are the angles between the projection of projy,an(e ¢y ¥ and the respective
roots. On the other hand,

9)? -VE-1y) 1, 1
T e 2ty

cos? 0, =

Similarly for 6, and .. This implies that

1 1 1
S+ +->1
p q T
With out loss of generality, p = ¢ = r. If r = 1 we get A,, else r = 2. Then 2 < ¢ < 4. As such we
get (p,2,2) for type Dy, (3,3,2),(4,3,2),(5,3,2) are Eg, E7, Eg respectively. O
This completes the proof. ]

33.1 Serre’s Theorem

We have seen that
{f.d. s.s. Lie alg/C} 4o 2, {not necessarily connected Dynkin diagrams}

by
ChOOS'i(;SA R Choo'ﬁ)eEreg R+ N ]___[ Orﬂng A s _D
Serre’s Theorem shows that D is bijective by constructing an explicit inverse D — g(D).

Theorem 33.1 (Chevalley-Serre). Let g be as above, and D its Dynkin Diagram, A = cartan
matriz (with respect to some order on wvertices). Then g is generated by a subset {e;, fi, hi}i_;
satisfying

[ei, f5] = ijhi
Chevalley 1940s < [hi, e;] = aije;
[hi, fi] = aijf;
Nl=aij () —
Serre 1960’s ad(el)l_a.J.(e])
ad(fi) " (fj) = 0

Theorem 33.2 (Serre’s Theorem). Let D be a Dynkin diagram and A its cartan matriz. Let g(D)
be the free Lie algebra on 3r symbols {e;, fi, hi}i_; module the Chevalley-Serre relations.

Then g(D) is a finite dimensional semisimple Lie algebra over C with Dynkin diagram D.
Moreover, g = g(D) for any g whose Dynkin diagram is D.

34 Further Reading: Summary of Representation Theory for Lie
Groups

34.1 Representations of Lie Groups and Lie Algebras

Definition 34.1. A representation of a Lie group is a finite dimensional vector space V together
with a morphism p = py: G — GL(V) of Lie groups.
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~

1% w
pv(g)l f Jpw(g)
1% w

Definition 34.2. A morphism between two representation V and W of G is alinearmap f: V — W
which intertwines the action of G:

fopv(g) =pw(g)of

for all g € G i.e.
cominutes.

Definition 34.3. V and W are equivalent (or isomorphic) if there exists invertible f: V' — W.
Denoted V = W.

Definition 34.4. A representation of a Lie algebra g is a vector space with a morphism p: g —
gl(V) of Lie algebras.

A morphism of Lie algebra reps f: V' — W is a defined as for groups. As are Homg(V, W) and
V=Ww.

Note 34.5. We always assume that V' is a complex vector space. If G is a real Lie group we regard

GL(V) as a real Lie group, and want p: G — GL(V) to be smooth.
Theorem 34.6. G Lie group, g = Lie (G).

(1) Ewvery representation p: G — GL(v) gives a representation py: gl — gl(V'). Every morphism
of G-representation is automatically a g-representation. In other words we have a functor
RepG — Repg
(2) If G is connected and simply connected, then the above is an equivalence of categories. In

particular, any representation of g can be lifted to a representation of G, and Homg(V, W) =
Homy(V, W).

Example 34.7.
p: GL(2,C) - GL(C[x,y]q) A (p(x,y) — plax + by, cx + dy))
where Cz,ylq = (—BZ:O Cz"y?™. Also,
pxt 9U(2,C) = gl(Clz,yla)  Eij — 2:0;
with (z1,22) = (z,9).
Example 34.8.

Ad: G - GL(g) Ad, =ad: g—gl(g) z— (adz:y— [z,y]).
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Remark 34.9. If g is a real Lie group then

Repg = Repgc  (V,p) — (V. o)
where
pc(z +iy) = p(x) +ip(y)
for any representation (V, p) of g and

Homyg (V, W) = Homgy(V, W).

Note 34.10. The theory of representations in real and/or co-dimensional vector spaces is very
different.

34.2 Operations on Representations
Let G be a Lie group, g a Lie algebra.

Definition 34.11. Let V' be a representation of G' (respectively g). A subrepresentation of V' is a

linear subspace W < V such that
plx)W cW

for all x € G (respectively x € g).

Definition 34.12. If V is a representation of G (or g), and W < V is a subrepresentation then
V /W becomes a representation:

pvyw(@)(v+ W) = py(z)v+ W
forallz € G (or g) and v+ W e V/W.
Definition 34.13. For representations V and W we can define V@ W by

pvew (9)(v +w) = py(g)(v) + pw(g)(w)

Definition 34.14. For a representation V we can define a representation structure on the dual
space V*. For Lie group case:

(pv=(9)AN)(v) = A(pv (9~ H)v)
forallveV, Ae V* | ge GG. Lie algebra case:

(pv(2)A)(v) = Apy (—z)v)
for z € g.
Definition 34.15. For two representations V' and W define a representation structure on V@ W.
For the Lie group case:
pvew (9)(v @ w) = py(g)v ® pw(g)w
For Lie algebras: We compute (pygw)s« to find the correct definition. Let x € g. Consider
V(t) = exp(tx).

(pvew)e ()0 @) = % hopvaw (1) (0 @)

= %h:opv(’Y(t))U ® pw (v(1))w

e (3(0))0 ® pw (Y(0))w + py(7(0))v ® pyw ((0))w
=pr(@)v@w + v pw(z)w.
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This motivates defining
pvew (z)(v @w) = pv(z)v @ pw(z)w.

Exercise 34.16. Check that pygw thus defined is indeed a representation of any Lie algebra g,
given representations py, pw.

Corollary 34.17. If V is a representation of G (or g) then so is VOF @ (V*)®~,

Definition 34.18. Let V and W be representations. Then Hom(V,W) = V* @ W by (v —
A(v)w) <= A® w. This gives Hom(V, W) the structure of a representation with

(9-9)(v) = g. (so(g‘l-v)) geG
(26)(0) = 2.(¢(v)) —p(av)  weg
34.3 Invariants

Definition 34.19. A vector v in a representation V of G (or g) is invariant if p(g)v = v Vge G
(p(x)v =v Vreg). V¢ ={veV |visinvariant} (V¢ = {v € V | v is invariant}).

Example 34.20. (Hom(V,W))¥ = Homg(V, W) (respectively (Hom(V,W))¢ = Homy(V, W)).
Example 34.21. B be a bilinear form on a representation V.

B:V xV — C bilinear & B: V®V — C linear
=< Be (VV)*

So G (respectively g) acts on (V ® V)* via
(9-B)(v,w) = B(g™v, g~ w)

respectively
(.B)(v,w) = B(—z.v,w) + B(v, —z.w)

so B is invariant iff
B(v,w) = B(gv, gw) Vge G
respectively

0 = B(z.v,w) + B(v,z.w) Vreg.

34.4 Irreducible Representations

Definition 34.22. A representaion V' # 0 is irreducible (or simple) if the only subrepresentations
of V are 0 and V. Otherwise V is reducible.

Example 34.23. The standard representation C" of SL(n,C) is irreducible. (Exercise) Hint: Use
I+ E;j, i+ jtoget (1,0,---,0).

Suppose V' # 0 is reducible. Let W < V be a proper nonzero subrepresentation. We get a SES

0>W >V oV/Wo0 (x)

86



Note 34.24. dim W and dim V /W are both strictly less than dim V.
(When) does () split? i.e VW@ V/W?
Definition 34.25. A representation V' is completely reducible (or semisimple) if
V =@N,Vi, V;irreducible.

Then:
V=@ nV; =@, Vo

where V; 22 V; Vi # j. n; is the multiplicity of V; in V.

Example 34.26. G = R, g = Lie(G) = R. A representation of g is just a complex finite di-
mensional vector space V' with an R-linear map p: R — gl(V)) = Endc(V). p(t) = tp(1) =t - A,
where A = p(1), A € Endc(V). Conversely any A € Endc (V) gives a representation p: R — gl(V).
VWe Ay = TAwT ™!, some T € GL(V). This implies that Jordan canonical form classifies
up to equivalence all representations of the Lie algebra R. A representation of V is completely
reducible iff Av is diagonalizable. V' is irreducible iff dim V' = 1.

Some Goals of Representation Theory
1) Given G, classify irreducible representations of G.
2) Given a reducible representation, how to decompose it into irreducible representations?

3) For which G are all representations completely reducible?

34.5 Intertwining Operators (=morphisms of representation)
Suppose A: V — V is a diagonalizable intertwining operator:
V = @®xrecV, Vy={veV | Av = \v}

Then Vg € G, Yv € Vy:
Ap(g)v = p(g)Av = p(g)Av = Ap(g)v.

This implies p(g)v € Vi, so p(g)Vy < V), for all g € G. So VA: V), is a subrepresentation of V.

