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Introduction

Geometry is a good way of dealing with infinite sets. Thus, to study infinite groups, we want to
impose some kind of geometric structure on the underlying sets. There are many ways to do this:
topological groups, algebraic groups, group schemes, etc. The nicest kind of geometric object, is
that of a manifold. Their properties most closely resemble our everyday intuition about curves and
surfaces.

A Liei group is a group which is also a manifold. Tangent spaces may be viewed as linear
approximations of manifolds. The tangent space of a Lie group (at the identity element) can be
given extra structure (coming from the group operation) making it into a Lie algebra. In other
words, Lie algebras are linear approximations of Lie groups.

Therefore, to properly understand the origin of Lie algebras we must first understand something
about Lie groups, and therefore we begin by studying manifolds.

1 Lecture 1

1.1 Manifolds

Reference: Spivak, Calculus on Manifolds, Ch. 5.
Throughout, we say that a function f : Rn Ñ R is differentiable (of class C8) if all of the

partial derivatives of f exist to any order. A function F : Rn Ñ Rm, F pxq “ pF1pxq, . . . , Fmpxqq is
differentiable if all the component functions Fi are. Another word for differentiable is smooth.

Definition 1.1. Let U, V Ă Rn be open sets. Then a map f : U Ñ V is a diffeomorphism if f is
differentiable and invertible, and f´1 is differentiable.

Definition 1.2 (Manifold in Rn). A subset M of Rn is a k-dimensional manifold if @x P M the
following condition holds: D open sets Ux, Vx Ă Rn and a diffeomorphism hx : Ux Ñ Vx such that
x P Ux and (see Figure 1)

hxpUx XMq “ Vx X pRk ˆ t0uq “ ty P Vx | yk`1 “ ¨ ¨ ¨ “ yn “ 0u.

Remark 1.3. 1. As we have defined it, the manifold (given as a certain subset of Rn) does not
depend on the choices of pUx, Vx, hxq at each x. Such triples just have to exist.

2. The restriction of hx to Ux XM followed by projection πk to the first k components provides
each point in this portion of the manifold with coordinates: ϕk “ πk ˝hxpaq “ pa1, a2, . . . , akq

for some ak P R. We call the pair pUx XM,ϕxq a coordinate chart.

3. An abstract manifold is defined differently, (as a second countable topological space with a
smooth atlas). However, the Whitney Embedding Theorem says that any abstract manifold
of dimension m can be embedded into R2m. Thus the “concrete” definition given here is
equivalent to the abstract one.

Example 1.4. Any open subset of Rn is an n-dimensional manifold.

Example 1.5. Any singleton txu is a zero-dimensional manifold.

i“Lie” (pronounced LEE) refers to the Norwegian mathematician Sophus Lie, who himself called them continuous
groups.
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Figure 1: Manifold visualization

Example 1.6. Any linear subspace V of Rn is a k-dimensional manifold, where k “ dimR V .

Exercise 1.7. Prove that if M is a k-dimensional manifold in Rm and N is an l-dimensional
manifold in Rn then M ˆN is naturally a pk ` lq-dimensional manifold in Rm`n.

How do we prove that something more interesting is a manifold?

Theorem 1.8 (Implicit Function Theorem). Let n ě p ě 0 be integers. Let A Ă Rn be an open

subset and g : A Ñ Rp be a differentiable function such that g1pxq “

ˆ

Bgi
Bxj

˙

ij

has rank p whenever

gpxq “ 0. Then g´1pt0uq is an pn´ pq-dimensional manifold.

For a vector x “ px1, x2, . . . , xnq P Rn we write |x| “
a

x21 ` x22 ` ¨ ¨ ¨ ` x2n for the standard
Euclidean norm.

Example 1.9. The n-sphere Sn “ tx P Rn`1 | |x|2 “ 1u is a manifold. To prove it, let g : Rn`1 Ñ R
defined by gpxq “ |x|2 ´ 1. Then g1pxq “ ∇gpxq “

“

2x1 2x2 ¨ ¨ ¨ 2xn`1

‰

. If g1pxq “ 0 (the zero
vector) then xi “ 0 for all i, hence gpxq “ ´1. So whenever gpxq “ 0 we have g1pxq ‰ 0 (thus,
viewed as a 1 ˆ pn ` 1q-matrix, has rank 1). By Theorem 1.8, g´1pt0uq “ Sn is an n-dimensional
manifold.

Exercise 1.10. The special linear group, denoted SL2pRq, is the set of all real 2 ˆ 2 matrices of
determinant one. Show that SL2pRq is a 3-dimensional manifold. (The set of all real 2ˆ2-matrices
can be identified with R4.) Can you generalize this to SL3pRq? SLnpRq?

Definition 1.11. A morphism of manifolds (or differentiable map, or smooth map)

f : M Ñ N,

where M and N are manifolds of dimension k and ℓ respectively, is a function such that @x P M ,
the function (see Figure 2)

rfx “ hfpxq ˝ f ˝ h´1
x : Vx X

`

Rk ˆ t0u
˘

Ñ Vfpxq X
`

Rℓ ˆ t0u
˘

is differentiable. If furthermore f is invertible and its inverse is a morphism of manifolds, then f
is an isomorphism of manifolds (or diffeomorphism). When such an f exists, M and N are called
diffeomorphic.
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Figure 2: Morphism visualization

Definition 1.12. A Lie group G is a group which is also a manifold such that the maps,

GˆG Ñ G by pg, hq ÞÑ gh

and
G Ñ G by g ÞÑ g´1

are differentiable maps (i.e morphisms of manifolds). A map ϕ : G Ñ H is a morphism of Lie
groups if it is a morphism of manifolds and a group homomorphism.

Example 1.13. pRn,`q is a Lie group.

Example 1.14. S1 “ Up1q “ tz P C | |z| “ 1u is a 1-dimensional (real) Lie group with respect to
multiplication.

Example 1.15. GLpn,Rq “ tA P MnpRq | detpAq ‰ 0u is an open subset ofMnpRq “ Rn2
, so it is a

manifold. Matrix multiplication (respectively, matrix inverse) is given by polynomials (respectively,
rational functions) of the entries and are therefore smooth maps. Thus GLpn,Rq is a Lie group.

Why is it open? det : Rn2
Ñ R is continuous which implies that det´1pRzt0uq is open in Rn2

.

Example 1.16. SUp2q “ tA P M2pCq | AA˚ “ A˚A “ I, and detpAq “ 1u is a 3-dimensional Lie
group diffeomorphic to S3 (see Example 2.5(5) in Kirillov, Jr.).

Remark 1.17. For the definition of complex Lie Groups, replace ”differentiable” with ”complex
analytic”. Unless otherwise emphasized, any theorem about Lie groups holds in both the real and
complex cases.
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2 Lecture 2

2.1 Connectedness

Let M be a manifold. Define a binary relation „ on M by @x, y P M :

x „ y ô D continuous map γ : r0, 1s Ñ M with γp0q “ x, γp1q “ y

M

x

y

x ∼ y

x

y

x 6∼ y

Figure 3: An example and nonexample

If x „ y we say that x is connected to y.

Exercise 2.1. Prove „ is an equivalence relation.

The equivalence classes
rxs “ ty P M | y „ xu

are connected components. The set of equivalence classes of M{ „ is denoted by π0pMq. If x „ y
for all x, y P M we say that M is connected.

Example 2.2. The n-sphere Sn is a connected manifold for any n ě 1.

Proof. Let x, y P Sn, x ‰ y. We will show x „ y. By transitivity of connectedness, it suffices to do
this in the case x` y ‰ 0, that is, for non-antipodal pairs of points. For such x, y the straight line
in Rn`1 through x and y does not pass through the origin. Define γ : r0, 1s Ñ Sn by

γptq “
p1 ´ tqx` ty

|p1 ´ tqx` ty|
.

The numerator defines a line segment in Rn`1. Dividing by the norm forces |γptq| “ 1 so that
γptq P Sn for all t (see Figure 4). Then γ is a continuous function such that γp0q “ x and γp1q “ y.
Thus x „ y.

The following simple fact can be used to show that a manifold is disconnected.

Lemma 2.3. Suppose f : M Ñ N is a surjective continuous map between manifolds. If M is
connected, then N is connected. (Equivalently, if N is disconnected, then M must be disconnected.)

Proof. f ˝γ is a continuous map from r0, 1s to N connecting fpxq and fpyq whenever γ : r0, 1s Ñ M
is a continuous map connecting x, y P M .
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Figure 4: Visualization of γ used to prove Sn is connected

xn+1 ≥ 1

xn+1 ≤ −1

Figure 5: The n-dimensional hyperboloid Hn

Exercise 2.4. The n-dimensional hyperboloid Hn “ tx P Rn`1 | x21 ` ¨ ¨ ¨ ` x2n “ x2n`1 ´ 1u

is an n-dimensional manifold by the implicit function theorem applied to the function gpxq “

x21 ` ¨ ¨ ¨ `x2n ´x2n`1 ´1. Prove that Hn has two connected components. (See Figure 5.) Hint: The
projection map Rn`1 Ñ R onto the last coordinate is a continuous map. Likewise, the projection
map Rn`1 Ñ Rn onto the first n coordinates is continuous.

Definition 2.5. A subset N of a manifold M Ă Rn is an open submanifold if there is an open
subset U of Rn such that N “ U XM .

Proposition 2.6. Let M Ă Rn be a manifold and x P M . Then the connected component rxs is
an open submanifold.

Proof. For any y P rxs pick an open set Uy Ă Rn as in the definition of a manifold. Then any
z P M X Uy is connected to y, hence to x (see Figure 6). So M X Uy Ă rxs. Let U “

Ť

yPrxs Uy.
Then U is open in Rn and U XM “ rxs.

h

Uy
VM

y
h(y)

x

z

h(z)

Figure 6: Visual justification that for any z P M X Uy, z „ y

10



2.2 Connected Lie Groups

Definition 2.7. A Lie group G is connected if it is connected as a manifold.

Notation 2.8. If G is a Lie group then G0 denotes the connected component of G that contains
the identity element. G0 “ reGs.

Remark 2.9. By Proposition 2.6 above, G0 is an open submanifold of G.

Example 2.10. Any finite group G can be viewed as a 0-dimensional Lie group by placing its
elements on the real line:

e
‚ ‚ ‚ ‚ ‚

In this case the connected component G0 “ teu only contains the identity element.

Example 2.11. The orthogonal group Opn,Rq is the group of orthogonal matrices:

Opn,Rq “ tA P MnpRq | ATA “ I “ AAT u.

One can show, using the implicit function theorem, that Opn,Rq is a manifold of dimension
npn´1q{2. Since matrix multiplication and inverse are smooth, Opn,Rq is a Lie group. This group
has two connected components consisting of orientation-preserving and orientation-reversing trans-
formations respectively. In more detail, the determinant map det : Opn,Rq Ñ t˘1u sends an orthog-
onal matrix A to detpAq which is ˘1 since 1 “ detpIq “ detpAAT q “ detpAqdetpAT q “ detpAq2.
Since det is surjective and continuous and t˘1u is disconnected, Opn,Rq must have at least two con-
nected components by Lemma 2.3. Moreover Opn,Rq0 Ă tA P Opn,Rq | detpAq “ 1u “ SOpn,Rq

which is the special orthogonal group.
In fact, SOpn,Rq is connected, hence Opn,Rq0 “ SOpn,Rq. Furthermore, the matrix g “

diagp´1, 1, 1, . . . , 1q is orthogonal of determinant ´1. Multiplication by g provides a diffeomorphism
between the two connected components.

Theorem 2.12. Let G be a Lie group. Then G0 is a normal subgroup and is itself a Lie group.
The quotient group G{G0 is discrete, meaning each coset gG0 is an open submanifold of G.

Proof. e P G0 by definition. If f : M Ñ N is continuous then x „ y in M ñ fpxq „ fpyq in
N (Exercise). In particular, fprxsq Ă rfpxqs. Apply to i : G Ñ G, ipgq “ g´1 gives ipG0q Ă G0.
Similarly, m : G ˆ G Ñ G, mpg, hq “ gh ñ mpG0 ˆ G0q Ă rmpe, eqs “ G0. Lastly, fix g P G,
cphq “ ghg´1 Then cpG0qq Ă rcpeqs “ res “ G0. Thus G0 is a normal subgroup. Since gG0 “ rgs

each coset in G{G0 is an open submanifold by Proposition 2.6, so G{G0 is discrete.

Example 2.13. Let G “ Opn,Rq. Then the determinant map det : G Ñ t˘1u is surjective with
kernel equal to G0. Thus G{G0 – t˘1u.

3 Lecture 3

3.1 Simple Connectedness

Let M be a connected manifold and fix x0 P M , called a base point.

Definition 3.1. A path in M is a continuous map γ : r0, 1s Ñ M such that γp0q “ x0. γ is a loop
if γp0q “ γp1q. The constant loop γ0 is given by γ0ptq “ x0 @t P r0, 1s.

11



x0

γ

Figure 7: Example of a path γ with base point x0

Two paths are homotopic if one can be continuously deformed into the other. The precise
definition is as follows.

Definition 3.2. Let x0 and x1 be points in M . Two paths γ, δ in with γp0q “ δp0q “ x0 and
γp1q “ δp1q “ x1 are homotopic if D continuous map h : r0, 1s2 Ñ M such that

hp0, sq “ x0 and hp1, sq “ x1 for all s P r0, 1s,

and
hpt, 0q “ γptq and hpt, 1q “ δptq for all t P r0, 1s.

γ

M

δ

h(−; s) intermediate path

Figure 8: Example of homotopic paths

Definition 3.3. M is simply connected if every loop in M is homotopic to the constant loop.
(Note: this is independent of the choice of x0)

Example 3.4. In figure 9 we see that R2 is a simply connected manifold, while S1 is not.