Corollary 34.27. If z € Z(QG) such that p(z) is diagonalizable, then V- = @V, where V)= eigenspace

of p(2).
Proof. p(z)p(g) = p(zg) = p(9z) = p(g)p(z) Vg € G. This show that p(z) is an intertwining
operator. ]

Example 34.28. V = C"®C" representations of G = GL(n,C) p: v®w — w®v commutes with
G action implies it is an intertwiner. V = V, @ V_ eigenspace decomposition.

Vi = Span{v @ w + w ® v}

V_ = Span{v @ w — w ® v}

In face, Vi are irreducible representations of G.
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34.6 Schur’s Lemma

Recall all representations are assumed complex and finite dimensional.
Lemma 34.29 (Schur’s Lemma).
1) Let V be an irreducible representation of G. Then

Homg(V,V) = CId

2) If V and W are irreducible representations, such that V-2 W. Then Homg(V,W) = 0.

Proof. ®: V — W intertwining operator. Then ker ® and I are subrepresentations of V' and W
respectively. V' and W irreducible implies & = 0 or an isomorphism. Which shows 2). To get
1), pick any eigenvalue A of ®. Then ® — AId is an intertwiner with ker(® — A1d) # 0. By V
irreducible, we have V' = ker(® — AId). Thus ® = A\1d. O

34.7 Unitary representations

Goal: Show that any representation of a compact real Lie group is completely reducible. Steps:

(1) Any unitary representation is completely reducible.

(2) Any representation of a compact real Lie group is unitary.
Definition 34.30. A representation (V, p) of G is unitary (or unitarizable) if there exists a positive
definite Hermitian form on V, (-,-): V' x V — C that is G-invariant, i.e.
(g.u, g.v) = (u,v) Vge G, u,veV.
A representation V of a Lie algebra g is unitarizable if 3 (-, -) positive definite Hermitian form which
is g-invariant:
(xv,w) + (v,zw) =0 Veeg, vyweV.
Example 34.31. Let G be a finite group acting on a set X.
V = C¥ = {functions f: X — C}.

Define p: G — GL(V) y (p ( V) (x) = fHglx)ze X, feV,and g € G. Then (V,p) is a rep of

G. Define (f,g) Z f(X)g(z), f,g € V. Then (-,-) is a G-invariant positive definite Hermitian

reX
form hence V' is unitarizable.

Theorem 34.32. FEvery unitarizable representation is completely reducible.
Proof. The proof is by induction on dim V. W < V nonzero proper subrepresentation. Consider
W+ with respect to (-,-) on V. We have Yve W+, we W

(g-v,w) = (v,97"w) = 0.

Where * is by G-invariance and ¢~ .w € W because it is a subrepresentation. This implies that
g W+ c Wt so W+ is also a subrepresentation, V.= W @ W+. So dimW, dimW+ < dimV.
Proceed by induction. Same idea for for Lie algebras. O

1

34.7.1 The Haar Measure

Let G < R™ be a real Lie group. Recall A c G is open in G (respectively. closed in G)if A= BnG
for some open (resp. closed) subset B < R". Let ¥ < P(G) be the smallest subset closed under
complements and countable [ J, [, containing all open sets in G. *

*¥. is called a o-algebra.
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Definition 34.33. A measure on G is a map p: ¥ — [0, 00] such that

a0 00]
i) p (|_| An> = Z 1(Ay) (] denotes a disjoint union).
n=1

n=1
ii) u() = 0.
Definition 34.34.

L cixa,dp = Y cipu(Ay).

1 JIGAZ'

. Through a limit process we can define SG fdu integral of f over G.
0 otherwise

Where x4, = {

Definition 34.35. A right Haar measure on a real Lie group is a Borel measure dg which is
invariant under right action of G on itself.

Thus if dg is a Haar measure on G then for an integrable function f: G — R (i.e. f € LY(G,dg))

f f(gh)dg=f f(9)dg  Yheg.
G G

Example 34.36. Lebesgue measure on R.
J flz +y)dz = J f(x)dx Yy e R.
R R

Example 34.37. The Haar measure on U(1) is given by 5%-. We have:

2miz”

dz 5 — 2mif Lo
fUu) f(z)gm'z o [dz = 27rizd0] - L f(e=™)do.
Note 34.38. Vw = e?™ € U(1) we have
1
flew)— = J F(e2mi0+a))gg
JU(l) ( )27722 0 ( )

1+a )
_ f f(€27rz9)d0

(67

1 ) 1+« )
_ J f(627r29)d0 + J f(eQMG)dH
a 1
1 a ) )
= J f(e2™)do + f f(e*™9)df by periodicity of 2™
0

1
= J F(e™)d6.
0

Theorem 34.39. Let G be a compact real Lie group. Then G has a canonical Borel measure dg
which s invariant under

g— gh YheG
g— hg YheG
g9

and such that SG dg = 1. This is the Haar measure on G.
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34.8 Complete Reducibility

We assume that G is a compact real Lie group.

Theorem 34.40. Any (finite dimensional) representation of G is unitary, hence completely re-
ducible.

Proof. Let (-, ) be any positive definite Hermitian form on a representation V' of G. Define (-, -): V x
V — C by

(w,w) = jG<p<g>v, p(g)w)dg.

Then (-, -) is positive definite and Hermitian. Also Yh € G,

{p(h)v, p(h)w) = (v, w)

by left invariance of Haar measure. O

34.9 Characters
Definition 34.41. The character of a representation V of G is xy: G — C, xv(g) = Tr(p(g)).
Lemma 34.42 (Lemma 4.4 in Kirillov).

(1) Xtriv = 1 (Recall: triv = C and g.1 =1 Vg.

2) Xvew = Xv +xw

(2)
(3) xvew = xv - xw
4) xv(ghg™") =xv(h)  Vg,heq

(5) xv=(g) = xv(g) YgeG.

Proof. Homework. B
Theorem 34.43 (Orthonormality of characters).

(1) If V,W are non-isomorphic irreducible representations, then

f v (9)xw(g)dg = 0.
G

(2) If V is any irreducible representation

f @ =1
G

Corollary 34.44. If V =~ ®n;V; where V; are nonisomorphic irreducible representations, then
ni = (xv,xv;) Vi.

Corollary 34.45. If V and W are two representations then V.= W iff xyv = xw

Proof. Homework. O
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34.10 The Hilbert space L*(G,dg)

Let G be a compact real Lie group. Let

I3(G.dg) = {f: G - C| J 1F(g)Pdg < o0}
G

This is a Hilbert space with respect to

(f1, f2) = L f1(9) f2(g)dyg.

Recall: Hilbert = Normed = metric = topological space. Hence we have a notion of closure and
denseness.
G acts on the left and right:

(9-f)(h) = f(hg)  Vg,heG
(f.9)(h) = f(gh)  VfeL*(G,dg).

~—

34.11 Matrix Coeflicients

Let V be a representation of G. To (\,v) € V* x V we associate a function pi}’”: G — C by
)‘7
pv" (g) = Mpv(g)v).

Definition 34.46. p%‘,’” is the matriz coefficient corresponding to V, A, v.

Note 34.47 (Notes).

1) p¥ e L2(G, dg), because pl3’ is continuous and G is compact.
Py g Py

(2) The right hand side depends bilinearly on (), v), therefore we get a map V*®V — L?(G, dg)
by = (g = pi¥ (9))-

(3) Under the isomorphism V*® V — End(V') this is equivalent to defining for ¢ € End(V),
P G—C, pPlg) = Tr(popv(g))

* .
Example 34.48. Fix a basis {v;} for V, let v} € V be dual basis: v (v;) = &;;. Then py; ©vs (g) is
just the (i,j) entry of the matrix py(g) in the basis {v;}.

G392 py(g) e GL(V) =~ GL(n,C).

Taking 1 = >, vf ® v;, we get
v (9) = Te(pv(9)) = xv(9)-

So matrix coefficients generalize characters.
Theorem 34.49 (Orthogonality of Matrix Coefficients). Let G be a compact real Lie group.
1) Let V2 W be irreducible representations. Then
(P ply) = 0

for all o € End(V'), 1 € End(W).
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2) Let V be an irreducible representation. Then

_ Tr(p10¢2)
L1 Y2\ __

for all p1,02 € End(V).

Proof. For all irreducible representations V, W we have:

(P, ply) = L Tr(p 0 pv(9)Tr(¥ 0 pw(g))dg

= Trygw= L(pv(g) 0 p)® (¥ o pw(g))*dg

= Trygw+ L(pv(g) ° %) ® (pw(g) 0 ¥*)dg

= Trygw= JG pvew=(g) o (¢ ®@¥*)dg

= TI"\/@W* (Q))
where ®: VR W* - V ® W™ is the value-average of p ® ¢:

¢ = f pvew=(g) o (¢ ®¢Y*)dg
G

The image of ® is thus contained in (V ® W*)¢.
Now if V 22 W then
(V@W*C =~ Homg(W,V) =0

in which case we get ® = 0. Hence,
(pVaIOW) Tre = 0.
On the other hand if W =V then
(VW*) =~ Endg(V) = C - Idy .
Which means dim(range ®) = 1. So

Trd = -+ =
0
®(1d,) = (Trd)-Idy | &~ | . 0 = Try(@(Idy)) =
0
On the other hand,
Try (@( Try L pvev(g) o (¢ ®@¥*)(Idy)dg
= f pvev(g) o wop
G

I

J pv(g) o poopy(g)dg

Trv (pv(g) o p o1 o pyv(g)~)dg

Tr(p o 9)dg
(¢ o)

|
Hhh ’%
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This implies that
Tr(p o)

(05, P) = Trygy+(®) = Iy

34.12 The Peter-Weyl Theorem
Let G be a compact real Lie group. The Peter-Weyl Theorem

1) describes L?(G,dg) as a G-bimodule

2) says that any f € L?(G, dg) can be approximated by a linear combination of matrix coefficients
coming from irreducible representations.