Example 3.5. The projective plane RP2 (in the Poincaré model) is D1 but opposite points on S1

identified: D1{ „ where x „ y iff |x| “ |y| “ 1 & x` y “ 0. Then P1 is not simply connected. See
figures 10a and 10b.

Definition 3.6. The product of two loops γ, δ in M is γ ˚ δ : r0, 1s Ñ M

γ ˚ δptq “

#

γp2tq 0 ď t ď 1
2

δp2pt´ 1
2qq 1

2 ď t ď 1

12



(a) S1 (b) R2

Figure 9: An example and non-example of simply connected manifolds

aa

ab

b

(a) Depiction of RP2 with identical points labeled

x0 x0

(b) A loop not homotopic to γ0

Figure 10

Exercise 3.7. Homotopy defines an equivalence relation on the set of loops in M . The set of
equivalence classes is denoted π1pM,x0q.

Exercise 3.8. π1pM,x0q is a group with respect to the operation:

rγsrδs “ rγ ˚ δs.

π1pM,x0q is the (1st) fundamental group of M (a.k.a. Poincaré group of M).

Exercise 3.9. π1pM,x0q – π1pM,y0q for any x0, y0 P M (Recall: we assume M connected).

Example 3.10. π1pP2q – Z{2Z, notice rγs2 “ rγ0s in figure 11

γ

Figure 11

Example 3.11. π1pS1q – Z. The correspondence is the winding number.

3.2 The Universal Cover

Some convenient terminology:

13



• A subset U Ă M of a manifold M in Rn is open in M , or simply open (when no confusion
can arise), if U “ M XA for some open set A Ă Rn.

• A neighborhood (abbreviated nbh) of x is a set containing x.

Definition 3.12. Let M be a connected manifold. A cover pĂM,pq (covering space) for M is a

connected manifold ĂM together with a morphism p : ĂM Ñ M such that: @x P M , D connected open
neighborhood U Ă M of x such that every connected component of p´1pUq diffeomorphically onto

U . pĂM,pq is a universal cover if it is simply connected. Often we just write ĂM for pĂM,pq.

Example 3.13. pR, pq is a universal cover for S1 where p : x ÞÑ e2πix.

Figure 12: Visualization of pR, pq as covering space over S1

Theorem 3.14. Every connected manifold has a universal cover. Moreover, it is unique up to
diffeomorphism.

Proof (sketch). Pick a base point x0 P M . Define ĂM to be the set of homotopy classes of paths in

M starting at x0 (see Figure 13). Define p : ĂM Ñ M , ppγq “ γp1q. One can show that this is a
universal cover.

Figure 13: Visualization of Homotopy Classes

Theorem 3.15. Any morphism of connected manifolds f : M Ñ N can be lifted to a morphism of
their respective universal covers rf : ĂM Ñ rN .

Theorem 3.16. If G is a connected Lie group, then its universal cover rG has a canonical structure
of a Lie group such that

14



i) p : rG Ñ G is a morphism of Lie groups

ii) ker p “ π1pG, eq.

Moreover, ker p is a discrete subgroup of rG, and ker p Ă Zp rGq the center of rG.

Example 3.17. G “ S1 ˆ S1 ˆ Z. The connected component at the identity element is G0 “

S1 ˆ S1 ˆ t0u. The universal cover of G0 is ĂG0 “ R2. See Figure 14.

Figure 14: G “ S1 ˆ S1 ˆ Z

4 Lecture 4

4.1 Coordinate Systems

A coordinate system is a local parametrization of a manifold. Coordinate systems are used to
construct tangent spaces.

Let M be a manifold and x P M . Let pUx, Vx, hxq be a triple as in the definition of a manifold.
Let Wx be the image of the projection of Vx X

`

Rk ˆ t0u
˘

to the first k components.

Definition 4.1. The map fx : Wx Ñ M given by fxpa1, a2, . . . , akq “ h´1
x pa1, . . . , ak, 0, . . . , 0q

(with n´ k trailing zeros) is called a coordinate system around x.

Since hx is a diffeomorphism, the derivative h1
xpyq has rank n at all y P Vx. Consequently f 1

x

has rank k at any point in Wx. Furthermore f´1
x : FxpWxq Ñ Wx is continuous. The following

theorem shows that the data
␣

pUx, Vx, hxq
(

xPM
can in fact be replaced by the data

␣

pWx, fxq
(

xPM
.
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Theorem 4.2 (See Spivak, Theorem 5-2). A subset M of Rn is a manifold iff @x P M there is
an open set U Ă Rn, x P U , and an open set W Ă Rk and an injective differentiable function
f : W Ñ Rn such that

1) fpW q “ M X U

2) f 1pyq has rank k @y P W

3) f´1 : fpW q Ñ W is continuous.

4.2 Tangent Space

Definition 4.3. Let M k-dimensional manifold, x P M , f : W Ñ Rn be a coordinate system
around x, and a “ f´1pxq. Since f 1paq has rank k, the image of f 1paq : Rk Ñ Rn given by the
matrix

»

—

–

B1f1paq B2f1paq ¨ ¨ ¨ Bkf1paq
...

...
...

B1fnpaq B2fnpaq ¨ ¨ ¨ Bkfnpaq

fi

ffi

fl

is a k-linear subspace of Rn called the tangent space of M at the point x, denoted TxM .

Often we draw/think of TxM as the affine space x` f 1paq
`

Rn
˘

.

Note 4.4. By the chain rule, TxM is independent of the choice of coordinate system f .

Example 4.5. Let us describe the tangent space of S2 at p0, 0, 1q. Let W “ tps, tq | s2 ` t2 ă 1u

and f : W Ñ R3, fps, tq “ ps, t,
?
1 ´ s2 ´ t2q. Then f is a coordinate system around x “ p0, 0, 1q.

Let a “ p0, 0q (notice fpaq “ x).

f 1paq “

»

–

Bsf1 Btf1
Bsf2 Btf2
Bsf3 Btf3

fi

fl “

»

–

1 0
0 1
0 0

fi

fl

so TxS
2 “ f 1paq

`

R2
˘

“ R

»

–

1
0
0

fi

fl ‘ R

»

–

0
1
0

fi

fl.

Example 4.6. (See Figure 15.) A coordinate system for the 2-dimensional torus M embedded in
R3 is given by (here R ą r ą 0 are the two radii):

fps, tq “
`

pR ` r cos sq cos t, pR ` r cos sq sin t, r sin s
˘

, ps, tq P p´π, πq2

This is a coordinate system around any point except for the point fpπ, πq “ pr ´ R, 0, 0q. To
get a coordinate system around that point one can use the same expression for f but change
the domain to p0, 2πq. We can use this coordinate system to find the tangent space for a point
p “ px, y, zq “ fps, tq. As an example, take s “ π{3 and t “ π{4. The derivative (matrix) of f is

f 1ps, tq “

»

–

pR ´ r sin sq cos t ´pR ` r cos sq sin t
pR ´ r sin sq sin t pR ` r cos sq cos t

r cos s 0

fi

fl

Thus the tangent space TpM at p “ fpπ{3, π{4q “
`

pR ` r{2q{
?
2, pR ` r{2q{

?
2, r

?
3{2

˘

equals

TpM “ R

»

–

pR ´ r
?
3{2q{

?
2

pR ´ r
?
3{2q{

?
2

r{2

fi

fl ` R

»

–

´pR ` r{2q{
?
2

pR ` r{2q{
?
2

0

fi

fl
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Figure 15: Torus with R “ 3 and r “ 1.

4.3 Vector Fields

Definition 4.7. A vector field onM is a map F : M Ñ Rn such that F pxq P TxM for all x P M . F is
called differentiable if for every coordinate system f : W Ñ Rn at any x P M , a ÞÑ f 1paq

`

F pfpaqq
˘

ii

is a differentiable vector field on W .

4.4 The Derivative (Differential) of a Morphism

If f : M Ñ N is a morphism of manifolds there is an induced linear map df “ f˚ “ f 1ppq : TpM Ñ

TfppqN given as follows

α : U Ñ Rn αpaq “ p

β : V Ñ Rn βpbq “ fppq

TpM “ α1paq
`

Rk
˘

TfppqN “ β1pbq
`

Rℓ
˘

Define f 1ppq by the formula

pβ´1 ˝ f ˝ αq1paq “ pβ1pbqq´1 ˝ f 1ppq ˝ α1paq.

4.5 Vector Fields on Lie Groups

Fix g P G. There are three maps G Ñ G:

Lg : h ÞÑ gh

Rg : h ÞÑ hg´1

Adg : H ÞÑ ghg´1

They are morphisms of manifolds ñ have differentials.

Example 4.8. dLg : T1G Ñ TgG, x ÞÑ g.x

Definition 4.9. A vector field F on a Lie group G is left-invariant if g.F pxq “ F pgxq for all
g, x P G.

iithis mapping is single-valued
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Definition 4.10. The Lie algebra of a Lie group G is defined by

g “ LieG “ tall left-invariant v.fields on Gu.

Theorem 4.11. v ÞÑ vp1q is a linear isomorphism of g with T1pGq.

Proof. Let x P T1pGq Define vpgq “ g.x. Then v is left invariant. Uniqueness is obvious.

5 Lecture 5

5.1 Classical groups

The following is an assortment of Lie groups called classical groups. These are the most important
but not an exhaustive list; the are many more. (Once we classify simple complex Lie algebras
we can give a general definition of classical Lie group: A connected Lie group is classical if its
complexified Lie algebra is a classical Lie algebra.)

• The general linear group:

GLpn,Rq “ tall invertible nˆ n matrices with real entriesu,

• The special linear group:

SLpn,Rq “ tA P GLpn,Rq | detA “ 1u.

• The orthogonal group:

Opnq “ tA P GLpn,Rq | ATA “ AAT “ Inu

“ tA P GLpn,Rq | xAx,Ayy “ xx, yy @x, y P Rnu,

where x¨, ¨y is the standard dot product: the unique (up to change of basis) positive definite,
non-degenerate, symmetric, bilinear form on Rn.

• The special orthogonal group:

SOpn,Rq “ SLpn,Rq XOpnq.

• The orthogonal group of signature pp, qq:

Opp, qq “ tA P GLpn,Rq | xAx,Ayyp,q “ xx, yyp,qu,

where x¨, ¨yp,q is the (unique up to change of basis) nondegenerate, symmetric, bilinear form
on Rn of signature pp, qq: xx, yyp,q “

řp
i“1 xiyi ´

řp`q
i“p`1 xiyi.

• The corresponding “special” version is as expected:

SOpp, qq “ Opp, qq X SLpn,Rq.

18



• The symplectic group:

Sppnq “ tA P GLp2n,Rq | ωpAx,Ayq “ ωpx, yq @x, y P R2nu

“ tA P GLp2n,Rq | ATJA “ Ju,

where ω is the (unique up to change of basis) non-degenerate, skew-symmetric, bilinear form
on R2n given by ωpx, yq “

řn
i“1pxiyi`n´yixi`nq, and J is the Gram matrix of the form given

by 2nˆ 2n-matrix

„

0n In
´In 0n

ȷ

.

• The unitary group:
Upnq “ tA P GLpn,Cq | A˚A “ AA˚ “ Inu,

where A˚ “ AT hermitian adjoint (conjugate-transpose).

• The special unitary group:
SUpnq “ Upnq X SLpn,Cq.

Exercise 5.1. Special symplectic group? Show that Sppn,Rq Ă SLp2n,Rq, so it is already ”spe-
cial”.

5.2 The Exponential Map

How can one prove that the above matrix groups are actually Lie groups? There are three methods.

Method 1: Implicit function theorem (see Theorem 1.8). For example, Opn,kq “ tA “ paijq | AAT “ Inu

is defined by npn ` 1q{2 equations in kn2
(since AAT is symmetric). Compute Jacobian of

this system and show it has full rank (i.e. rank npn ` 1q{2). This can be computationally
difficult.

Method 2: Observe that Opn, kq forms a closed subset of GLpn,kq and use a theorem about closed Lie
subgroups (next time).

Method 3: Using the so called the exponential map as a coordinate system around the identity element
of G.

To define this exponential map, first recall that GLpn,Rq is an open subset of Rn2
. Hence the

identity map GLpn,Rq Ñ GLpn,Rq is a coordinate system around the identity map. Its derivative
is the identity matrix. Therefore the Lie algebra of GLpn,Rq, identified with the tangent space at
the identity, is all of Rn2

. In other words,

glpn,Rq :“ Lie algebra of GLpn,Rq – T1GLpn,Rq “ tall nˆ n matricesu.

The power series

exppxq “

8
ÿ

n“0

xn

n!

converges absolutely in matrix normiii for any n ˆ n matrix x. So it defines a smooth (in fact,
analytic) map of manifolds:

exp: glpn,Rq Ñ glpn,Rq.

iiiThe matrix norm is }x} “ supvPRn,|v|“1 |xv|
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Furthermore,

logp1 ` xq “

8
ÿ

k“1

p´1qk`1xk

k

is smooth (in fact analytic) near 1 P glpn,Rq, where “near” means in the matrix norm.

Theorem 5.2.

1) logpexppxqq “ x and expplogpxqq “ x whenever defined.

2) expp0q “ 1, exp1p0q “ Id, where exp1p0q denotes the derivative of exp at 0.

3) If xy “ yx then exppx ` yq “ exppxq exppyq. If xy “ yx then logpxyq “ logpxq ` logpyq near
1.

4) For fixed x P glpn,Rq t ÞÑ expptxq is a morphism of Lie groups R Ñ GLpn,Rq (a one-
parameter subgroup).

5) exppAxA´1q “ A exppxqA´1 and exppxtq “ pexppxqqt

Theorem 5.3 (Thm 2.30 in Kirillov, Jr.). For each classical group G Ă GLpn,Rq there is a vector
space g Ă glpn,Rq such that for some neighborhood U of 1 in GLpn,Rq and some neighborhood u
of 0 in glpn,Rq the logarithm and exponential maps restrict to diffeomorphisms

U XG uX g

log

exp

Proof. This is done case by case. We will look at a few cases in the next lecture.