Let G be the set of equivalence classes of irreducible representations of G.
For [V] € G, define a G-invariant inner product on V* ® V =~ End(V)

Tr(p o
(()071/}) = d(lclil‘;/])

Let @[V]E GV* ® V denote the Hilbert space completion with respect to this form.

Theorem 34.50 (Peter-Weyl). The map
m: @[V]Eév* ®V — L*(G,dg) by V*QV3Xw—py

is an isometric isomorphism of G-bimodules.
Proof. The onto part requires analysis, we skip the proof. ]
Corollary 34.51. The set of characters {xy | [V] € G} is an orthonormal Hilbert space basis for

L?(G,dg)%, the space of conjugate-invariant functions on G.

35 Lecture 31: Universal enveloping algebra

Important tool in representation theory.
Recall If A is an associative k-algebra can turn A into a Lie algebra, LA, by defining [z,y]| =

Ty — Y.
Consider a representation p: g — gl(V').

Note 35.1. gl(V) = LEnd(V).
Replacing End(V') by an arbitrary associative, we get the notion of an enveloping algebra.

Definition 35.2. An enveloping algebra of a Lie algebra g is a pair (A, j) where A is an associative
algebra and j: g — LA is a Lie algebra morphism, i.e. j([z,y]) = j(x)j(y) — j(v)j(z) and j is
linear.

Any representation (V, p) gives an enveloping algebra (End(V), p).

Question 35.3. What is the "most general” enveloping algebra?
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Definition 35.4. Let g be a Lie algebra over a field k. The universal enveloping algebra of g,
denoted Ug (or U(g)), is the associative k-algebra with 1 generated by symbols i(x) for z € g
subject to relations

~
—~
8
+
=
Il

i(z) +i(y)  Vr,yeg
i(cx) = ci(x) Vrxeg, cek

and

Remark 35.5. The map

g—Ug

x —i(x)
which we might as well call ¢, is a Lie algebra morphism
i g— L(Ug)

This is immediate by construction of U g: ¢ is linear and i([z,y]) = i(x)i(y) — i(y)i(z). Abusing
notation, we write x instead of i(x). This is ok since we will show g — U g,  — i(x) is injective.

Remark 35.6. Ug =~ T'g/I where [ = (z®y—y®z — [z,y] | z,y € g) and Tg = k@
g@g®2@g®@---. The isomorphism sends i(z1) - - i(z,) to 21 ® - - @ =, + 1.

Example 35.7. g abelian Lie algebra with basis {z;}! ;. This implies U g =~ Sg = k[z1,...,2,] a
polynomial algebra. (Recall: Sg=Tg/(z®y—y®x))

Example 35.8. g = s[(2,C). Then U g is the associative C-algebra generated by e, f, h subject to
the relations ef — fe = h, he —eh = 2e, hf — fh = —-2f.

Note 35.9.
o= [8 (1)] € 51(2,C) < My(C).

In M3(C), e? = [O 0] but in U g, €2 # 0 (as we will see).

0 0

Example 35.10. The quadratic casimir element of U(sl(2,C)) is ¢ = ef + fe + %hQ. Then
ce Z(U(sl(2,C))). Consider the following calculation

cf=ef2~|—fef~|—%h2f
= (Fe+ W)f + F(Fe+ h) + Zh(fh—27)
=fef+fh—2f+ffe+fh+%(fh—2f)(h—2)
:f(ef+fe)+f(h—2+h+%(h—2)2)

= flef + fe+ %hz) = fe.
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9—Z>Ug
315
A

Theorem 35.11 (Universal property of U g). Let (A, j) be any enveloping algebra of g. Then there
exists a unique morphism j: Ug — A of associative algebras such that j = joi, i.e. the following
diagram commutes

Corollary 35.12. Given any representation
p: g—gl(V)=LEnd(V)

there is a unique algebra morphism
p:Ug— End(V)

such that p(i(x)) = p(x) Yz € g.

This makes V into a U g-module: X.v = p(X)v. Conversely, given any U g-module V', we get a
representation of g by

p:g—gl(V)
p(x)v =i(x)v

So Rep(g) = U g —Mod is an equivalence of categories.

36 Lecture 32: The Poincaré-Birkhoff-Witt Theorem

Theorem 36.1 (PBW Theorem). U(g) is a filtered algebra and its associated graded algebra is
congruent to S(g).

36.1 Graded Algebras

Definition 36.2. A gradation G on an algebra A is a collection of subspaces G, A (or just 4, if
the gradation is obvious) such that

i) A= @ Ap;
n=0
i) ApAm © A,

Example 36.3. The tensor algebra on a vector space is naturally graded

T(V)=kdVaeV®2eV®Bg...

namely T'(V),, = {
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36.2 Filtered Algebras

Definition 36.4. A filtration F on an algebra A is a collection of subspaces 7, A (or A, if the
filtration is obvious) such that

1) A(O) = A(l) = A(Q) (G

a0
n=0
111) A(m)A(n) - A(m+n)'

Any graded algebra A is naturally filtered by A,y = Ao @ - -- ® A,, but not conversely.
Example 36.5. ef € U(sl(2,C))) Note: ef = fe + h, so it is not graded. This filtration is
uniquely determined by requiring = € U(g)1) Vz € g.

36.3 Associated Graded Algebra

Think of this as formalizing the idea of a leading term.

Definition 36.6. Given a filtered algebra A the associated graded algebra is as follows

o
gr A= C—D A(n)/A(nfl) A(,l) = 0 by convention
n=0

Example 36.7. ef + U(sl(2,C)) ) = fe + U(sl(2,C)) ) in (gr U(sl(2,C)))2.

So the PBW theorem says that gr U(g) =~ S(g) as graded algebras. As a word of warning, there
is no algebra homomorphism from A — gr A when A is filtered.

However there is a function f: A — gr A defined as follows. Let a € A and n = 0 be the
smallest such that a € Ag,). Then f(a) = a+ A1) € (gr A),. We do have that f(ab) = f(a)f(b),

but f is not linear.
Proof of PBW thm (sketch).
Step 1: Define ¢: S(g) — grU(g) by
(21 n) = 21 T + U(@) (n—1)-

Is ¢ well-defined?

(1 TiTig1 o Tp) — Q@1 T 1Ty Tp) = 210 T [T, Tig1 [ Tire T + U(8) (ng1) = 0

So we have that ¢ is well-defined. To show ¢ is onto, let {x;}} be a basis.

w(Z ) LYY aateea + Ulge
keNn EeNzl:ceN"

=

Using commutators we can reorder the terms, where @(mlfl k) = :Elfl coeghn 4 U(9)n—1) are

called ordered monomials. We want to show that any element U(g) can be written as a linear
combination of ordered monomials.
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It follows by induction in the following way,

xy =y + [z,y]

were > 1. As an example

h*e = h(eh + 2¢) = heh + 2he.

Finialy to show that ¢ is one-to-one, we show that there exists a unique way to reduce the following;:
for x < y < z we want to reorder zyx. We can either switch z <> y or y < x. For the first choice
we have

zyx = yzx + [z,y]e = yoz + ylz, 2] + [z, yle = vyz + [y, 2]z + ylz 2] + [2,9]2, ()
and for the later we have,
zyr = zay + 2y, 2] = zzy + [z, 2]y + 2[y, 2] = zyz + 2z, y] + [z, 2]y + 2]y, 2] (#%)

We need to show that the () — (xx) = 0. We notice that the LHS is zero due to the Jacobi
identity. O

The following corollary is also known as the PBW theorem:

Corollary 36.8. Let g be a Lie algebra and let (x;)ier be an ordered basis for g (I is some index
set). Then the set of ordered monomials

{SCZIIE% |ijEI;i1 < - glk}
is a basis for U(g). When g is finite-dimensional, say I = {1,2,...,n}, then the basis may be

written
{a* -zt | a; € Lo}

37 Lecture 33: Highest Weight Theory
Motivation: Recall the representation V;, of sl(2, C):

Vi, = span{z”, 2" 1y, ..., y"}

p(e) = xoy
p(f) = yox
p(h) = 20, — yoy

V,, contains a special vector vg = 2" with three properties:

1) wo is a weight vector:
hvy = (x0y — yoy)(z") = na" = nvy.