Corollary 5.4 (Corollary 2.31 in Kirillov, Jr.). Each classical group G Ă GLpn,Rq is a Lie group
with tangent space T1G – g and dimG “ dim g.

Proof. exp: u X g Ñ U X G is a coordinate system around 1 P G, by Theorem 5.3. Furthermore,
exp1p0q “ Id which has full rank, hence has full rank when restricted to u X g. Let g P G be
arbitrary. Then the composition

Lg ˝ exp: uX g Ñ U XG

is a coordinate system around g. So every g P G has a coordinate system so by Theorem 4.2, G is
a manifold. The multiplication map GˆG Ñ G is the restriction of the multiplication in GLpn,Rq

hence is smooth. Similarly the inverse map G Ñ G, g ÞÑ g´1, is smooth. Thus G is a Lie group.
For the second part,

exp˚ : T0 g Ñ T1G
q q

exp1p0q g
q
Id

This gives an isomorphism between g and T1G. In particular dimG “ dimT1G “ dim g.

Similarly one can show that the classical groups G Ă GLpn,Cq are Lie groups.
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6 Lecture 6

6.1 Classical Groups (continued)

First we begin with two examples with tangent spaces.

Example 6.1. TaRk “ Rk because Id: Rk Ñ Rk is a coordinate system around a. Idpx1, . . . , xkq “

px1, . . . , xkq and Id1paq “

»

—

–

1 0
. . .

0 1

fi

ffi

fl

“ Ik and IkpRkq “ Rk. Similarly TaCk “ Ck.

Example 6.2. T1Up1q “ iR – R. Up1q “ tz P C | zz‹ “ 1 “ tz P C | |z| “ 1u. Now φ : p´ε, εq Ñ

Up1q with φptq “ e2πit is a coordinate system around 1 P Up1q, φp0q “ 1, φ1p0q “ 2πi p1ˆ1 matrixq.
φ1p0q

`

R
˘

“ 2πi ¨ R “ iR

Definition 6.3. A neighborhood (nbg) of a point x P Rn is an open subset U Ă Rn such that
x P U .

Recall from last time, Theorem 5.3.

Proof of thm 5.3.
G “ GLpn, kq

By properties of exp and log.
G “ SLpn, kq

For any x P glpn, kq we have the identity

exppTrpxqq “ detpexppxqq (6.1)

For any A P GLpn, kq,
exppAxA´1q “ A exppxqA´1

Proof of Equation 6.1. So 6.1 holds for x iff it holds for AxA´1. Find A P GLpn,Cq such that
AxA´1 “ s ` n where s, n P glpn,Cq, s diagonal, n strictly upper triangular, sn “ ns. Then use
that

expps ` nq “ exppsq exppnq.

Easy to check 6.1 for s and n ñ holds for s ` n ñ holds for x.
Thus for X P GLpn, kq near 1, X “ expx for some x P glpn,kq.

detpXq “ detpexppxqq

“ exppTrpxqq.

So detpXq “ 1 ô Trpxq “ 0, so statement is true with g “ tx P glpn,kq | TrpXq “ 0u.
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Notation 6.4. slpn,kq.
G “ Opn,kq “ tX P GLpn, kq | XXt “ Iu

For X P GLpn, kq near 1 write X “ exppxq, x P glpn,kq by properties of exp. Then

XXt “ I ñ I “ X´1pxtq´1 “ pXtXq´1

ñ XtX “ XXt “ I

ñ 0 “ log I “ logX ` logXt “ x` xt

Conversely if x ` xt “ 0 then x and xt commute ñ exppXq exppxtq “ exppx ` xtq “ expp0q “ I.
So statement true with g “ opn,kq “ tx P glpn,kq | x` xt “ 0u set of skew-symmetric matrices.
G “ SOpn, kq

g “ sopn, kq “ slpn,kq X opn,kq. However!

x` xt “ 0 ñ Trx “ 0

So actually sopn,kq “ opn,kq. Which makes sense because SOpn, kq “ Opn, kq0 the connected
component of I.
G “ Upnq, SUpnq

upnq ‰ supnq

G “ Sppn,kq

sppn,kq

G “ Sppnq

sppnq

Read about the previous few in the book.

7 Lecture 7

7.1 Submanifolds

– Open

– Immersed

– Embedded

Recall:
A subset N of a manifold M Ă Rn is an open submanifold if N “ M X U for some open subset U
of Rn.

Example 7.1. M “ S1 Ă R2, U “ tpx, yq | y ą 0u, N “ M X U is an open submanifold of S1.

Example 7.2. GLpn,kq is an open submanifold of kn2
.

Example 7.3. Every connected component of a manifold is an open submanifold. In particular
G0 is an open submanifold of G.

Definition 7.4. A morphism of manifolds f : X Ñ Y is an immersion if f˚ : TxX Ñ TfpxqY has
full rank (“ dimX) for every x P X.
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N

Figure 16: Visualization of an open submanifold

Example 7.5. f : S1 Ñ R2, fpcos θ, sin θq “ pcos θ, sin 2θq

φ : θ ÞÑ

„

cos θ
sin θ

ȷ

“ x, φ1paq “

„

´ sin a
cos a

ȷ

, TxS
1 “ R ¨

„

´ sin a
cos a

ȷ

, f˚ : TxS
1 Ñ TfpxqR2 “ R2 is given

by f˚

ˆ

t ¨

„

´ sin a
cos a

ȷ˙

p˚q
“ t ¨

„

´ sin a
2 cos 2a

ȷ

‰

„

0
0

ȷ

for t ‰ 0.

Proof of p˚q.

p˚q : M
f
ÝÑ N “ R2

α Ò Ò β “ Id
W Ñ W 1 “ R2

pβ´1fαq1 “ pβ´1q1f 1α1, so β1pβ´1fαq1 “ f 1α1. Now since β “ Id, pfαq1 “ f 1α1

„

´ sin a
2 cos 2a

ȷ

“ f 1

ˆ„

´ sin a
cos a

ȷ˙

Definition 7.6. The pair pX, fq is an immersed submanifold of Y . By abuse of terminology we
sometimes say fpXq is an immersed submaniofld.

Definition 7.7. If f : X Ñ Y is an immersion such that

1) f is injective

2) f : X Ñ fpXq is a homeomorphsim,

then f is an embedding and we say fpXq is an (embedded) submanifold of Y .

Example 7.8. f : R Ñ S1 Ă R2 is an immersion

Example 7.9. f : R Ñ R2, t ÞÑ pt, sin tq is an embedding. The graph of y “ sinx is a submanifold
of R2.

Example 7.10. f : R Ñ R2

fptq “

$

’

&

’

%

p0, t` 2q ,´8 ă t ď ´1

γptq ,´1 ď t ď 1

p 3
t2
, sinπtq , 1 ď t ă 8

making f differentiable and injective. Then f is not an embedding since f : R Ñ fpRq is not a
homeomorphism.
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Example 7.11. f : R Ñ S1 ˆ S1, fptq “ peati, ebtiq where a, b P Rzt0u such that a{b is irra-
tional. Then f is an injective immersion, but fpRq is dense in S1 ˆ S1 so f : R Ñ fpRq is not a
homeomorphism ñ f not an embedding.

Definition 7.12. A closed Lie subgroup H of a Lie group G is a subgroup which is also a subman-
ifold.

Example 7.13. Any linear subspace U of a vector space V is a closed Lie subgroup.

Example 7.14. G0 is a closed Lie subgroup of G using the indetity map embedding G0 Ñ G by
x ÞÑ x.

Example 7.15. If G1 and G2 are Lie groups then G1 ˆ t1u and t1u ˆG2 are closed Lie subgroups.

Theorem 7.16 (Thm 2.9 in Kirillov).

1) Let H be a closed Lie subgroup of Lie group G. Then H “ V X G for some closed subset
V Ă Rn. (i.e. H is closed in G)

2) Conversely, any subgroup H of a Lie group G such that H is closed in G, is a closed Lie
subgroup.

Proof. Skipped.

Example 7.17. Sppn,kq is a closed Lie subgroup of GLp2n,kq.

Proof. Know Sppn, kq subgroup. @A P GLp2n,kq : A P Sppn,kq iff ωpAx,Ayq “ ωpx, yq @x, y P k2n

ô pAxqt ¨ J ¨ Ay “ xt ¨ J ¨ y @x, y P k2n ô AtJA “ J , J “

„

0 In
´In 0

ȷ

. So let V “ tA P M2npkq |

AtJA “ Ju. Then V is a closed subset of M2npkq “ kp2nq2n , and Spp2n, kq “ V X GLp2n, kq.
Similar for other classical Lie groups.

Further Reading

7.2 Quotient Groups and Homogeneous Spaces

[Corollary 2.10, read yourselves]

Definition 7.18. Let F be a manifold. A morphism p : T Ñ B of manifolds is a fiber bundle over
B with fiber F if

1) p is surjective,

2) p is locally trivial: Each x P B has a neighborhood U and a diffeomorphism TU : p´1pUq Ñ

U ˆ F called a local trivialization, such that

U ˆ F p´1pUq Ă T

U

TU

pr1 p

commutes i.e. p|p´1pUq “ pr1 ˝ TU .
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3) At every x P M , the map TU,x : p´1ptxuq Ñ F given by TU,xpx, fq “ f is a homeomorphism.

4) Whenever U X V ‰ H, for any x P U X V , the map T ´1
V,x ˝ TU,x : F Ñ F is smooth.

B=base space, F=fiber, T=total space.

Example 7.19. Let F,B any manifolds p : F ˆ B Ñ B, px, yq ÞÑ y is the trivial fiber bundle over
B with fiber F .

Example 7.20. Tangent bundle on S2

TS2 “ tpx, vq | x P S2, v P TxS
2u, p : TS2 Ñ S2, px, vq ÞÑ x

is a fiber bundle with fiber R2.

Example 7.21. M any manifold. Tangent bundle on M :

TM “ tpx, vq | x P M,v P TxMu, p : TM Ñ M, px, vq ÞÑ x

is a fiber bundle with fiber Rk, k “ dimM .

Theorem 7.22 (Thm 2.11 in Kirillov).

1) Let G be a Lie group of dimension n, and H Ă G a closed Lie subgroup of dimension k. Then
the set of left cosets G{H “ tgH | g P Gu has a natural structure of a manifold of dimension
n´k, such that the canonical map p : G Ñ G{H, g ÞÑ gH is a fiber bundle with fiber H. Also
T1pG{Hq – T1G{T1H (1 “ pp1q “ H).

2) If H normal, closed Lie subgroup of a Lie group G, then G{H has a canonical structure of a
Lie group, and p : G Ñ G{H gives an isomorphism T1pG{Hq “ T1G{T1H.

Proof. Beyond scope of class.

2.3 Homomorphism Thm. Read yourselves.

7.3 Homogeneous Spaces

Let M be a manifold. Let DiffpMq be the group of diffeomorphisms φ : M Ñ M .

Definition 7.23. An action of a Lie group G on M is a group homomorphism ρ : G Ñ DiffpMq

such that the map GˆM Ñ M , pg, xq ÞÑ ρpgqpxq is a morphism of manifolds

Notation 7.24. g.x :“ ρpgqpxq

Example 7.25. GLpn,Rq acts on Rn

Example 7.26. Opn,Rq acts on Sn´1.

Example 7.27. G acts on G via Ad,L,R g ÞÑ Ad g.

Example 7.28. GLpn,Rq acts on the set of flags in Rn :

FnpRq “ tpV0 Ă V1 Ă ¨ ¨ ¨ Ă Vnq | Vd subspace of Rn,dimVd “ du

Note 7.29. F2pRq – RP2 and g.pV0 Ă V1 Ă ¨ ¨ ¨ Ă Vnq :“ pgV0 Ă gV1 Ă ¨ ¨ ¨ Ă gVnq @g P GLpn,Rq.
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Theorem 7.30 (Thm 2.20 in Kirillov). Let M be a manifold with an action of a Lie group G.
Then @m P M , the stabilizer StabG pmq “ Gm “ tg P G | g.m “ mu is a closed Lie subgroup of G
and the map

G{Gm Ñ M gGm ÞÑ g.m

is an injective immersion.

Proof. Future (?)

Corollary 7.31 (Cor 2.21 in Kirillov). Each orbit Om :“ tg.m | g P Gu is an immersed submanifold
of M , and TmOm “ T1G{T1Gm. If Om is a submanifold then G{Gm

„
ÝÑ Om is a diffeomorphism.

Definition 7.32. A G-homogeneous space is a manifold with a transitive action of G.

Corollary 7.33. Let M be a G-homogeneous space and fix x P M . Then G Ñ M , g ÞÑ g.m is a
fiber bundle with fiber Gm, and M – G{Gm as G-homogeneous spaces.

Example 7.34. SOpn ´ 1,Rq Ñ SOpn,Rq Ñ Sn´1, where SOpn ´ 1,Rq is the stabilizer of m “

p0, 0, . . . , 1q. So

Sn´1 –
SOpn,Rq

SOpn´ 1,Rq

Example 7.35. GLpn,Rq acts transitively on FnpRq. Pick standard flag

V st “ pt0u Ă xe1y Ă ¨ ¨ ¨ Ă xe1, . . . , n´1y Ă Rnq.

Then the stabilizer StabGLpn,Rq

`

V st
˘

“ Bpn,Rq all invertible upper triangular matrices so

FnpRq –
GLpn,Rq

Bpn,Rq

which equips FnpRq with the structure of a manifold of dimension n2 ´
npn`1q

2 “
npn´1q

2

8 Lecture 8

8.1 The General Exponential Map

Let G be a Lie group (not necessarily classical) and g “ T1G its Lie algebra.

Goal: Define a map exp: g Ñ G which generalizing matrix exponential map.

glpn,Rq Ñ GLpn,Rq x ÞÑ ex “

8
ÿ

k“0

xk

k!

The problem is xk has no meaning in general.