2) Vp is a highest weight vector:
e.vg = (xdy)(a") = 0.
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3) V,, is generated by vy:
V., = spanc{ay - (ag - (- (ag -vo))---) | k=0 a; €sl(2,C)}
equivalently, using that
al (GQ((ak’Uo))> = (a1a2...ak) - Vg
where (ajag - --a) € U(sl(2,C)), V;, = U(sl(2,C)).vo.

Definition 37.1. Let g be a finite dimensional semisimple Lie algebra over C, choose a Cartan
subalgebra h < g, and R. < R a choice of positive roots. A representation of g V = (V,p) is a
highest weight representation if Jvg € V and X € h* such that

1. v is a weight vector of weight A:

hoo = MRy Yheb.

2. wvg is a highest weight vector:
nL.vg = 0

where ny = @uer, 9, €. €vg =0Veeg,, Vae R .

3. V is generated by vg
V = U(g).vo

Theorem 37.2. Any finite dimensional irreducible representation of g is a highest weight repre-
sentation.

Proof. {p(h) | h € b} is a family of commuting linear operators on V', hence there is at least one
common eigenvector, w, say. Let p € h* be defined by p(h)w = p(h)w. So V' = @eepxVe is a
non-zero subspace of V', where Ve = {v € V | p(h)v = £(h)v}. So w € V,. But V' is actually a
subrepresentation:

Ja Vf = V§+a-

V irreducible implies that V = V.

Let Supp(V) = {£ € b* | Ve # 0} be the support of V. Choose h € h such that (o, h) > 0
Va e Ry (e.g. h =71, where 7 defines R;). Then let A € Supp(V') be such that (A, h) is maximal.
Then (A + a,hy > (A, h) for all &« € Ry. This implies that Yoo € Ry A + a ¢ Supp(V). Hence,
gV Vigqa=0forallae Ry.

Let vy be any nonzero vector in V. Then 1) and 2) hold. that vy generates V' is obvious since
V' is irreducible. O

Proposition 37.3. If V is a finite dimensional irreducible representation of g of highest weight X,
then X(o') € Zx=q for ever simple coroot oy = h;.

Proof. Consider the action of 5[(2,C),, € g on V. Let vg € V be a highest weight vector. Consider
Vi = ®kezo0 Va—ka;-

This is an sl(2, C),,-subrepresentation of V. vq satisfies hjvg = A(h;)vo, €;.v0 = 0 and vy generates
a finite dimensional s[(2, C),,-representation.
Let N be minimal such that fZ-N .o = 0. Then

0= ei.(sz.Uo) = (leei).vo + [61’, fZ-N].UO == ()\(hz) - (N — 1))fZ~N71.U0
Thus A(h;) = N — 1, so we are done. O
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So we have a map
{f.d. irreps of g} ;s0. 2 P,

where Py = {Ae b* | AN(«a)) € Z=o Vi = 1,2,...,r} are the dominant integral weights.
Goal: Show that we can go back (i.e. there exists an inverse of ®).
Plan:

1) To any A € h* construct a universal highest weight representation M (\) of highest weight A.
(Verma Module)

2) Each M () has a unique irreducible quotient L(\).
3) Show that L(A) is finite dimensional iff A € P,.
4) L(\) = L(p) < A= p.

38 Lecture 34: Verma Modules

We will need the definition of tensor product of modules over a noncommutative ring.

Definition 38.1. Let R be a ring, M a right R-module, and N a left R-module. Then M ®gr N
is the abelian group generated by the symbols m ® n subject to the relations:

1) Z bilinearity
(m14+me)@n=m1®n+ma®n

m@ny +ns =mRniy +mng

2) R-balanced
(m.r)®n=m® (r.m)

Moreover, if M is a (S, R)-bimodule, then M ®g N is a left S-module via s.(m ®n) = s.m @ n.

Recall that a highest weight representation of g is a representation generated by a highest weight
vector:

1) hvg = A(h)vy for all h e b
2) evg=0foralleeg, and a € Ry
3) V. =U(g)vo
The following defines a universal highest weight representation associated to any \ € h*.
Definition 38.2. Let A € h*. The corresponding Verma module M(X) is defined by
M) =U(g) ®u ) Cly
where b = h@n, = h@aer, 94, and Cl1) is the 1-dimensional representation of b given by:

h.l)\ = )\(h)l)\ Yh e b
2:‘1)\:0 V$€n+

and U(g) is regarded as a right U(b) module.
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Note that, since M()\) = U(g) ®yp) Cly with Cly is a left U(b)-module and U(g) is a

(U(g),U(b))-bimodule, the Verma module M () is a left U(g)-module.

Example 38.3. g = 5[(2,C), b = Ch@® Ce, C1) for A € h* =~ C such that h.1y = A(h)1\ = N1,

and e.1). Below we see how we can simplify elements in M (\).

M) s hef ® 1\ = h(fe+[e, f]) ® 1
= (hfe+h?) @1,
=hfe®@1y+h’>®@1,
=hf®0+1® h?1,
= 1® (\h21,
= (N’ (1 1))
Recall: The PBW theorem (Thm 36.1) says that U(sl(2,C)) has a basis
{fFnte™ |k, 0,m = 0}
So
M) = > Cffrfem®@1y= ) Crrehli=> Cffal,

E,L,m=0 k>0 k>0

This property holds in general:
Theorem 38.4. M(\) =~ U(n_) as left U(n_)-modules

Proof. ¢: U(n_) - M(\) by z — x® 1. ¢ is a surjective using the PBW theorem (thm 36.1):

M(X\) = U(g) ®u(s) Qup)Cla
Un-)U(b) ®u(p) C1x
Un_) ®C1,
o,

N

¢ is injective: By PBW theorem U(g) is free as a right U(b)-module on a basis for u(n_): U(g)

U(n_) ®c U(b) by properties of tensors one can show that

Corollary 38.5. The support of M(\) is
Supp(M(X)) = A = Q1 = {A = >k + iy | ki € Zzo}
i=1

where {1, ...,a,} = 1II the set of simple roots. Q = ZR = & Z«; and Q4 = Y| Z>oy;
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Proof. fi--- f» ® 15 where Ry = {B1,...,8,}. Then
ho(f50 - fhr @ 13) = hfsh - fim @ 1y
= (f’?---fé“"h+ [h’fgll ) @ 1y

DAL - L ® 1= (kB + o + kB WSS I @ L
=A—(k1fr1+ -+ knﬁn)xh)fgllfﬁ:@l)‘

Where (%) is by [h, fs,] = —Bi(h) fs, for every i. O

Example 38.6. s((3,C) A = kjw; +kowy where w; € h* and w;(h;) = d;; which are the fundamental
weights. Where the blue lattice is Supp(M ())).

)\—al‘\ /‘)\

IEA\VAN

N\

A A o] — X A—

—Q

39 Lecture 35: Classification of Finite-Dimensional Irreducible
Representations

Goal: Classify all finite dimensional irreducible represents of a finite dimensional semisimple Lie
algebra over C g, (V, p).

M(A) = Ul(g) ®up) Clx

Proposition 39.1.
i) M(X) is a highest weight representation of g of highest weight X.
ii) Every highest weight representation of g of highest weight X is a quotient of M(X).
i) M(A)x =C(1® 1))
iv) Supp(M(N\)) = A —Q+ ={\— > ki, | ki € Z>0}
)

M(X) has a unique maximal (proper) submodule N(\). Hence M (X) has a unique irreducible
quotient L(X) = M(X)/N(X).

A%
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Proof. i) Put vy = 1® 1) € M()\),

haoy =h.(1®1,) = h1® 1y
—h®1,
—1®h.1,
— 1@ A ()1,
= MR)(1®1y).

This implies vy is a weight vector of weight A. Also Ye e n,,
evy=e®1,=1®0=0
because ny < b. So vy is a highest weight vector.
Ulgloa = U(9)-(1® 1) = U(g) ® 1n = M(N).

ii) Let W be any highest weight representation of g of highest weight A\. wy € W be a (non-zero)
highest weight vector of weight .
Consider the map

Y: U(g) x Cly > W
(a,&15) — Ea.wy
Then
e ¢ is Z-bilinear (biadditive)

o Write U(b) = U(ny)U(h). We show that b e U(b) ¢(ab, &1y = ¢(a,b.£15). If b= h € b, then

P(ah, 1)) = ahl)
= LaA(h)1y
= A(h)€aly
= P(a, A(h)€1))
= (a, h.£1y).

Similarly for b = e € ny.. So v induces a map from M(A) = U(g) ®u ) Clx Y W. Since W
M(A

ker

~—

is generated by w), the map 1; is surjective. So W =~

N := >
SSM(X)
subrepresentations

<

v) Let

We want to show that N(\) & M(\).
Facts: Any subrepresentation of a weight representation is a weight representation. This implies
all S have a weight decomposition S = @ er—q, S, and so does N(\):

N()\) = @;},E)\—Q+N()\)N'

Since each S = M(X) Sx = 0. (Sx © M(\)x © Cuvy). Hence N(A)x = @gcpr(r)Sr = 0.
Thus N () is proper subrepresentation. O
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Lemma 39.2. If A\, u € b* such that L(\) = L(u), then A = p.

Proof. Suppose ¢: L(\) — L(u) is an isomorphism. Then ¢(vy) € L(p)[A]. Therefore A € p—7Z=olIl,
i.e. A < p. Switching roles of A and p we also have u < A. Thus A = p. O

To summarize:

e Every finite dimensional irreducible representation is a finite dimensional irreducible highest
weight representation.

e Every irreducible highest weight representation is =~ L(\) for some unique A € h*.
e Question: When is dim L(\) < o0?

So {L(X\) | A € h*} is a complete set of representatives for isoclasses of irreducible highest weight
representations of g.

Theorem 39.3. dim L(\) < w0 iff e Py i.e. Moy )€Zzo Vi=1,...,r.

Proof. (=): Last time using s((2,C)q,.
(«<): Somewhat lengthy. O

Consequently, we obtain the following theorem, which provides a classification of finite-dimensional
irreducible representations of a semisimple Lie algebra g:

Theorem 39.4. The set P, of dominant integral weights is in bijection with the set of isomorphism
classes of finite-dimensional irreducible representations of g. The bijection is given by A — [L(\)],
where L(X) is the unique irreducible quotient of the Verma module M (X).

40 Lecture 36: Examples

41 Lecture 37: Central Characters

Definition 41.1. A character of an associative algebra A is an algebra homomorphism A — k.

Recall that by Z(g) we mean the center of the universal enveloping algebra of g. That is,
Z(g) = Z(U(g)) = {z € U(g) | zu = uzVu € U(g)}

Definition 41.2. A central character of a Lie algebra g is a character of Z(g).

Example 41.3. Let g = s[(2,k). Choosing the ordered basis (e, h, f), it is easy to check that the
dual basis for g with respect to the traceform is given by (f, %h, e). the % comes from the fact that
square of the matrix A (in My (k)) has trace 2. Thus the Casimir element is

C:ef—l—fe—l—%hz.

This is an element of Z(g). In fact, as we shall see, this element generates the center (as an
associative algebra). That is, Z(g) = k[C]. Furthermore, C is algebraically independent over k so
k[C] is a polynomial algebra in one variable.

Thus a central character y for g is determined by the value x(C') at the Casimir.

We will show that each finite-dimensional simple U(g)-module gives rise to a central character.
We need an instance of Schur’s Lemma which can be stated as follows in our case.
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Lemma 41.4 (Schur’s Lemma). If V is a simple U(g)-module, then
Endy (g (V) = k1dy .

That is, if ¢ : V — V is a U(g)-module endomorphism of V, then ¢ must be a scalar multiple of
the identity.

Proof. First we show that any nonzero U(g)-module endomorphism 1 of V' has to be invertible.
Indeed, since kerv) # V and V is a simple module, we have kerty = 0. Similarly, im+ # 0 so
imy =V by simplicity.

Now let ¢ : V' — V be a U(g)-module endomorphism and let £ € k be an eigenvalue of .
Such a & exists because V is finite-dimensional and k is assumed to be algebraically closed. Then
consider ¥ = ¢ — £1Idy. Since £ is an eigenvalue for ¢, the map v is not injective. Therefore, by
the first part, v must be identically zero. Thus ¢ = £1dy. O

Now we can show the following result.

Proposition 41.5. Let V' be a finite-dimensional simple U(g)-module. Then there exists a central

character x for g such that
zv=x(z)v VzeZ(g), VveV. (41.1)

Proof. Let z € Z(g). Then the map v — z.v is a U(g)-module endomorphism of V: w.(z.v) =
(uz).v = (zu).v = z.(u.v)Vu € U(g),z € Z(g),v € V. Thus, by Schur’s Lemma, there exists a scalar
X(z) such that (41.1) holds. Thus, for any v € V and z1, 22 € Z(g),

(z122).v = 21.(22.0) = z1.(x(22)v) = x(22)z1.v = x(21)x(22)v

which, choosing v # 0, implies that x(z122) = x(21)x(22). Similarly one shows that y is linear.
Thus y is a central character of g. O

Notation 41.6. We know that when g is semisimple, any finite-dimensional simple U(g)-module
is isomorphic to L(A) for some dominant integral weight A. In this case we denote the associated
central character by x..

Example 41.7. If we go back to the case of g = slp, let V = L(nw) = ka" ®ka" ly®- - - ®ky" be
the n + 1-dimensional simple module (w = %a). Let us describe the corresponding central character
X = Xnw- Since Z(g) is generated by the Casimir C it suffices to compute x(C). Furthermore, since
we know C' has to act by a scalar, it suffices to compute the action of C' on any vector we want.
We choose the highest weight vector. This motivates us to rewrite C' in the PBW basis coming
from the ordered basis (f, h, e), because it is very easy to compute the action on the highest weight
vector by a monomial having e on the right: it is zero. We have

1
C’=ef+fe+§h2=
1
=(f6+h)+fe+§h2=
=2fe+%(h2+2h)=

=2fe+ %((h+1)2—1).
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The last equality is not important right this moment but will become important in what follows.
For now, observe that since fe kills the highest weight vector v, and hvy = nv,, we have

Cu, = %((n +1)2 —1)vy

Thus we conclude

Xnw(C) = %((n +1)2—-1).

Remark 41.8. In physics one would use the parametrization ¢ = n/2 for the representations, and
normalize the Casimir to be 2C. In those conventions, the value of the Casimir would be ¢(¢ + 1).

The example can be generalized. Notice that the procedure of rewriting z € Z(g) in the PBW
basis and throwing away terms having any positive root vector on the right, is equivalent to applying
the Harish-Chandra homomorphism to z.

Proposition 41.9. Let g be a semisimple Lie algebra, and V' be a finite-dimensional simple U (g)-
module. Then the corresponging central character x is given by

x(2) = Aenc(2)) (41.2)

where prc denotes the Harish-Chandra homomorphism, and \ has been extended to a character
U(h) — k.

Proof. 1t once again suffices to check this identity on the highest weight vector vy of V. By the
PBW theorem, we have a direct sum decomposition U(g) = U(h) ® (n_U(g) + U(g)n;). For any
u € Ul(g), write u = ug + u; where ug € U(h) and u; € n_U(g) + U(g)n;. Clearly v.vy = ug.v4
since ny.v4 = 0. Note also that ug = puc(u). Thus we have for any z € Z(g):

20y = 2004 = @HC(20)-V+

Now, the action of an element a of U(h) on v, is given by A(a)vy. Thus we obtain (41.2)
O

For an n-dimensional vector space V', let k[V] denote the algebra of all functions f : V' — k such
that when we choose a basis {v;}I'_ | for V, we have f(z1v1 + xova + - - + zpvy) = p(21,22,. .., Tp)
for some polynomial p € k[x1,xo,...,2,]. Notice that the property that f has is independent of
the choice of basis, since a linear change of variables map polynomials to polynomials. Thus, in
fact, once we fix a basis we have an isomorphism k[V]| — k[z1,x2,...,2,]. But k[V] exists as an
object independent of choice of basis. The relation between k[V] and k[z1,xo,...,x,] is exactly
analogous to the relation between Endg (V) and M, (k).

Lemma 41.10. Let V be a finite-dimensional vector space. Then there is a canonical isomorphism
S(V*) = k[V].

Proof. We have an inclusion map ¢ : V* — k[V]. Since k[V] is commutative, by the universal
property of the symmetric algebra there exists a unique algebra homomorphism S(V*) — k[V]
whose restriction to V' is i. Conversely, the inclusion map V* < S(V*) extends uniquely (using
that if {x1,...,x,} is a basis for V* then k[V] ~ k[z1, x2, ..., xy]) to an algebra map k[V] — S(V*)
which is inverse to the previous map. O
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Notice that U(h) = S(h) = k[h*] often one identifies U(h) with k[h*. With this in mind, the
following theorem describes the center of the universal enveloping algebra of any semisimple Lie
algebra.

Theorem 41.11 (Harish-Chandra). When restricted to the center, the Harish-Chandra homomor-
phism
e Z(g) — k[b7] (41.3)

1$ injective, with image equal to

k[p*]"
where W is the Weyl group and W- refers to the dot action, given on h* by
w-A=wA+p)—p (41.4)

where p is the Weyl vector p = %Zaelﬁ a, with induced action on k[h*]:

(w-p)(\) = plw™" - A)

42 Lecture 38: Kac-Moody Algebras

We follow Introduction to Quantum Groups and Crystal Bases by Hong and Kang.
Let I be a finite index set.

Definition 42.1. A square matrix A = (a;;); jer with integer entries is a generalized Cartan matriz
(GCM) if

1. aii:2,VieI
2. 0;5<0,1#]
3. aij=0<:>aji=0.

Definition 42.2. A GCM A is called symmetrizable if there exists a diagonal matrix D = diag(b; |
i € I) with b; € Z~¢ such that DA is symmetric.

Definition 42.3. A GCM A is indecomposable if for all partitions I = I; u Iy, I; # J, there is
1 € I, j € Iz such that a;; # 0.