Definition 8.1. A one-parameter subgroup of G is a morphism of Lie groups γ : R Ñ G.

Let γ : R Ñ G be a one-parameter subgroup of G. In particular γp0q “ 1, the identity element
in the group G. So, the derivative at zero is a linear map 9γp0q : T0R Ñ T1G. Since T0R can be
identified with R and T1G can be identified with the Lie algebra of G, we obtain a linear map
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9γp0q : R Ñ g. But a linear map R Ñ g is determined by the value at 1 P R and is really the same
thing as an element of g. In this way we regard 9γp0q as an element of g. Thus we have a map

␣

one-parameter subgroups of G
(

Ñ g (8.1)

In fact, this map is a bijection. This gives a third way to think about the Lie algebra of G, the
previous two being the space of all left-invariant vector field (the official definition), and the tangent
space at the identity of G.

To prove it, we need the following theorem from differential equations, which we will not prove
here.

Theorem 8.2 (Local Integrability of Vector Fields on Manifolds). Let v be a vector field on a
manifold M and let p P M . Then there exists an open interval I Ă R contatining 0 and a smooth
map γ : I Ñ M satisfying the differential equation:

#

9γptq “ v
`

γptq
˘

γp0q “ p
(8.2)

Moreover, if rγ : J Ñ M is another local solution to that differential equation, then γ “ rγ on I X J .

We can now prove that (8.1) is a bijection.

Proposition 8.3 (Prop 3.1 in Kirillov). Let G be a Lie group, g “ T1G, and x P g. Then there
exists a unique one-parameter subgroup γx of G such that 9γxp0q “ x.

Proof. Let vx be the left invariant vector field on G with vxp1q “ x. Let γ : I Ñ G be a solution to
the system

#

9γptq “ vx
`

γptq
˘

γp0q “ p
(8.3)

We claim that
γps` tq “ γpsqγptq when s, t, s` t P I. (8.4)

To show this, fix s and let
αptq “ γpsqγptq, βptq “ γps` tq.

Then

9αptq “
`

Lγpsq ˝ γ
˘1

ptq

“
`

Lγpsq

˘

˚
¨ 9γptq by the chain rule

“
`

Lγpsq

˘

˚
¨ vx

`

γptq
˘

“ v
`

γpsqγptq
˘

by left invariance of vx

“ v
`

αptq
˘

.

On the other hand
9βptq “ 9γps` tq “ vx

`

γps` tq
˘

“ vx
`

βptq
˘

.

Thus α and β satisfy the same differential equation and αp0q “ βp0q “ γpsq. By the uniqueness
part of Theorem 8.2, αptq “ βptq. This prove the claim (8.4). We leave it as an exercise to
show that γ extends uniquely to a one-parameter group R Ñ G. Taking t “ 0 in (8.3) we have
9γp0q “ vxp1q “ x.

27



Definition 8.4. The exponential map exp: g Ñ G is defined by exppxq “ γxp1q.

Example 8.5. G “ Up1q “ tz P C | |z| “ 1u is real 1-dim Lie group. We have seen g “ iR. Given
x P iR, the corresponding 1-parameter subgroup is

γxptq “ etx

because γxps` tq “ eps`tqx “ esxetx “ γxpsqγxptq and 9γxptq “ xetx so 9γxp0q “ x. So the exponential
map in this in this case is iR Ñ Up1q by x ÞÑ γxp1q “ ex i.e. the usual one.

Example 8.6. SOp3,Rq it Lie algebra sop3,Rq has a basis tJx, Jy, Jzu :

Jx “

»

–

0 0 0
0 0 ´1
0 1 0

fi

fl , Jy “

»

–

0 0 1
0 0 0

´1 0 0

fi

fl , Jz “

»

–

0 ´1 0
1 0 0
0 0 0

fi

fl .

One can show that

γJxptq “

»

–

1 0 0
0 cos t ´ sin t
0 sin t cos t

fi

fl .

Indeed it’s a morphism of Lie groups and 9γJxp0q “ Jx. So expptJxq “ γJxptq.

8.1.1 Properties of the Exponential Map

Exercise 8.7. Let G be a Lie group and x P T1G. Then for any real numbers s, t we have

γsxptq “ γxpstq.

(Hint: Take d
dt |t“0 on both sides and use uniqueness.)

Theorem 8.8 (thm 3.7 in Kirillov). The general exponential map satisfies the following:

1) exp˚p0q : g Ñ T1G “ g is the identity map

2) exp is a diffeomorphism between some neighborhood of 0 in g and some neighborhood of 1 in
G. The inverse is denoted by log.

3) expppt` sqxq “ expptxq exppsxq @s, t P R, x P g

4) If φ : G1 Ñ G2 is a morphism of Lie groups, then

exppφ˚pxqq “ φpexppxqq @x P g1 “ T1G1(Recall: φ˚ “ dφp0q)

5) For X P G, y P g X exppyqX´1 “ exppAdX.yq

Proof.
1) By Exercise 8.7, we have expptxq “ γtxp1q “ γxptq for x P g and t P R. Now differentiate with
respect to t and take t “ 0 to get exp1p0q ¨ x “ 9γxp0q “ x.
2) Immediate by inverse function theorem and part 1).
3) Follows from the fact that t ÞÑ expptxq is a one-parameter subgroup.
4) Follows from the uniqueness of the one-parameter subgroup: Let x P g1, consider γ : R Ñ G1 Ñ

G2 by t ÞÑ γxptq ÞÑ φpγxptqq. This is a one-parameter subgroup of G2. Hence 9γp0q “ φ˚p 9γxp0qq “

φ˚pxq. So by uniqueness of a one-parameter subgroup of G2 with 9γp0q “ φ˚pxq. So γ “ γφ˚pxq in
G2. This shows that φ ˝ γx “ γφ˚pxq. Now evaluate both sides at t “ 1.
5) Follows from 4) by G Ñ G by Y ÞÑ XYX´1 “ pAdXqpY q.
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Further Reading

8.2 Classes of Manifolds

(1) Complex manifold M Ă Cn: Coordinate systems φ : U Ñ M where U Ă Cd are holomorphic
functions.

(2) Ck-manifolds M Ă Rn: Coordinate systems φ : U Ñ M where U Ă Rd, are differentiable of
class Ck.

C0 “ continuous functions

C1 “ 1st order differentiable functions

Ck “ all partial derivatives up to order k exist and are continuous

C8 “ all partial derivatives exists (ñ continuous)

“ smooth functions

Cω “ all real analytic functions (functions with Taylor series expansions)

One could imagine a theory of Ck-Lie groups for k P N Y t8, ωu, in the real case. However
we have:

Theorem 8.9 (Deep Theorem (see Remark 2.2)). Let G be a real Lie group of class C0. Then
there is a Lie group G1 of class Cω such that G – G1 as C0-Lie groups. Moreover, G1 is unique up
to isomorphism of of Cω-Lie groups.

The conclusion to be drawn from this is ”every real Lie group is a Cω-Lie group”. it suffices to
consider

– Complex Lie groups

– Real Lie groups

We may WLOG assume all maps involved have Taylor series expansions.

9 Lecture 9: The Bracket (Commutator)

Let G be a Lie group and g “ T1G. The vector space g is equipped with a canonical bilinear
operation, denoted rx, ys for x, y P g and is called the bracket on g.

There are two equivalent ways to introduce it.

9.1 First Method to Introduce the Bracket: via the Logarithm

Recall exp is locally a diffeomorphism.

exp: g Ñ G

Let U Ă g be a neighborhood of 0 and V Ă G neighborhood of 1 such that exp |U : U Ñ V is a
diffeomorphism with an inverse denoted by log. consider the map

φ : gˆ g Ñ G by px, yq ÞÑ exppxq ¨ exppyq.
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Then for px, yq P φ´1pµpx, yqq for some µpx, yq P g. Explicitly,

µpx, yq “ logpexppxq exppyqq

defined for px, yq P φ´1pV q Ă gˆ g. µ is a real analytic (or holomorphic) function and thus has a
Taylor series at p0, 0q.

Lemma 9.1. µpx, yq “ x`y`λpx, yq`¨ ¨ ¨ where, λ : gˆ g Ñ g is a skew-symmetric bilinear map.

Proof. General Taylor series:

fpxq “
1

0!
L0 `

1

1!
L1pxq `

1

2!
L2px, xq ` ¨ ¨ ¨

Where Lk is a multilinear function of k variables. In our case

x “ px, yq P gˆ g – Rk ˆ Rk

“ px, 0q ` p0, yq.

So

µpx, yq “ c0 ` α1pxq ` α2pyq `
1

2
pQ1px, xq ` λpx, yq `Q2py, yqq ` ¨ ¨ ¨

for some linear functions α1, α2 and bilinear functions Q1, λ,Q2. Observe

µpx, 0q “ logpexppxq expp0qq “ x

So c0 “ 0, α1pxq “ x, and Q1px, xq “ 0. Similarly µp0, yq “ y, which gives α2pyq “ y and
Q2py, yq “ 0. Lastly,

µpx, xq “ logpexppxq exppxqq “ logpexpp2xqq “ 2x.

So λpx, xq “ 0 @x P g which implies λpx` y, x` yq “ 0 @x, y P g. Now since λ is bilinear we have,
λpx, yq ` λpy, xq “ 0.

Definition 9.2. The skew-symmetric bilinear function λ : gˆ g Ñ g as introduced above is called
the commutator (or bracket).

Notation 9.3. rx, ys :“ λpx, yq.

Proposition 9.4.

1) Let φ : G1 Ñ G2 be a morphism of Lie groups, and φ˚ : g1 Ñ g2 its differential. Then

φ˚prx, ysq “ rφ˚pxq, φ˚pyqs

for any x, y P g1.

2) Adgprx, ysq “ rAdgpxq,Adgpyqs for any g P G, x, y P g.

3) Let X “ exppxq and Y “ exppyq. Then the group commutator rX,Y s “ XYX´1Y ´1 equals
expprx, ys ` terms of higher orderq.
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Proof. 1) Recall for x P g1
exppφ˚pxqq “ φpexppxqq

hence

exppµpφ˚pxq, φ˚pyqqq “ exppφ˚pxqq exppφ˚pyqq

“ φpexppxq exppyqq

“ φpexppµpx, yqqq

“ exppφ˚pµpx, yqqq.

Now apply log to both sides.
2) Adg : G Ñ G is a morphism of Lie groups. Apply 1).
3) Explicit calc.

Corollary 9.5. If G is a commutative Lie group then rx, ys “ 0 for all x, y P g.

Proof. Use 3) from above.

Example 9.6. Let G Ă GLpn,Rq and g Ă glpn,Rq. Then,

exppxq “ p1 ` x` ¨ ¨ ¨ q exppyq “ p1 ` y ` ¨ ¨ ¨ q

This implies that

exppxq exppyq expp´xq exppyq “ p1`x`¨ ¨ ¨ qp1`y`¨ ¨ ¨ qp1´x`¨ ¨ ¨ qp1´y`¨ ¨ ¨ q “ 1`pxy´yxq`¨ ¨ ¨

So rx, ys “ xy ´ yx.

9.2 Second way to Introduce the Bracket: via Derivations

9.2.1 Derivations on an Algebra

If A is an (not necessarily associative) algebra, a derivation on A is a linear map D : A Ñ A
satisfying Dpabq “ Dpaqb ` aDpbq for all a, b P A. Let DerpAq denote the set of all derivations of
A. It is easy to see that DerpAq is a subspace of EndRpAq (the space of all linear maps from A to
itself). If D and E are two derivations on A we define their commutator as

rD,Es “ D ˝ E ´ E ˝D.

Lemma 9.7. rD,Es P DerpAq for all D,E P DerpAq.

Proof. pD ˝ Eqpfgq “ D
`

Epfqg ` fEpgq
˘

“ D
`

Epfq
˘

g ` EpfqDpgq ` DpfqEpgq ` fD
`

Epgq
˘

so
when we switch D and E and subtract the middle two terms cancel, giving the result.

One checks the identities

rD,Es “ ´rE,Ds skew-symmetry

rD, rE,F ss ` rE, rF,Dss ` rF, rD,Ess “ 0 Jacobi identity
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9.2.2 Vector Fields as Derivations

Let M be a manifold, C8pMq the algebra of smooth real-valued functions on M with pointwise
operations, VectpMq be the vector space of smooth vector fields on M .

Lemma 9.8. There is an isomorphism of vector spaces

VectpMq Ñ Der
`

C8pMq
˘

, X ÞÑ DX

where

pDXfqppq “
d

dt
|t“0f

`

γptq
˘

“ f 1ppq ¨Xp,

and γ : R Ñ M is any smooth map with γp0q “ p and 9γppq “ Xp. (Here Xp P TpM denotes the
tangent vector of the field X at p.)

Remark 9.9. As can be seen from the last expression, the result does not depend on the choice
of γ satisfying the given conditions.

Proof. That X ÞÑ DX is a linear map is easy to see. Suppose that DX “ DY for some vector fields
X,Y . Then

f 1ppq ¨Xp “ f 1ppq ¨ Yp (9.1)

for all smooth functions f on M and all p P M . Here we can think of f 1ppq as the gradient of f
at p, which is a row vector, while Xp and Yp are column vectors upon which f 1ppq acts via matrix
multiplication (dot product). By varying the smooth function f appropriately, we can get any row
vector to appear as f 1ppq. Then (9.1) implies that u ¨ pXp ´ Ypq “ 0 for any row vector u, hence
Xp “ Yp.

(We skip the proof of surjectivity)

9.2.3 Bracket on Vector Fields

Combining these results we may define a bilinear operation on VectpMq as follows: For two vector
fields X,Y P VectpMq, define rX,Y s to be the unique vector field such that

DrX,Y s “ rDX , DY s

Exercise 9.10. If X and Y are left invariant vector fields on a Lie group G, then the vector field
rX,Y s is also left invariant.