For an I x I-matrix, let corank A = |I| — rank A.
Definition 42.4. A Cartan datum is a quintuple (A, I, IIV, P, PV) where

1. PV is a free abelian group of rank |I| 4+ corank A with Z-basis denoted {h; | i€ I} U{ds | s =
1,2,...,corank A};

2. P ={\ebh* | \(P¥) c Z} where h = k®z P";
3. IV ={h; |iel};
4. II = {oy; | i € I} is a linearly independent subset of h* satisfying

Oéj(hi) = Qi Oéj(ds) € {0, 1}. (42.1)
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We call
e ) the Cartan subalgebra (CSA)
e II the set of simple roots,
e IIV the set of simple coroots,
o P the weight lattice,
e PV the dual weight lattice
Given a Cartan datum (A, IL 11V, P, PV) we define the root lattice to be

Q=P Za; (42.2)
1€l
and the positive (cone in the) root lattice
Q1 = ) Zzoo. (42.3)
el
and set Q_ = —Q4. The fundamental weights w; € h* for i € I are given by
wi(hj) = 5”‘, wi(ds) =0. (42.4)

We have a partial order on h* given by A > p=< A —pue Q..
The simple reflections s; € GL(h*), i € I, are given by

Sz<)\) =\— )\(hi)ai, YA e f')* (42.5)
and the Weyl group W is the subgroup of GL(h*) generated by the set of simple reflections.

Definition 42.5. The Kac-Moody™ (KM) algebra g associated with a Cartan datum (A4, I, 11V, P, P)
is the Lie algebra with generators

{ei, fitier v PY (42.6)
subject to relations saying that PV is a subgroup of g together with
[h,h'] =0 h,h' e PV, (42.7)
les, f] = dijh (42.8)
[h,ei] = ai(h )ez, (42.9)
[, fi] = _041( ) fis (42.10)
(ade;)' ™% (e;) = i # 7, (42.11)
(ad fi)1 =% (f;) =0, i #j. (42.12)
Proposition 42.6. g has a root space decomposition
g= C‘D Jas  Ba = {(L‘ €g ’ [h,.’L'] = a(h)xVh € []} (42‘13)
ae@
and a triangular decomposition
g=0-®bDgy, gr= P ga- (42.14)
aEQ+

*iIndependently discovered in 1967-1968 by three people: V.G. Kac, R. V. Moody and I.L. Kantor
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GCMs, hence KM algebras, are classified into three types. For an integer column vector u =
(u;)L; we write u > 0 (resp. u > 0) if Vie I : u; > 0 (resp. u; = 0).
The following is Theorem 4.3 of Kac’s book Infinite dimensional Lie algebras

Theorem 42.7. Let A be an indecomposable GCM. Then exactly one of the following three possi-
bilities hold:

(Finite Type): corank A =0, and Ju > 0: Au> 0, and Av =20= (v >0 orv =0).
(Affine Type): corank A =1, and FJu > 0: Au =0, and Av > 0= Av = 0.
(Indefinite Type): Ju > 0: Au <0 and (Av =0 and v = 0) = v = 0.

Example 42.8. Examples of GMCs of affine type are

-

An example of a GCM of indefinite type is

2 -1 -1

[_21 _24] -1 2 -1
-1 -1 2

42.1 The Dynkin Diagram of a GCM

Given a GCM A, we associate a (generalized) Dynkin diagram D(A) as follows. The vertex set is
I. For the edges one convention is as follows:

e In the case when a;ja;; < 3 we retain the conventions from finite type (see Definition 31.7).

e When a;; = aj; = —2 we depict the edge as ese, and when (a;5,a5) = (=4, —1) we draw it
as e .

e When a;;ja;; > 4 we draw a bold line between ¢ and j and put the label (|a;;|, |aji|) above the
edge.

The following proposition is not hard to prove, given Kac’s theorem above.

Proposition 42.9. Let A be an indecomposable GCM. Then A is of affine type if and only if
det A = 0 and all proper subdiagrams of D(A) are of finite type.

Using this result one can obtain a complete list of the connected Dynkin diagrams of affine
type. The white node corresponds to the unique simple root ag with ag(d) = 1. The significance
of this will be explained in the next theorem.
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FY' e e
GV N
A(QQ) =

oZte—o—0— —0—69
AP (1> 3) % S

DP\(£>2)  oreeer
ES e etee
DY .
Example 42.10. The three cartan matrices from the previous example correspond to the affine
Dynkin diagrams Agl), Ag), and Agl) respectively.
42.2 Realization of Affine Kac-Moody Algebras as Extensions of Loop Algebras

A very important fact about the affine KM algebras is their realization as extensions of loop
algebras.

Theorem 42.11. The untwisted affine KM algebras are isomorphic to the Lie algebra
gkt t | DkeDkd (42.15)

where E is the so called underlying finite type Lie algebra obtained by deleting the white node from
the Dynkin diagram, and the Lie bracket is given by

[z@t™,y®@t"] = [2,y] @ "™ + Mdpsn (2, y)c (42.16)
[d,z®t"] = mz@t™ (42.17)
c is central (42.18)

The twisted affine KM algebras can be realized as the subalgebra g° of all elements fized by an
automorphism 6 of order 2 or 3, inside an untwisted affine KM algebra g. The automorphism comes
from a diagram automorphism of the untwisted affine Dynkin diagram.
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43 Lecture 39: Hopf Algebras and Quantum Groups

43.1 Vector spaces

We make some remarks about the category of vector spaces over k.

Bilinear maps are not morphisms in the category of vector spaces. This indicates that they
are not the correct thing to look at. By the universal property of tensor products, bilinear maps
U x V — W are in bijection with linear maps UQ V — W.

Selecting an special element v € V, such as an identity element of an algebra, is also not a
categorical notion, since we don’t have “elements”. The solution here is that elements of V' are in
bijection with linear maps k — V.

We also recall that ® is a bifunctor, which means that for any two linear maps f; : Vi — W}
fa : Vo — Wy we get a linear map f1 ® fo : V1 ® Vo — Wi ® Wa, given by (f1 ® f2)(v1 ® vg) =
f1(v1) ® f2(v2) and extended linearly.

The category of vector spaces has a special object, k, which is the tensor unit object. We have
natural isomorphisms k@ V =~ V =~ V ® k for any vector space V.

Lastly, the flip T = 7w : VW SWE V,v®w+— w®wv, is a natural isomorphism for any
vector spaces V, W.

43.2 Algebras

An associative algebra is often defined as a vector space together with a bilinear map A x A — A,
(a,b) — ab and an element 14 € A satisfying some axioms. We reformulate this definition in a way
that is purely expressed in terms of objects and morphisms in the category of vector spaces.

Definition 43.1. An algebra is a triple (A, m,u) where A is a vector space with linear maps
m=mag:ARQA— A, u=uy :k— A

such that these diagrams commute:

ARAR®A
WW Yn k@A L A4 2% A®k
AR A AR A m

i
lle

DZA

The left diagram is associativity the right diagram is unitality.
An algebra map f: A — B is a linear map such that these diagrams commute:

ARA 24 A A
uUA

f®fJ Jf ]k/lf

B®B 2. B B

Example 43.2. k is an algebra with my the natural isomorphism k ® k — k and uy the identity
map k — k.
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Example 43.3. If A and B are algebras then the vector space A ® B can be equipped with an
algebra structure with magp and uagp the unique maps making these diagrams commute:

ARBR®A®B ™% Ao B k 45, A®B
lerel ma®mp = uAQup
ARARBR®B k®k

43.3 Coalgebras

In category theory any notion has a dual notion. For example the dual notion of products is
coproducts. Therefore, now that we have formulated the notion of an algebra in categorical terms,
we naturally obtain the definition of a coalgebra.

Definition 43.4. A coalgebra is a triple (C, A, €) where C is a vector space and
A:C—->C®C0C, e:C —k

are linear maps so that these diagrams commute:

CRCK®C
M@/ F\M k®C 2 CRC -5 C®k
cC®C C®C Q N

N A c

A coalgebra map f: C — D is a linear map such that these diagrams commute:

CRC L ¢

D®D <— D

Example 43.5. Let A be a finite-dimensional algebra. Then the dual space A* is a coalgebra
with A = m* and ¢ = w*. (For this to make sense we must use that the natural injective map
A* @ A* - (A® A)* that we always have is surjective in the case that A is finite-dimensional.)

43.4 Bialgebras

Definition 43.6. A bialgebra is a quintuple (B, m,u,A,¢) such that (B, m,u) is an algebra and
(B,A,¢) is a coalgebra and one of the following equivalent conditions hold:

(i) A and € are algebra maps,
(ii) m and u are coalgebra maps.

A bialgebra map f: B — C'is a linear map which is both an algebra map and a coalgebra map.
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Example 43.7. Let M be a finite monoid, and B = k™ be the set of all functions ¢ : M — k. This
is an algebra with respect to pointwise operations. To define the comultiplication, we note that
kM @ kM =~ kM*M_ We define A by A(€)(m,n) = &(mn). The counit is given by £(&) = &(1).