9.2.4 Explicit Form of Bracket on T1G Using Exponential Map and Differentiation

Let G be a Lie group and in this section put g “ T1G, the tangent space at identity. We know that
X ÞÑ Xp1q gives a bijection between left invariant vector fields on G and T1G. Thus we should be
able to define a bracket on T1G.

Recall that if u P T1G is a tangent vector, the corresponding left invariant vector field Xu is
defined by Xupgq “ pLgq˚ ¨ u.

Thus the corresponding derivation Du “ DXu on C8pMq satisfies

pDufqp1q “
d

dt

ˇ

ˇ

ˇ

t“0
f
`

expptuq
˘

“ f 1p1q ¨ u.

Therefore ru, vs must be the unique tangent vector that satisfies

prDu, Dvsfqp1q “ f 1p1q ¨ ru, vs
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for all f P C8pMq.
To find an explicit expression for ru, vs we compute:

pDuDvfqp1q “
d

dt

ˇ

ˇ

ˇ

t“0
pDvfq

`

expptuq
˘

“
d

dt

ˇ

ˇ

ˇ

t“0

`

expptuq´1 ¨ pDvfq
˘

p1q by G-action on C8pMq

“
d

dt

ˇ

ˇ

ˇ

t“0

`

Dvpexpp´tuqfq
˘

p1q by left invariance of Dv

“
d

dt

ˇ

ˇ

ˇ

t“0

d

ds

ˇ

ˇ

ˇ

s“0

`

expp´tuqf
˘`

exppsvq
˘

“
d

dt

ˇ

ˇ

ˇ

t“0

d

ds

ˇ

ˇ

ˇ

s“0
f
`

expptuq exppsvq
˘

“
d

dt

ˇ

ˇ

ˇ

t“0
f 1
`

expptuq
˘

¨
d

ds

ˇ

ˇ

ˇ

s“0
expptuq exppsvq

“ f2p1q
d

dt

ˇ

ˇ

ˇ

t“0
expptuq

d

dt

ˇ

ˇ

ˇ

s“0
exppsvq ` f 1p1q ¨

d

dt

ˇ

ˇ

ˇ

t“0

d

ds

ˇ

ˇ

ˇ

s“0
expptuq exppsvq

The second derivative term cancels when we switch u and v and subtract, giving:

prDu, Dvsfqp1q “ f 1p1q ¨
d

dt

ˇ

ˇ

ˇ

t“0

d

ds

ˇ

ˇ

ˇ

s“0

`

expptuq exppsvq ´ exppsvq expptuq
˘

for all f P C8pMq. We conclude that the Lie bracket on T1G can be computed as follows:

ru, vs “
d

dt

ˇ

ˇ

ˇ

t“0

d

ds

ˇ

ˇ

ˇ

s“0

`

expptuq exppsvq ´ exppsvq expptuq
˘

, @u, v P T1G. (9.2)

10 Further Reading

10.1 Computing Differentials Using Curves

Let φ : M Ñ N be a morphism of manifolds. Let p P M and x P TpM . To find dφppxq, also denoted
φ˚pxq, let γ : k Ñ M be any morphism with γp0q “ p, and dγ0 “ xiv. Then dpφ˝γq0 “ dφp ˝dγ0 “

dφppxq, where the first equality is by the chain rule. On the other hand

dpφ ˝ γq0 “
d

dt
|t“0φpγptqq

This is particularly useful for Lie groups: If x P g then γx : k Ñ G, γxptq “ expptxq is a natural
curve through 1 P G with derivative x. So given a Lie group G, a manifold M and a morphism of
manifolds φ : G Ñ M its differential at 1 can be computed as follows:

φ˚ “ dφ1 : g Ñ Tφp1qM φ˚pxq “
d

dt
|t“0φpexpptxqq.

10.2 Differential of Ad

Recall Ad g : G Ñ G by x ÞÑ gxg´1. Its differential is

Ad g : g Ñ g .

So Ad g P GLpgq, and Ad: G Ñ GLpgq. So its differential is ad “ Ad˚ : g Ñ glpgq.

ivHere we identify Homkpk, TpMq with TpM
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Lemma 10.1.

1) adx.y “ rx, ys

2) AdpexppXqq “ exppadxq

Proof. 1) For g P G consider Ad g : G Ñ G. By formula for φ˚ its differential is given by Ad g : g Ñ

g by

pAd gqpyq “
d

dt
|t“0pAd gqpexp tyq “

d

dt
|t“0g expptyqg´1

By the same formula again, ad: g Ñ glpgq is given by

adx.y “
d

ds
|s“0

d

dt
|t“0 exppsxq expptyq expp´sxq “

d

ds
|s“0

d

dt
|t“0 exppty ` tsrx, ys ` ¨ ¨ ¨ q “ rx, ys.

Where the second last equality is by Proposition 9.4 part 3).
2) Immediate by X exppyqX´1 “ exppAdX.yq which was proved earlier.

Theorem 10.2 (Jacobi Identity). Let G be a Lie group and g “ T1G Then the skew-symmetric
bilinear map r¨, ¨s : gˆ g Ñ g satisfies the Jacobi Identity:

rx, ry, zss ` ry, rz, xss ` rz, rx, yss “ 0.

This identity can also be written (using skew-symmetry and bilinear-ity):

rx, ry, zss “ rrx, ys, zs ´ ry, rx, zss

adx.ry, zs “ radx.y, zs ` ry, adx.zs

adrx, ys “ adx ad y ´ ad y adx

Proof. Since Ad: G Ñ GLpgq is a morphism of Lie groups, its differential preserves the commutator
by Proposition 9.4 1). But the commutator on glpgq is rA,Bs “ AB ´BA by example 9.6. So

adrx, ysg “ radx, ad ysglpgq “ adx ad y ´ ad y adx.

Applying both sides to z P g we get

rx, ry, zss “ rrx, ys, zs ´ ry, rx, zss

The other forms left as an exercise.

11 Lecture 10: Lie Algebras

11.1 Lie Algebras and Homomorphisms

Definition 11.1. A Lie algebra g over a field k is a vector space g together with a bilinear map

r¨, ¨s : g ˆ g Ñ g

satisfying

i) rx, ys “ ´ry, xs (skew-symmetry)v

vIf char k “ 2 this condition is replaced by rx, xs “ 0.
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ii) rx, ry, zss ` ry, rz, xss ` rz, rx, yss “ 0 (Jacobi identity)

A homomorphism of Lie algebras ψ : g1 Ñ g2 is a linear map satisfying

ψprx, ysq “ rψpxq, ψpyqs.

If ψ is moreover bijective, it is an isomorphism. Two Lie algebras g1, g2 are isomorphic, written
g1 – g2, if there exists an isomorphism φ : g1 Ñ g2.

Example 11.2. Let A be any associative algebra over k (i.e. a ring containing k). Then define

ra, bs “ ab´ ba.

This operation turns A into a Lie algebra, denoted LpAq.

Exercise 11.3. Show that pA, r¨, ¨sq defined above is indeed a Lie algebra.

Definition 11.4. The general linear Lie algebra over k is

gln “ glpn, kq “ L
`

Mnpkq
˘

.

More generally, we may consider

glpV q “ L
`

EndpV q
˘

V any vector space over k.

Clearly, if V is finite-dimensional, then

glpV q – gpn,kq where n “ dimk V .

Example 11.5. Any vector space V can be regarded as a Lie algebra by defining rx, ys “ 0
@x, y P V .

Definition 11.6. A Lie algebra g is abelian if rx, ys “ 0 for all x, y P g.

Example 11.7. On R3 we may take ru, vs “ uˆ v. This is a Lie algebra. In fact, it is isomorphic
to the Lie algebra sop3q of all skew-symmetric 3 ˆ 3-matrices. An isomorphism is given by

e1 ÞÑ Jx, e2 ÞÑ Jy, e3 ÞÑ Jz

where Jx,y,z are the natural basis elements of sop3q. This shows that the next natural Euclidean
space where we can define the cross product isn’t R4 but rather R6 because dim sop4q “ 4¨3

2 “ 6.
(This is just one perspective; there are several distinct ways to generalize the cross product on R3.)

11.2 Subalgebras and Ideals

Definition 11.8. Let g be a Lie algebra over k. A linear subspace h Ă g is a

• (Lie) subalgebra if rx, ys P h for all x, y P h.

• (Lie) ideal if rx, ys P h for all x P g, y P h.

Exercise 11.9. If h Ă g is an ideal then g { h is a Lie algebra with operation

rx` h, y ` hs “ rx, ys ` h

for all x, y P g.
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Exercise 11.10. (First Isomorphism Theorem) If φ : g Ñ h is a Lie algebra homomorphism, then
kerpφq is an ideal of g, impφq is a subgalgebra of h, and

g{ kerpφq – φpgq.

Example 11.11. Let φ : glpn,kq Ñ k be given by φpAq “ TrA. This is a Lie algebra homomor-
phism. The kernel is

kerpφq “ sln “ slpn, kq “ tA P glpn, kq | TrA “ 0u.

By the first isomorphism theorem glpn,kq{slpn, kq – k.

Definition 11.12. Let g be a Lie algebra. The center of g is

zpgq “ tx P g | rx, ys “ 0 @y P gu.

Exercise 11.13. zpgq is an ideal of g.

Exercise 11.14. The center of glpn, kq is kIn (the set of scalar multiples of the identity matrix).

11.3 Products of Lie Algebras

If g1, g2 are Lie algebras, the cartesian product g1 ˆ g2 is Lie algebra with bracket

rpx1, x2q, py1, y2qs “ prx1, y1s, rx2, y2sq

The projections πi : g1 ˆ g2 Ñ gi are Lie algebra homomorphisms and the triple pg1 ˆ g2, π1, π2q

satisfies the universal property: Given any Lie algebra h and homomorphisms ψi : h Ñ gi there is
a unique homomorphism φ : g1 ˆ g2 Ñ h such that ψi “ πi ˝ φ.

Even though there are Lie algebra homomorphisms ιi : gi Ñ g1ˆg2 sending x to px, 0q and p0, xq

respectively, the triple pg1 ˆ g2, ι1, ι2q does NOT (in general) satisfy the dual universal property:

Exercise 11.15. Show that if g is non-abelian, then pgˆg, ι1, ι2q is not a coproduct in the category
of Lie algebras.

Conclusion: The category of Lie algebras has finite products but does not have finite coproducts.
Nevertheless it is common to see the notation g1 ‘ g2 instead of g1 ˆ g2 in the literature.

12 Further Reading

12.1 Lie Subgroups and Lie Subalgebras

Theorem 12.1 (Thm 3.22). Let G be a Lie group and g “ Lie pGq.

(1) If H is a Lie subgroup of G then T1H is a Lie subalgebra in g.

(2) If H is a normal closed subgroup of G then h “ T1H is a Lie ideal of g and Lie pG{Hq – g { h.

Conversely, if H is a closed Lie subgroup in G, such that H and G are connected and h “ T1H is
an ideal in g, then H is normal.
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Proof. We only prove part (1) here. If x P T1H then the one parameter subgroup γ : R Ñ H
with 9γp0q “ x is also a one parameter subgroup of G and hence γptq “ expptxq by uniqueness. So
expptxq P H @t P R. In particular for x, y P T1H:

logpexppxq exppyq expp´xq expp´yqq

belongs to h hence by commutator formula, rx, ys P T1H. Similarly for part (2). (Read in book!)

Theorem 12.2 (Thm 3.35 in Kirillov). Let G be a connected Lie group. Then its center

ZpGq “ tg P G | gh “ hg for all h P Gu

is a closed Lie subgroup with Lie algebra zpgq.

12.2 Connection Between Lie Groups and Lie Algebras

Let G be a Lie group. Then g “ LieG “ T1G with the bracket discussed previous lecture is a
Lie algebra. Every morphism φ : G1 Ñ G2 of Lie groups gives a homomorphism of Lie algebras
φ˚ : g1 Ñ g2. Moreover, pφ ˝ ψq˚ “ φ˚ ˝ ψ˚, Id˚ “ Id. In other words, Lie is a functor from the
category of Lie groups to the category of Lie algebras.

Theorem 12.3 (Thm 3.40). For any Lie group G there is a bijection between connected Lie sub-
groups H Ă G and Lie subalgebras h Ă g given by H ÞÑ h “ LieH “ T1H.

Sketch of proof. An inclusion φ : H Ñ G of a subgroup yields an inclusion φ˚ : h Ñ g of Lie
algebras. For the converse, we have seen a special case: If h is one-dimensional, say h “ Rx then
we may take H to be the image of the exponential map t ÞÑ expptxq. This is a connected subgroup
of G (being the image of the connected set R under a continuous map). The general case is not
proved in the book and is more difficult. It relies on Frobenius integrability criterion which is a
generalization of the “integrability of vector fields” theorem from differential equations.

Theorem 12.4. Let G1 and G2 be Lie groups and gi “ LieGi.

(1) If G1 is connected this functor is faithful, that is, HompG1, G2q Ñ Hompg1, g2q is injective.

(2) (Thm 3.41) If G1 is connected and simply connected then the functor is fully faithful, that is,
HompG1, G2q – Hompg1, g2q.

Proof. See Section 3.8 of the book.

Theorem 12.5 (Thm 3.42, Lie’s 3rd Thm). Any finite dimensional real Lie algebra is isomorphic
to the Lie algebra of a Lie group.

Idea of proof. Show that every Lie algebra is isomorphic to a subalgebra of glpn,kq. (Ado’s Theo-
remvi). Then use theorem 12.3.

Corollary 12.6 (Cor 3.43). ) For any finite dimensional Lie algebra g over R, there is a unique up
to isomorphism connected simply-connected Lie group G with Lie pGq – g. Furthermore, any other
connected Lie group G1 with Lie algebra g is of the form G{Z for some discrete central subgroup
Z Ă G.

Since the functor from connected simply connected Lie groups to real Lie algebras is fully
faithful (Theorem 12.4 and essentially surjective on objects (Theorem 12.6), we obtain:

Corollary 12.7 (Cor 3.44). The category of finite dimensional Lie algebras over R is equivalent
to the category of connected simply-connected Lie groups.

viIf Zpgq “ 0, then x ÞÑ adx is injective.
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12.3 The Baker-Campbell-Hausdorff Formula

Recall: 1
2 rx, ys px, y P gq is the quadratic term of the Taylor expansion of logpexppxq exppyqq at 0.

Question 12.8. Do higher order terms give more information? Or does the bracket completely
determine the multiplication in G?

Theorem 12.9 (Baker-Campbell-Hausdorff). For small enough x, y P g we have,

exppxq exppyq “ exp
´

8
ÿ

0

µnpx, yq

¯

where

µ0px, yq “ 0,

µ1px, yq “ x` y,

µ2px, yq “
1

2
rx, ys,

µ3px, yq “
1

12

`

rxrx, yss ` ryry, xss
˘

,

...

In general, for n ě 0 µn is a universal (=independent of g) expression, in a linear combination of
commutators of degree n.

Corollary 12.10. The group operation in a connected Lie group can be recovered from its Lie
algebra.

12.4 Complex and Real Forms

Definition 12.11. The complexification of a real Lie algebra g is

gC :“ gbRC

with bracket determined by

rxb λ, y b µs “ rx, ys b λµ @x, y P g, λ, µ P C.

g is a real form of gC.

Under the isomorphism gbRC – g‘i g, we can also write it

rx` iy, z ` iws “ rx, zs ´ ry, ws ` i
`

ry, zs ` rx,ws
˘

@x, y, z, w P g .

Example 12.12. g “ upnq Ñ gC “ glpn,Cq. With

X “
1

2
pX `X˚q `

1

2
pX ´X˚q

with the first piece in upnq and the second piece in iupnq. This is clear because X is hermitian ô

iX skew-hermitian.
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Example 12.13. supnq and slpn,Rq are two (different) real forms of slpn,Cq, because

slpn,Cq “ slpn,Rq ‘ islpn,Rq “ supnq ‘ isupnq.

Remark 12.14. Let G be a connected complex Lie group, g “ Lie pGq. Let K Ă G be a closed
real Lie subgroup in G such that k “ Lie pKq is a real form of g (i.e. k bR C “ g). Then K is said
to be a real form of G.

So, the above example shows that SUpnq and SLpn,Rq are two real forms of SLpn,Cq.
Since unitary matrices preserve the standard Hermitian inner product on Cn, it is not hard to

see that SUpnq is a (closed) and bounded set, hence SUpnq is a so called compact real form of
SLpn,Cq.

13 Lecture 11: Solvable Lie Algebras and Lie’s Theorem

13.1 The Derived Subalgebra

The following lemma is easy to check.

Lemma 13.1. I, J Ă g ideals. Then

I ` J “ tx` y | x P I, y P Ju

I X J

rI, Js “ Span
␣

rx, ys | x P I, y P J
(

are ideals.

Definition 13.2. g1 “ rg, gs is the derived subalgebra (or commutant) of g.

Note that, somewhat confusingly, the derived subalgebra is actually an ideal of g.

Lemma 13.3.

(i) g {rg, gs is abelian

(ii) If I Ă g is an ideal such that g {I is abelian, then rg, gs Ă I.

Example 13.4. Let g “ glpn, kq, then rg, gs “ slpn, kq

pĂq: This is clear as Trpxy ´ yxq “ 0 for every x, y P glpn, kq.
pĄq: For i ‰ j: Eii ´ Ejj “ rEij , Ejis P g1 and Eij “ 1

2 rEii ´ Ejj , Eijs P g1

13.2 The Derived Series

We construct the following sequence of subspaces of a Lie algebra g:

D0 g “ g

D1 g “ rg, gs “ g1

D2 g “ rrg, gs, rg, gss “ rg1, g1s

... “
...

Di g “ rDi´1 g, Di´1 gs

... “
...

Notice that g “ D0 g Ą D1 g Ą D2 g Ą ¨ ¨ ¨ . This sequence is known as the derived series of g.
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Exercise 13.5. Show that Dig is an ideal of g for every i ě 0.

Definition 13.6. g is solvable if there exists n ě 0: Dn g “ 0.

Proposition 13.7. Let g be a Lie algebra, then TFAE:

(i) g is solvable;

(ii) There is a sequence of subspaces

g “ a0 Ą a1 Ą a2 Ą ¨ ¨ ¨ Ą ak “ 0

such that rai, ai`1s Ă ai`1, i “ 0, . . . , k ´ 1 and ai{ai`1 is one-dimensional;

(iii) There is a sequence of subspaces

g “ a0 Ą a1 Ą a2 Ą ¨ ¨ ¨ Ą ak “ 0

such that rai, ai`1s Ă ai`1, i “ 0, . . . , k ´ 1 and ai{ai`1 is abelian.

Proof. Observe the condition rai, ai`1s Ă ai`1 for i “ 0, 1, . . . , k ´ 1 implies that each ai`1 is a
subalgebra of g and is an ideal of ai.

piq ñ piiq: Let b1 be any subspace in g{g1 of codimension one and let a1 be the inverse image of
b1 in g under the canonical map g Ñ g{g1. Then rg, a1s Ă g1 Ă a1. In particular a1 is a (codimension
one) subalgebra of g hence is itself solvable. By induction on dim g, the subalgebra a1 has such a
chain of subspaces.
piiq ñ piiiq: Trivial.
piiiq ñ piq: Since ai{ai`1 is abelian, Lemma 13.3(ii) implies that rai, ais Ă ai`1 for all i “ 0, 1, . . . , k´

1. We show by induction on i that Dig Ă ai for all i “ 0, 1, . . . , k. It is trivial for i “ 0. For i ą 0
we have Dig “ rDi´1g, Di´1gs Ă rai´1, ai´1s Ă ai. Therefore Dkg “ 0 and g is solvable.

13.3 Lie’s Theorem

The following is the key result that is needed to prove Lie’s Theorem.

Theorem 13.8. Assume that k is algebraically closed and char k “ 0. Let V ‰ 0 be a finite-
dimensional vector space over k. Let g be a solvable Lie subalgebra of glpV q. Then there exists a
nonzero vector v P V which is a common eigenvector for all elements of g.

Proof. By Proposition 13.7(i)ñ(ii), there exists an ideal a Ă g of codimension one. By induction on
dim g there exists a nonzero vector v1 P V and a linear functional λ : a Ñ k such that av1 “ λpaqv1

for all a P a. Consider the subspace

W “ tw P V | aw “ λpaqw @a P au.

Since v1 P W , W ‰ 0. Pick x P gza; then g “ a ‘ kx. We claim that xW Ă W . For any a P a and
w P W we have

axw “ xaw ` ra, xsw “ λpaqxw ` λpra, xsqw

(we can write this because ra, xs P a). So the claim will follow if we show that λpra, xsq “ 0 for all
a P a.

Pick any nonzero w P W and let Wi “ Spantw, xw, x2w, . . . , xi´1wu. Since V is finite-
dimensional, the ascending sequence W1 Ă W2 Ă ¨ ¨ ¨ must stabilize. Let n be minimal such that
Wn “ Wn`1. Then dimWi “ i for 1 ď i ď n.
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We show that any a P a preservesWn and in the basis w, xw, . . . , xn´1w, a is an upper triangular
matrix with all diagonal elements equal to λpaq. That is, we show

axiw P λpaqxiw `Wi @a P a, i ě 0.

For i “ 0 this holds since aw “ λpaqw. For i ą 0 we have axiw “ xaxi´1w` ra, xsxi´1w hence, by
induction,

axiw P x
`

λpaqxi´1w `Wi´1

˘

` λpra, xsqxi´1w `Wi´1 Ă λpaqxiw `Wi

since xWi´1 Ă Wi. Thus the trace of a on Wn is nλpaq, for all a P a. Since both x and a P a
preserveWn, we have nλpra, xsq “ TrWnpra, xsq “ 0. Since chark “ 0 this implies that λpra, xsq “ 0
for all a P a. This proves the claim that xW Ă W . Since k is algebraically closed, there exists an
eigenvector v for x in W . Since g “ a ‘ kx, v is a common eigenvector for all elements of g.

Lie’s Theorem is frequently stated in terms of representations.

1. A representation of a Lie algebra g is a vector space V together with a Lie algebra homomor-
phism ρV : g Ñ glpV q. We say that the representation is complex (resp. finite-dimensional,
etc.) if the vector space V is.

2. A subrepresentation of V is a subspace U such that ρV pxqU Ă U @x P g. (Then U becomes a
representation by ρU pxq “ ρV pxq

ˇ

ˇ

U
.)

3. If U is a subrepresentation of a representation V then the quotient space V {U is a represen-
tation by ρV {U pxqpv ` Uq “

`

ρV pxqv
˘

` U @x P g, v P V .

When no confusion can arise we frequently use module notation:

x.v “ ρV pxqv, @x P g, v P V.

Note that with this notation we have

rx, ys.v “ x.y.v ´ y.x.v

for all x, y P g and v P V .

Corollary 13.9 (Lie’s Theorem). Any complex finite dimensional representation V of a solvable
Lie algebra g has a flag (sequence of subspaces)

F “
`

0 “ V0 Ă V1 Ă V2 Ă ¨ ¨ ¨ Ă Vn “ V
˘

which is

g-stable : x.Vi Ă Vi @x P g

and complete : dimVi “ i

Remark 13.10. Consequently, choosing a basis for V1 and extending to V2, then extending to
V3, and so on, produces a basis for V in which the matrix ρV pxq is upper-triangular for every
x P g. Thus, Lie’s theorem is a generalization of the linear algebra result that commuting complex
matrices can be simultaneously upper-triangularized.
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Proof. Since g is solvable, the image in glpV q under the representation map ρV is a solvable Lie
subalgebra of glpV q. By Theorem 13.8, there is a vector v P V such that kv is a subrepresentation
of V . By induction on dimV , the representation W “ V {kv has a flag

0 “ W0 Ă W1 Ă ¨ ¨ ¨ Ă Wn “ W,

such that x.Wi Ă Wi @x P g and dimWi “ i@i. Define Vi`1 “ tu P V | u` kv P Wiu be the inverse
image of Wi in V and let V0 “ 0. Then

0 “ V0 Ă V1 “ kv Ă V2 Ă V3 Ă ¨ ¨ ¨ Ă Vn`1 “ V

is a g-stable complete flag for V .

14 Lecture 12: Nilpotent Lie Algebras and Engel’s Theorem

14.1 Lower Central Series

D0 g “ g, Di g “ rg, Di´1 gs for i ą 0.

Definition 14.1. g is nilpotent if there exists n ą 0: Dn g “ 0.

Proposition 14.2. Let g be a Lie algebra, then TFAE:

(i) g is nilpotent

(ii) There is a sequence of subspaces

g “ a0 Ą a1 Ą a2 Ą ¨ ¨ ¨ Ą ak “ 0

such that rg, ais Ă ai`1, i “ 0, . . . , k ´ 1.

By induction it can be shown that Di g Ă Di g, so nilpotent implies solvable.

Example 14.3. g “ glpn,kq. Consider,

b “ tupper triangular matricesu “ spanktEij | i ď juvii

n “ tstrictly upper triangular matricesu “ spanktEij | i ă ju

We claim that b is solvable and n is nilpotent.

Proof of claim. We will instead prove a more general statement. Let V be a vector space and let

F “ p0 Ă V1 Ă V2 Ă ¨ ¨ ¨ Ă Vk “ V q

be a flag (not necessarily complete). The standard flag in kn is given by Vi :“ spante1, . . . , eiu.
Put

bpFq “ tx P glpV q | xVi Ă Vi @iu

npFq “ tx P glpV q | xVi Ă Vi´1 @iu

akpFq “ tx P glpV q | xVi Ă Vi´k @iu

with Vk “ 0 for k ă 0. Note that bpFstdq “ b, npFstdq “ n. Abbreviate ak “ akpFq. Obviously,
ak ¨ aℓ Ă ak`ℓ and rak, aℓs Ă ak`ℓ, hence npFq is nilpotent. Since diagonal entries of xy and yx
coincide for x, y P bpFq (check!). We have D1bpFq Ă a1, and by induction, DibpFq Ă a2i. This
implies that bpFq is solvable.

viiThis called the standard Borel subalgebra of glpn, kq
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14.2 Engel’s Theorem

The adjoint representation of a Lie algebra g is g itself with

ρg “ ad : g Ñ glpgq, padxqpyq “ rx, ys.

That radx, ad ys “ adrx, ys is equivalent to the Jacobi identity (assuming rx, ys “ ´ry, xs). The
map ad is also called the adjoint action of g (on itself).

Theorem 14.4 (Key Result for Engel’s Theorem). Let k be an arbitrary field. Let V ‰ 0 be a finite
dimensional vector space. Let g Ă glpV q be a Lie subalgebra consisting of nilpotent transformations.
Then there exists a nonzero vector v P V such that xv “ 0 for all x P g.

Proof. We use induction on n “ dim g. The conclusion is trivial for n “ 0, 1 so suppose n ą 1. Let
I Ĺ g be a maximal subalgebra. Consider g as a representation of I via restriction of the adjoint
action. Then I is a subrepresentation, hence g{I is a representation of I. Explicitly, we have a Lie
algebra homomorphism ρ : I Ñ glpg{Iq given by ρpaqpx ` Iq “ ra, xs ` I for all a P I, x P g. Since
a is nilpotent, x ÞÑ ra, xs “ a ˝ x ´ x ˝ a “ pLa ´ Raqpxq is nilpotent (binomial theorem implies
pLa ´ Raq2k´1 “ 0 if ak “ 0). Thus, by the induction hypothesis applied to ρpIq, there exists a
nonzero z ` I P g{I such that ρpIqpz ` Iq “ 0. That is, rI, zs Ă I. That implies that the vector
space I ‘ kz is a subalgebra of g strictly containing I. By maximality of I, g “ I ‘ kz. Let

W “ tv P V | av “ 0 @a P Iu.