Example 43.8. The universal enveloping algebra U(g) of any Lie algebra g is not just an algebra
but a bialgebra. We show there are algebra maps A : U(g) — U(g) ® U(g) and € : U(g) — k
satisfying

Alz) =21 +1®ux, e(z)=0 Vo e g. (43.1)

Define A’ : g > U(g) ® U(g) by A'(z) =2 ® 1+ 1®x for x € g. This is a linear map, hence by
the universal property of the tensor algebra, A’ induces an algebra map A T(g) > U(g) ®U(g).
One checks that A(I ) © I, where [ is the ideal defining U(g). Thus A descends to an algebra map
A:U(g) —» U(g) ®U(g). Similarly one proves the existence of the counit € : U(g) — k.

Warning: The rule A(z) = 2 ® 1 + 1 ® = only holds for z in the Lie algebra g, not for all
x € U(g). For example, for z,y € g, A(zy) is defined to be A(z)A(y) = (2®1+1®2)(y®1+1Qy) =
(zy) ®1+2z®y+y®x+ 1® (zy). A similar remark applies to the counit.

43.5 Quantum groups

A quantum group is a certain bialgebra (in fact, Hopf algebra, see next lecture) that we associate
to any Cartan datum.

Definition 43.9. Let F = k(q) be the field of rational functions in an indeterminate gq. Let
(A, II,IIV, P, P¥) be a Cartan datum where A is a symmetrizable GCM. The associated (Drinfeld-
Jimbo) quantum group, denoted Uy(g) is the F-algebra with generators {e;, fi}icr and {¢"}nepv
satisfying

=1, =g, vwnNePY, (43.2)
¢"eig" = ¢*Me;,  Vhe P, (43.3)
¢ fie " =q*Mf,  VhePY, (43.4)
K, —K!
eifj — fiei = 0ij———-, (43.5)
qi — q;
1—a;;
> =Dk [1 _ka”’} e ek =0, Vi+j, (43.6)
n=0 q;
1—a;; 1
— Q45, 1—ai-—k: . .
>, (=D [ o } TR =0, Vi (43.7)
n=0 i

where K; = ¢"" and ¢; = ¢%. The last two relations are the quantum Serre relations. The
q-binomial coefficients are elements of F defined by

I e ORI O U RS F P (e SO
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(
Al =q"®q¢",  VheP, (43.9)
Ale) =, @K' +1®e¢;, (43.10)
A(fi)=fi®1+ K;® fi, (43.11)
e(@")=1, VheP, (43.12)
e(ei) =0, (43.13)
e(fi) =0. (43.14)

44 Lecture 40: Hopf algebras contd.

44.1 Convolution Algebras

If C is a coalgebra and A is an algebra, then the space Homg(C, A) becomes an associative algebra
as follows. For f, g € Homy(C, A) we define f = g to be the composition

cA e Aga ™ A (44.1)
The identity element of Homy (C, A) is the composition of the maps
C k-5 A

44.2 Hopf Algebras

Definition 44.1. A Hopf algebra H is a bialgebra (H,m,u,A,¢) such that the identity map
H — H is invertible in the convolution algebra Endg(H). That is, if there exists a linear map

S:H-—H (44.2)

such that this diagram commutes:

A _H A
/l
H®H € H®H
k

Jl@S

HRH

S®1J

—
H®H
S g e

(Note that this diagram is self-dual.) S is called the antipode.
Abusing notation one often denotes a Hopf algebra by (H,m,u,A,¢,S) even though S is not
an additional piece of data, rather it is a property of the data already present.

44.3 Examples

1. Let G be a group and let kG be the group algebra defined as the vector space with basis G
and multiplication extended bilinearly from the multiplication in . This is a Hopf algebra
with

Alg)=9®g, elg)=1, Sg=g"
for all g € G. Note that these formulas have to be extended linearly to all of kG. For example
A(g+h)=A(g) +A(h) =gR@g+h®h # (g+h)® (g + h).
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2. Let g be a Lie algebra and U(g) its universal enveloping algebra. Then U(g) is a Hopf algebra
with
Afz) =z®@1+1®x, e(x)=0, S)=-z

for all x € g. This time these formulas have to be extended multiplicatively to all of U(g). For
example A(zy) = A(2)A(y) = (2®1+1Qz2)(y®1+1Qy) =2y®1+ 2Ry +y®z + 1R xy.

3. Let G be a finite (resp. compact) group, and F(G) be the algebra of all (resp. continuous)
functions from G to k (resp. R). It is known that F(G x G) = F(G) ® F(G). Thus we may
define a comultiplication on F(G) by

A(f)(g,h) = f(gh), VfeF(G), VYg,hed.

The counit and antipode are given by

44.4 Sweedler Notation

Let C be a coalgebra. For every x € C' we have that A(z) € C ® C. Therefore there are N, € Zxg
and elements x%l), :L"@ € C such that

Ne
Alw) = )] oy @{y. (44.3)
k=1

However, neither N, nor the elements ib'éj) are unique, due to the bilinear nature of C ® C'.

Example 44.2. Let C' = kG be the group algebra of a group G and let g € G. Then, by definition
of the comultiplication,

A(g) =g®g

With this choice of writing it, we have N, = 1 and g(ll) = g(12) = g. However we may also write

Alg)=(g-1)®g+1®yg

where 1 € G is the identity element of G. With this choice, Ny = 2 and g(ll) =g—1, 9(12) =g, g(21) =
17 9(22) =g
Due to this non-uniqueness, we have to make sure that any map out of C'® C is actually

well-defined.
For example, the map

Ny
f:C—C,  flz)= kZ oy + Ty
=1

is not well-defined, because the expression is not bilinear in (3:?1) , :c’&)). Concretely, the two different

choices of writing A(g) in the example above would give different results (check!).
Similarly,

f:C—C, flz) = x%l)e(x%z))

is not well-defined, because it only involves the two factors from the first term in A(z), which is
not unique.
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Sweedler notation uses more efficient notation, while at the same time making it harder to write
down ill-defined expressions. Instead of (44.3) we write

Alx) =D 20y @ z(9 (44.4)
()

With the superscripts suppressed, it is impossible to “select” any particular term, and that is a
good thing because they are not well-defined anyway.
There is also a “summation-less”*" Sweedler notation, wherein we simply write

A(x) = 1‘(1) ® .7}(2) (44.5)

The summation is implied, because of the subscripts (1) and (2) appearing.
Let us practice by writing out the relevant Hopf algebra axioms in summationless Sweedler
notation:
Coassociativity reads
1)) ®Ty2) ®L2) = 1) @ L2)1) @ L(2)(2) (44.6)
while counit axiom is
E({/C(l))x(g) =T = 1‘(1)6(1'(2)) (44.7)

and the antipode axiom becomes
S(x )z (9) = ue(x) = w1y S(x(). (44.8)

In an algebra known to be associative, we don’t need to use parenthesis when writing an iterated
product such as xyz. The dual version of this is that with a coassociative comultiplication, we write
each side of (44.6) simply as

T(1) @ T(2) O L(3)- (44.9)

We may iterate this too and write

A" (z) = 1) QT QL(nt1) (44.10)
which means we have applied A n times to various tensor factors; which ones we chose doesn’t
matter by coassociativity.
44.5 Opposites and Co-opposites; A Property of the Antipode

Recall the flip 7: 2@y — y® x.
If A is an algebra, the opposite algebra, denoted A is (A, m°P, u) where m°? = mor.
Dually, if C' is a coalgebra, the co-opposite coalgebra, denoted CP is (C, A°P, ¢) where A =
ToA.

Theorem 44.3. Let H be a Hopf algebra. Then S is a bialgebra map H°P*°P — H. That is,
(i) S(zy) = S(y)S(x) and Sou = u.
(ii) S(:L’)(l)S(:L')(Q) = S(l‘(g))S(l‘(l)) andeo S =c¢.

*analogous to Einstein’s summation convention in tensor calculus

115



Proof. We only prove S(zy) = S(y)S(z), leving the other statements as an exercise.
Define A, p € Homy(H ® H, H) in a way that corresponds to the left and right hand sides:

Mz ®y) = S(zy), plz®y)=5S(y)S(z).

Here we regard H® H as a coalgebra and H as an algebra, thus Homy(H ® H, H) is an associative
algebra with respect to the convolution product. To show that A = p it suffices to show that

A M = UEgQH = M * p
Indeed, then
A= A*USHQH = A*M * p = UEHQH * P = P

Using that
Apen(r®y) = (10 7®1)A(x) @ A(y) = 2(1) ® Y1) @ T(@2) ® Y(2)

we have by definition of the convolution product ,

(Axm)(z®y) = M) ®ya)m(ze) @ Ye)

TWya ) @Y)

(zy) (1)) (xY)(2) since A is an algebra map
(

S(
= S(
= ue(xy) by antipode axiom for H
= ue(w)e(y)
= uegeH (T ®Y).