By the induction hypothesis applied to I, W ‰ 0. Furthermore, W is z-invariant: if v P W and
a P I then azv Ă zav ` ra, zsv “ 0 (because ra, zs P I). Since z is nilpotent, z|W is nilpotent, so
there exists v P W such that zv “ 0. Then gv “ 0.

Corollary 14.5. Let k be an arbitrary field. Let V ‰ 0 be a finite dimensional vector space. Let
g Ă glpV q be a Lie subalgebra consisting of nilpotent transformations. Then there exists a complete
flag 0 “ V0 Ă V1 Ă ¨ ¨ ¨ Ă Vn “ V such that xVi Ă Vi´1 for all x P g.

Remark 14.6. The conclusion is equivalent to there being a basis for V in which all x P g are
strictly upper-triangular.

Corollary 14.7. If g Ă glpV q consists of nilpotent transformations, then g is nilpotent.

Proof. Pick a basis in which all x P g are strictly upper-triangular. Then g is contained in a
nilpotent Lie algebra hence is nilpotent.

Theorem 14.8. If g is a finite dimensional Lie algebra, the g is nilpotent iff @x P g, the map
adx : g Ñ g, y ÞÑ rx, ys, is nilpotent.

Proof. If g is nilpotent, then padxqnpyq P Dng “ 0 for n " 0. Conversely, if adx is nilpotent for all
x P g, then ad g – g{zpgq is nilpotent by Corollary 14.7. That implies g is nilpotent.

15 Lecture 13: The Radical; semisimple Lie Algebras; Semi-Direct
Products and Levi’s Theorem

15.1 The Radical of a Lie Algebra

Definition 15.1. A Lie algebra g is called semisimple if t0u is the only solvable ideal in g.
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Definition 15.2. A Lie algebra g is called simple if it is non-abelian and t0u and g are the only
ideals.

Lemma 15.3. g simple ñ g semisimple.

Proof. Let t0u ‰ I Ă g be a solvable ideal. g simple ñ I “ g ñ the ideal rg, gs is proper
ñ rg, gs “ 0 ñ g abelian, which is a contradiction.

Example 15.4. slp2,Cq is simple. Use the map adh.

Proposition 15.5. Let g be a finite-dimensional Lie algebra. Then the set of all solvable ideals of
g has a unique maximal element.

Definition 15.6. The unique maximal solvable Lie algebra of g is called the radical of g and is
denoted rad pgq.

Proof. Let rad pgq be the sum of all solvable ideals of g. We need to show rad pgq is itself solvable.

If I and J are solvable ideals of g, then
I ` J

I
“

J

I X J
. Since J is solvable,

J

I X J
is solvable.

Since I and
I ` J

I
are solvable ñ I ` J solvable. By induction, any finite sum is solvable. g finite

dimensional implies there exists N ą 0 such that DNI “ 0 for all solvable ideals of g (N “ dim g).
So DN rad pgq “ 0.

Exercise 15.7. rad pg { rad pgqq “ 0, i.e. g { rad pgq is semisimple. (Note g is semisimple iff rad pgq “

0)

Definition 15.8. A finite-dimensional Lie algebra g is reductive if rad pgq “ zpgq.

16 Lecture 14: Jordan Decomposition and Cartan’s First Crite-
rion

Recall that any matrix x P Mnpkq is similar to a matrix in Jordan canonical form:

x „

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

λ1 1
. . .

. . .

. . . 1
λ1

. . .

λk 1
. . .

. . .

. . . 1
λk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Such a matrix can be written:

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

λ1 0
. . .

λ1
. . .

λk
. . .

0 λk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 0
. . .

. . .

. . . 1
. . .

. . . 1
. . . 1

0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where the first is diagonal and the second is nilpotent, and these matrices commute.
When k is algebraically closed, another word for diagonalizable is semisimple.

Definition 16.1. A P EndpV q, V vector space over k (algebraically closed) is semisimple if A is
diagonalizable.

Theorem 16.2 (Jordan Decomposition). V finite dimensional vector space over an algebraically
closed field k. Let A P EndpV q. Then

a) There exist unique linear maps As, An P EndpV q such that

i) A “ As `An

ii) AsAn “ AnAs

iii) As is semisimple and An is nilpotent.

b) There exists P pT q “ PApT q P CrT s and QpT q “ QApT q P CrT s such that

i) As “ P pAq and An “ QpAq

ii) gcdpP pT q, QpT qq “ T in particular P p0q “ Qp0q “ 0. Hence, if B P EndpV q commutes
with A, then B commutes with As and An.

c)

padAqS “ adpAsq

padAqn “ adpAnq

In particular, if A is semisimple (respectively nilpotent), then adA is semisimple (respectively
nilpotent).

Proof. a,b) A P EndpV q define a k-algebra morphism

evA : krT s Ñ EndpV q
ÿ

cnT
n ÞÑ

ÿ

cnA
n

ñ cApT q “
ś

pT ´ aiq
mi where ai P k. The Sun-Tzu-Aryabhata’s Remainder theorem gives:

krT s

pcApT qq
–
à

i

krT s

ppT ´ aiqmiq “ Ii
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by
fpT q ` pcApT qq ÞÑ pfpT q ` I1, . . . , fpT q ` Ikq.

So the system

#

P pT q ” ai mod Ii @i

P pT q ” 0 mod T
has to be a solution mod pcApT qq. Put QpT q “ T ´P pT q

and As : P pAq, An “ QpAq. correspondingly,

V “

k
à

i“1

Vi

where Vi “ tv P V | pA ´ aiq
miv “ 0u. Then As|Vi “ ai IdVi @i i.e. pA ´ aiq IdVi “ 0. This implies

As is diagonal on each Vi, thus As is semisimple.
Then An “ A´As is nilpotent on each Vi

pAn|Viq
mi “ pA|Vi ´As|Viq

mi “ pA´ aiq
mi “ 0.

Hence A “ As ` An by construction rAs, Ans “ rP pAq, QpAqs “ 0. To show uniqueness, suppose
A “ S`N also. Then A “ As`An “ S`N ñ As´S “ N ´An is both semisimple and nilpotent
ñ they are 0.

c) adA “ adpAs ` Anq “ adpAsq ` adpAnq as in part c) we get adpAsq is semisimple, adpAnq

nilpotent, and they commute. So by uniqueness padAqs “ adpAsq and padAqn “ adpAnq.

Note 16.3. If ψ : EndpV q Ñ EndpW q is linear and satisfies A is semisimple (nilpotent) implies
ψpAq is semisimple (nilpotent), and rA,Bs “ 0 ñ rψpAq, ψpBqs “ 0 then:

ψpAqs “ ψpAsq,

ψpAqn “ ψpAnq.

16.1 Cartan’s First Criterion

Proposition 16.4. Let k be an algebraically closed field of characteristic zero, and V be a finite-
dimensional vector space over k. Let g be a Lie subalgebra of glpV q. Then

(a) If g is solvable, then Trpxyq “ 0 for all x P g, y P g1 (recall g1 “ rg, gs);

(b) If Trpxyq “ 0 for all x, y P g, then g is solvable.

Proof. .... (to be typed up) ....

Theorem 16.5 (Cartan’s First Criterion - algebraically closed field case). Let k be an algebraically
closed field of characteristic zero, and V be a finite-dimensional vector space over k. Then g is
solvable if and only if Tr

`

padxq ˝ pad yq
˘

“ 0 for all x P g and y P g1.

Proof. If g is solvable, then ad g Ă glpgq is solvable hence the conclusion follows from part (a) of
Proposition 16.4.

Conversely, if Tr
`

padxqpad yq
˘

“ 0 for all x P g, y P g1, then adpg1q is solvable by part (b) of
Proposition 16.4. Since adpg1q – g1{zpg1q and zpg1q is abelian hence solvable, it follows that g1 is
solvable. Say Dnpg1q “ 0. But then Dn`1g “ Dnpg1q “ 0 so g is solvable.
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17 Lecture 15: Cartan’s Second Criterion

This lecture will focus on a method for checking whether or not a given Lie algebra is semisimple
or solvable based on the so called Killingviii form.

17.1 Invariant Symmetric Bilinear Forms

A symmetric bilinear form b : gˆ g Ñ k is a function satisfying bpλx ` µy, zq “ λbpxq ` µbpy, zq

and bpx, yq “ bpy, xq for all x, y P g and λ, µ P k.

Definition 17.1. A symmetric bilinear form b : gˆ g Ñ k is

(i) invariant if
bpry, xs, zq “ bpy, rx, zsq @x, y, z P g, (17.1)

(ii) non-degenerate if @x P gzt0uDy P g : bpx, yq ‰ 0.

Remark 17.2. The reason for the name “invariant” is as follows. First, a vector v in a represen-
tation of g is called invariant if x.v “ 0 for all x P g (recall we write x.v for ρV pxqv). Now if V is a
representation of g then one can verify that the space of all bilinear forms on V is a representation
of g with action px.bqpv, wq “ ´bpx.v, wq ´ bpv, x.wq. When V “ g is the adjoint representation,
this is equivalent to px.bqpy, zq “ ´b

`

rx, ys, z
˘

´ b
`

y, rx, zs
˘

. Then (17.1) is equivalent to x.b “ 0
(check!), i.e. b is an invariant vector of the representation pV b V q˚.

Definition 17.3.

(i) Given a finite-dimensional representation V of g the trace form on g (with respect to V ) is
bV : gˆ g Ñ k,

bV px, yq “ Tr
`

ρV pxqρV pyq
˘

, @x, y P g.

(ii) The trace form on g with respect to the adjoint representation is called the Killing form and
is denoted by κ or κg. Explicitly:

κpx, yq “ Tr
`

adpxq adpyq
˘

, @x, y P g.

Exercise 17.4. Show that the trace form (with respect to any finite-dimensional representation
V ) is an invariant symmetric bilinear form on g.

Lemma 17.5. If b : gˆ g Ñ k is an invariant symmetric bilinear form on g and I Ă g is an ideal,
then

IK “ tx P g | bpx, zq “ 0 @z P Iu

is an ideal in g.

Proof. x P IK, we show that rx, ys P IK for all y P g. Indeed, for all z P I we have

bprx, ys, zq “ bpx, ry, zsq “ 0

hence, rx, ys P IK.

Corollary 17.6. gK “ kerpbq is an ideal in g.

viiiWilhelm Killing (1847 – 1923)
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Example 17.7. Let g “ ka ‘ kb be a two-dimensional vector space with bracket uniquely deter-
mined by the condition ra, bs “ a. This is the unique non-abelian Lie algebra of dimension 2 up to

isomorphism (exercise). In the ordered basis pa, bq the matrices for ad a and ad b are

„

0 1
0 0

ȷ

and
„

´1 0
0 0

ȷ

respectively. Thus it is easy to check that κpa, aq “ κpa, bq “ 0 and κpb, bq “ 1.

Example 17.8. a) The space of column vectors kn is a representation of g “ glpn,kq called the
vector representation (or the tautological representation). The trace form is just bpx, yq “

Trpxyq. When n “ 2, put

e “

„

0 1
0 0

ȷ

f “

„

0 0
1 0

ȷ

h “

„

1 0
0 ´1

ȷ

I “

„

1 0
0 1

ȷ

with respect to the ordered basis pe, f, h, Iq, the Gram matrix of the trace form on glp2, kq is
»

—

—

–

0 1 0 0
1 0 0 0
0 0 2 0
0 0 0 2

fi

ffi

ffi

fl

For example, bk2pe, eq “ Tr

ˆ„

0 1
0 0

ȷ „

0 1
0 0

ȷ˙

“ 0.

b) By a similar but much longer calculation one can see that the Gram matrix of the Killing
form κ on glp2, kq is

»

—

—

–

0 4 0 0
4 0 0 0
0 0 8 0
0 0 0 0

fi

ffi

ffi

fl

17.2 Further reading: reductive Lie algebras

Theorem 17.9. If there exists a representation V of g such that the trace form bV is non-
degenerate, then g is reductive i.e. rad pgq “ zpgq.

Proof. rad pgq Ą zpgq is always true, so all that remains is to show the reverse containment. That
is, we must show rg, rad pgqs “ 0.

(1) x P rg, rad pgqs acts by 0 on any irreducible W (the proof of this is omitted. This implies
that x P kerpbW q.
(2) For

0 Ñ W 1 Ñ V Ñ W Ñ 0

we have that bV “ bW 1 ` bW by

Tr

ˆ„

XW 1 ˚

0 XW

ȷ „

YW 1 ˚

0 YW

ȷ˙

“ TrpXW 1YW 1q ` TrpXWYW q

(3) By induction on dimV we show that x P kerpbV q “ t0u ñ x “ 0.

Theorem 17.10. Each classical Lie algebra g Ă glpn,kq is reductive.

Proof. bkn is non-degenerate ñ g reductive.
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17.3 Cartan’s Criteria

Lemma 17.11. Let I be an ideal of a finite-dimensional Lie algebra g with Killing form κg. Let
κI be the Killing form on I regarded as a Lie algebra in its own right. Then κIpx, yq “ κgpx, yq for
all x, y P I.

Proof. Choose a linear complement V to I in g. Thus g “ I ‘V as vector spaces. Consider a basis
for g which is the union of bases for I and V . Let x, y P I. In the chosen basis,

adx “

„

Ax Bx
0 0

ȷ

, ad y “

„

Ay By
0 0

ȷ

,

for some matrices Ax, Bx, Ay, By of appropriate size. Note that Ax and Ay are the matrices for
adI x : I Ñ I and adI y : I Ñ I, where adI denotes the adjoint representation of I. We have

padxqpad yq “

„

AxAy AxBy
0 0

ȷ

so that
κgpx, yq “ Tr

`

padxqpad yq
˘

“ TrpAxAyq “ Tr
`

padI xqpadI yq
˘

“ κIpx, yq.