On the other hand,
(m = p)(z ®@y) = m(zn) @ yu))p(@e) ®Y@)
= x(l)!/( 1SW2)S(z@)
ue(y)S(z(2)) by antipode axiom

= ( Yue(y) since ue(y) € k and using antipode axiom

= ueneH (T ®Y).

This finishes the proof. ]

45 Lecture 41: Tensor Products of Modules

The following principle will be key: If f : A — B is an algebra map, and V is a B-module, then V
becomes an A-module by

av = f(a)v

Next we make three observations about left modules over algebras:

(i) If V is an A-module and W is a B-module, then V ® W is an A ® B-module via

(a®b).(vRw) = (a.v) ® (b.w)

(i) k is obviously a k-module.
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(iii) If V is a left A-module then the dual space V* is a left A°P-module by (a.£)(v) = {(a.v).
As a direct corollary we get the following statement about modules over Hopf algebras.
Lemma 45.1. Let H be a Hopf algebra.

(i) If V and W are H-modules (regarding H as just an algebra), then V.® W is an H-module
with action

h.(v@w) = (hy.v) ® (he).w)
(ii) The vector space ¥ =t is an H-module with action
h.1 =¢e(h)
(iii) If V is an H-module then V* is an H-module with action
(h-6)(v) = £(S (k) v)

Proof. (i) Use that the comultiplication A : H — H ® H is an algebra map together with the two
observations above.

(ii) Use that the counit € : H — k is an algebra map.

(iii) Use that the antipode is an algebra map S : H® — H ]

46 Lie Superalgebras

47 Reduction Algebras and Extremal Projectors
48 Gelfand-Tsetlin Bases for Representations of gl,
49 Crystal Bases

50 Category O

51 The Weyl Character Formula
Let V = @)+ Va. Then we define the following, ch V' := > (dim Vy)er € Z[h*] with elet = ert#
and ¥ = 1.
Theorem 51.1.

1) ch(Ve W) = (chV) + (ch W)

2) ch(V®W) = (chV)(ch W)

3) If V,W are finite dimensional, then V.= W iff chV =chW.
Theorem 51.2 (Weyl Character Formula). A € Py then

Z (=1)w)ewrte)

1
wherep:§ 2 «

aceR
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52 Appendix: A Brief Introduction to Category Theory

52.1 Classes

A class is like a set but can be bigger. Every set is a class but not all classes are sets. A class
which is not a set is a proper class. Just like with sets we can form the cartesian product of classes,
consider functions between classes and so on.

The main reason that we need classes is so that we can talk about things like the class of all sets
because there is no set that contains all sets. (Likewise there is no class that contains all classes,
but somehow we don’t need to really worry about that!)

52.2 Partial binary operations

A partial binary operation % on a class X is a function from some subclass of X x X to X. We
write % : X X X --» X to indicate that the domain of * may not be all of X x X.

52.3 Definition of category
Definition 52.1. A category C is a quintuple C = (Cp,C1, s,t,0) where

e (y is a class whose elements are called the objects of C,
e () is a class whose elements are called the morphisms of C,

s :C1 — Cp is a map called the source map,

t:Cy — Cp is a map called the target map,

o:C1 x Cy --» C; is a partial binary operation called composition (of morphisms) so that
a o (3 is defined for any morphisms «, 5 € C; with ¢(8) = s(«),

subject to the following two axioms:

(i) (identity) for every object x € Cy there exists a morphism 1, € C; with

aoly =« for all morphisms a € C; with s(a) = x

1,08 =7 for all morphisms € C; with ¢(3)

X

(ii) (associativity) we have
(aoB)oy=aoc(Boy)
for any morphisms «, 3,7 € C; with t(y) = s(8) and t(8) = s(a).

Notation 52.2. Cy and C; are sometimes denoted ObC and Mor C respectively. You should think
of the source and target maps as giving the domain and codomain of a morphism. In this spirit, if
a € C; is a morphism with s(a) = z and t(a) = y we write a: x — y.
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52.4 Examples

To specify a category we have to say what the objects and morphisms are. The source, target and
o are almost always the domain, codomain and usual composition.

Example 52.3. 1) The category of sets and functions Set. This means that by definition Setg
is the class of all sets, and Set; is the class of all functions between sets.

2) The category of abelian groups and group homomorphisms Ab.
3) For any ring R the category of left R-modules and R-module homomorphisms R-Mod.

4) If L and R are rings the category of (L, R)-bimodules and (L, R)-bimodule homomorphisms
is denoted by L-Mod-R.

5) The category of topological spaces and continuous functions Top.

52.5 Functors

Just like a group homomorphism is a structure preserving function between groups, a functor is a
structure preserving function between categories. Since a category has two underlying classes, a
functor needs to be a pair of functions.

Definition 52.4. Let C and D be categories. A (covariant) functor F from C to D is a pair of
maps F' = (Fy, F}) where F; : C; — D; for ¢ = 0,1 such that

(1) Fl(lx) = lFo(m) for all z € C()
(i) if @ : @ — y then Fi(a) : Fo(z) — Fy(y)
(iii) Fi(aop) = Fi(a)o Fi(p) for all morphisms «a, § € C; with ¢(8) = s(«).

A contravariant functor F from C to D is the same things as a covariant functor except it reverses
the direction of morphisms in the sense that (ii) and (iii) are replaced by

(ii’) if a : ¢ — y then Fy(a) : Fy(y) — Fo(x)
(iii") Fi(ao B) = Fi(B) o Fi(«) for all morphisms «, 5 € C; with ¢(5) = s(a).

Notation 52.5. Usually we write Fz for Fy(z) and Fa for Fi(«) if no confusion can arise.

52.6 Examples

All examples will be a covariant functors. The following examples are related to the universal
property of free R-modules (see next section).

Example 52.6. 1) The forgetful functor O : R-Mod — Set (where O stands for oblivion)
sends any left R-module M to the underlying set M, and any R-module homomorphism to
itself (now regarded as just a function).

2) The free functor Fg : Set — R-Mod sends any set X to the free left R-module on the set X,
denoted FrX. And if a: X — Y then Fra : FrX — FRY is the morphism induced by the
composition X - Y — FRrY.
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The next two examples are important in the context of tensor products (see next section on
adjoint functors). Let L, S, R be rings with 1 and fix an (S, R)-bimodule B.

Example 52.7. 1)
— ®s B : [-Mod-S — L-Mod-R

is the functor that sends an (L, S)-bimodule A to the (L, R)-bimodule A ®g B, and sends an
(L, S)-bimodule morphism « : A — A’ to the (L, R)-bimodule morphism a® 15 : A®s B —
A'®g B.

2) In the opposite direction we have the following functor:
Hompg(B, —) : L-Mod-R — L-Mod-S

which sends an (L, R)-bimodule A to Hompg (B, A), the set of right R-module maps B — A.
Hompg(B, A) is an (L, S)-bimodule through

(€-9)(b) =L (p(b)) €€ L,beB,peHomg(B,A)
(p-8)(b) =¢(s-b) VseSbe B,oecHomg(B,A)
On morphisms the functor Hompg (B, —) takes a : A — A’ to the map & : Homg(B, A) —
Homp (B, A’) given by post-composition (push forward): &(p) = a o ¢.
52.7 Pairs of adjoint functors

52.8 Definition
Definition 52.8. Given categories C and D, and covariant functors F' : C — D and G : D — C we
say that F' is left adjoint to G and G is right adjoint to F' if there is a natural bijection

Home(z, Gy) e, Homp (F'z,y)

for all x € Cp and y € Dy. Here Home(a,b) denotes the class of morphisms in C from an object a
to an object b. That the family (1s,y)zecoyep, 1S “natural” means that whenever o : @ — 2’ and
B :y — 1y are morphisms in C; and D respectively the following diagram commutes:

Home (2/, Gy) BLEN Homp(Fz',y)
yoa l_opa
Home(z, Gy) e, Homp(Fz,y)
F(B)o- |#e-
Home(x, Gy') BLIN Homp (Fz,y')
The commutativity of this diagram makes mathematically precise the vague statement that 7, ,

should be defined “the same way” regardless of the objects x and y. There is an analogous definition
for contravariant functors.
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52.9 Examples

Many universal properties can be expressed in terms of adjoint functors.

Example 52.9. 1) In example 52.6, the free functor Fr : Set — R-Mod is left adjoint to the
forgetful functor O : R-Mod — Set because

HOmset(X, ORM) = HOmR(fRX, M)

for any set X and R-module M. In words, any set map X — M extends uniquely to an
R-module morphism FrX — M. The naturality is a tedious but straightforward exercise.

2) In Example 52.7, the functor —®g B is left adjoint to Hompg(B, —). Let ; Homp(X,Y") denote
the set of (L, R)-bimodule homomorphisms between (L, R)-bimodules X and Y. Then what
we are saying is that there is a natural bijection

1, Homg(A,Homg(B,C)) =  Homgr(A®s B, C).

Taking L. = R = Z the left hand side can be identified with the set of S-balanced maps
A x B — (| so this expresses precisely the universal property of the tensor product.
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