Lemma 17.12. Let g be a finite-dimensional Lie algebra with nonzero radical. Then there exists
a nonzero abelian ideal of g.

Proof. Let I be the radical of g. Since I is an ideal of g, so is rI, Is (by the Leibniz Rule form of
Jacobi identity: rx, ry, zss “ rrx, ys, zs ` ry, rx, zs). Repeating this argument we see that each term
of the derived series for I is an ideal of g. In particular the last nonzero term of the series is an
abelian ideal of g.

Theorem 17.13 (Cartan’s Criteria). Let k be any field of characteristic zero. Then:

a) g solvable iff κpg, rg, gsq “ 0;

b) g semisimple iff κ non-degenerate.

Proof.
a) We proved this in the previous lecture in the case when k is algebraically closed. In general, let
ḡ “ k̄ bk g be the Lie algebra over the algebraic closure k̄ of k. (This process is called extension of
scalars. The Lie bracket on ḡ is rλb x, µb ys “ pλµq b rx, ys for all x, y P g and λ, µ P k̄.) Then

g solvable ðñ ḡ solvable

ðñ κ
`

ḡ, rḡ, ḡs
˘

“ 0 by last time

ðñ κ
`

g, rg, gs
˘

“ 0.

b) We prove the contrapositive. Suppose g is not semisimple. By Lemma 17.12, there exists a
nonzero abelian ideal a of g. Now for any x P g and a P a, the composition padxqpad aq maps g into
a, since a is an ideal. Since a is abelian, pad aqpadxqpad aq is identically zero. Thus padxqpad aq is
nilpotent, hence has trace zero. Thus κpx, aq “ 0 for all x P g and a P a. Since a ‰ 0, this shows κ
is degenerate.

For the reverse implication, suppose g is semisimple. Consider the space I “ tx P g | κpx, yq “

0@y P gu (this is called the radical or kernel of the form κ). We claim that I is solvable hence equal
to zero. First, I is an ideal by associativity of κ. By Lemma 17.11, κIpI, rI, Isq “ κpI, rI, Isq Ă

κpI, gq “ 0. By part a), I is solvable. Since g is semisimple, I “ 0. Thus, κ is non-degenerate.
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Proposition 17.14. If g is semisimple, and I Ă g is an ideal, then IK “ tx P g | κpx, yq “ 0 @y P Iu

is an ideal of g, and g “ I ‘ IK.

Proof. IK is an ideal by Lemma 17.5. We claim that I X IK “ t0u. Let x, y, z P I X IK. Then
κ
`

x, ry, zs
˘

“ 0 simply because x P IK and ry, zs P I. By Lemma 17.11, κIXIK

px, ry, zsq “ 0 too.
By Cartan’s First Criterion, applied to I X IK, we conclude that I X IK is solvable. Since g is
semisimple, I X IK “ 0.

Next we show that I ` IK “ g. Let txiu
m
i“1 be a basis for I and extend it to a basis txiu

n
i“1

for g. By Cartan’s Second Criterion, κ is non-degenerate. Therefore there exists a corresponding
dual basis txiuni“1 (g Ñ g˚, x ÞÑ κpx, ¨q is an isomorphism, so to the linear functional ξj P g˚,
ξjpxiq “ δij , there corresponds a xj P g satisfying κpxi, x

jq “ ξjpxiq “ δij). Then, clearly, xj P IK

for j “ m ` 1,m ` 2, . . . , n. This shows that dim IK “ n ´ m. Since I X IK “ 0 we have
dimpI ` IKq “ dim I ` dim IK “ m` pn´mq “ n. Thus g “ I ` IK.

We can now prove the following theorem, which motivates the name “semisimple”.

Theorem 17.15. Let k be a field of characteristic zero and g be a finite-dimensional Lie algebra
over k. Then g is semisimple iff g “ I1 ‘ I2 ‘ ¨ ¨ ¨ ‘ Ik, where Ij are simple (as Lie algebras) ideals.
Moreover, in this case every ideal of g is equal to

À

jPS Ij for some subset S Ă t1, 2, . . . , ku.

Proof. Suppose g is semisimple. Let I1 be a minimal nonzero ideal of g. If I1 “ g we are done.
Otherwise, by Proposition 17.14, g “ I ‘ IK. Since any solvable ideal IK

1 would be a solvable ideal
of g, IK

1 is also semisimple. By induction on dim g we are done.
The converse is an exercise (see below).
For the last claim, first suppose that I is a simple ideal of g. Then rg, Is “

Àk
j“1rIj , Is. By

simplicity of I, all but one summand is zero. Say rIj , Is ‰ 0. Then rIj , Is “ I “ Ij by simplicity of
I and Ij . Now suppose I is any ideal of g. Then g “ I ‘ IK and any ideal of I is an ideal of g. In
particular, I is semisimple. Say I “ J1 ‘ Jr for some simple ideals Ji of I. But then Ji are simple
ideals of g hence each Ji is equal to one of the Ii’s. This proves the claim.

Exercise 17.16. Let k be a field of characteristic zero and g be a finite-dimensional Lie algebra
over k. Suppose that g g “ I1 ‘ I2 ‘ ¨ ¨ ¨ ‘ Ik, where Ij are simple (as Lie algebras) ideals. Prove
that g is semisimple.

18 Lecture 16: Semisimple Lie Algebras; the Casimir Operator

Before moving on we point out two important corollaries of previous lecture.

Corollary 18.1. rg, gs “ g if g is semisimple.

Proof.

rg, gs “ r‘jIj ,‘kIks

“ ‘j,krIj , Iks since for j ‰ k rIj , Iks Ă Ij X Ik “ 0

“ ‘jrIj , Ijs

“ ‘Ii

“ g .
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Corollary 18.2. If g is semisimple, then I and g{I are semisimple for any ideal I of g.

Proof. If I is any ideal of g then g “ I ‘ IK with respect to the Killing form. Then for any ideal J
of I we have rg, Js “ rI, Js ‘ rIK, Js Ă J since rIK, Js Ă IK X I “ 0. Furthermore, g{I – IK which
is an ideal of g hence semisimple by the previous part.

We also prove the following uniqueness theorem for the Killing form on a simple Lie algebra.
Here we do need algebraically closed field to ensure the existence of at least one eigenvalue.

Proposition 18.3. Let g be a simple finite-dimensional Lie algebra over an algebraically closed
field of characteristic zero. Then there exists a unique (up to nonzero scalar multiple) invariant
nondegenerate symmetric bilinear form on g.

Proof. We know the Killing form κ is one such form. Suppose β : g ˆ g Ñ k is another. Then
we have two vector space isomorphisms κ1 : g Ñ g˚, x ÞÑ κpx, ¨q and similarly β1 : g Ñ g˚. Let
x0 P gzt0u be an eigenvector of the non-singular transformation β´1

1 κ1 of g. Thus κ1px0q “ λβ1px0q

for some nonzero λ P k. This means κpx0, yq “ λβpx0, yq for all y P g. Let

I “ tx P g | κpx, yq “ λβpx, yq @y P gu.

We claim I is an ideal of g. For any x P I and y, z P g we have

κ
`

rx, ys, z
˘

“ κ
`

x, ry, zs
˘

“ λβ
`

x, ry, zs
˘

“ λβprx, ys, zq.

Thus rx, ys P I for all x P I, y P g. So I is an ideal of g. Since g is simple and I is nonzero
(containing x0), we have I “ g. This shows that κpx, yq “ λβpx, yq for all x, y P g.

18.1 The Casimir Operator

Let g be a finite-dimensional Lie algebra, and suppose x¨, ¨y is a non-degenerate invariant symmetric
bilinear form on g. For example, if g is semi-simple we could use xx, yy “ κpx, yq (the Killing form)
and if g “ gln we can use xx, yy “ Trpxyq. (One can show that the existence of such a form is
equivalent to that rad pgq “ zpgq i.e. g is reductive.)

Let V be a representation of g. The Casimir operator (on V with respect to x¨, ¨y), denoted
CV P EndkpV q, is defined by

CV “

n
ÿ

i“1

ρV pxiqρV pxiq,

where txiu
n
i“1 is a basis for g and txiuni“1 is the corresponding dual basis with respect to x¨, ¨y.

Proposition 18.4 (Properties of the Casimir operator). (a) The Casimir operator CV is inde-
pendent of the choice of basis txiu

n
i“1 for g;

(b) CV ˝ ρV pxq “ ρV pxq ˝ CV for all x P g. In other words, CV is an intertwining operator from
V to V .

Before the proof, to put the second property in context, we give the following definition.

Definition 18.5. Let g be a Lie algebra and V,W be representations of g. An intertwining operator
T : V Ñ W is a linear map such that

T ˝ ρV pxq “ ρW pxq ˝ T, @x P g.

51



Another term for intertwining operator is morphism of representations. The category of rep-
resentations of g, denoted Repg, is the category whose objects are representations V of g, and
morphisms V Ñ W are the intertwining operators. Thus the Casimir operators are canonical
intertwining operators from any representation to itself. They play a critical role in the study of
semisimple (and more generally, reductive) Lie algebras.

Proof of Proposition 18.4. (a) Let tyiu
n
i“1 be another basis for g, and tyiuni“1 the corresponding

dual basis with respect to βV . Then

yi “
ÿ

k

aikxk yi “
ÿ

k

bikx
k

and furthermore
δij “ xyi, y

jy “
ÿ

k,l

aikbjlxxk, x
ly “

ÿ

k

aikbjk,

which is to say ABT “ I where A “ paijq and B “ pbijq. By matrix theory, this implies BTA “ I
as well, which can be written

ÿ

i

bikail “ δkl. (18.1)

The Casimir operator with respect to the y-bases equals

ÿ

i

ρV pyiqρV pyiq “
ÿ

i,k,l

aikbilρV pxkqρV pxlq
(18.1)

“
ÿ

kl

δklρV pxkqρvpxlq “ CV .

(b) Let x P g. We will use that for any x P g we have

x “
ÿ

i

xx, xiyx
i,

x “
ÿ

i

xx, xiyxi.
(18.2)

The first equality follows from writing x “
ř

j cjx
j and then calculating that xx, xiy “ ci. The

second one is proved similarly. Put ρ “ ρV for brevity. We have:

rCV , ρpxqs “
ÿ

i

rρpxiq, ρpxqsρpxiq ` ρpxiqrρpxiq, ρpxqs by Leibniz’ Rule

“
ÿ

i,j

ρ
`

xrxi, xs, xjyxj
˘

ρpxiq ` ρpxiqρ
`

xrxi, xs, xjyx
j
˘

“
ÿ

i,j

`

xrxi, xs, xjy ` xrxj , xs, xiy
˘

ρpxjqρpxiq “ 0

where, in the last equality, we used that xrxj , xs, xiy “ xxi, rx
j , xsy “ ´xxi, rx, x

jsy “ ´xrxi, xs, xjy
by symmetry and invariance of the form, and by anti-commutativity of the bracket.

19 Lecture 17: Chevalley-Eilenberg Cohomology

Let g be a Lie algebra and M be a representation of g. We use module notation: x.v “ ρV pxqv for
x P g and v P M .
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19.1 Cochains

Definition 19.1. Let i be a non-negative integer. An i-dimensional cochain for g with values in
M , or i-cochain for short, is a linear map

f :
Źi g Ñ M.

In more concrete terms:

• a 0-cochain is an element v P M (because
Ź0 g “ k and a linear map k Ñ M is determined

by the image of 1k),

• a 1-cochain is a linear map f : g Ñ M ,

• a 2-cochain is a bilinear map f : g ˆ g Ñ M such that fpx, yq “ ´fpy, xq for all x, y P g.

In general, for i ą 1 an i-cochain can be viewed as a multilinear map f : gi Ñ M which is alternating
i.e. switching any two arguments results in the negative.

The vector space of all i-cochains is denoted by

Cipg,Mq “ Homk
`
Źi g,M

˘

.

19.2 The coboundary map

For each i-cochain f we define an pi`1q-cochain df (or dif when i needs to be specified) as follows:

• If v P M is a 0-cochain, we define dv P C1pg,Mq “ Hompg,Mq by

pdvqpxq “ x.v

• If f : g Ñ M is a 1-cochain, we define df P C2pg,Mq by

pdfqpx1, x2q “ x1.fpx2q ´ x2.fpx1q ´ fprx1, x2sq

• If f : g ˆ g Ñ M is a 2-cochain, we define df P C3pg,Mq by

pdfqpx1, x2, x3q “ x1.fpx2, x3q ´ x2.fpx1, x3q ` x3.fpx1, x2q

´ f
`

rx1, x2s, x3
˘

` f
`

rx1, x3s, x2
˘

´ f
`

rx2, x3s, x1
˘

.

Here is the general definition:

Definition 19.2. Let i be a non-negative integer. The (i:th) coboundary map is the map

d “ di : Cipg,Mq Ñ Ci`1pg,Mq

given by

pdfqpx1, x2, . . . , xi`1q “

i`1
ÿ

r“1

p´1qr`1xr.fpx1, . . . , pxr, . . . , xi`1q

`
ÿ

1ďrăsďn

p´1qr`sf
`

rxr, xss, x1, . . . , pxr, . . . , pxs, . . . , xi`1

˘

,

for all f P Cipg,Mq. A hat means the variable should be omitted from the list of arguments.
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The fundamental property of the coboundary map is that applying it twice gives you zero:

Lemma 19.3. For any non-negative integer i, we have

di`1 ˝ di “ 0.

Proof. We only prove this for i “ 0 and i “ 1 which are the only cases that we will need anyway.
For i “ 0, let v P M be a 0-cochain. Then we have

pd1d0vqpx1, x2q “ x1.px2.vq ´ x2.px1.vq ´ rx1, x2s.v “ 0

precisely becauseM is a representation of g: x1.x2.v´x2.x1.v “ rρV px1q, ρV px2qsv “ ρV prx1, x2sqv “

rx1, x2s.v.
For i “ 1, let f : g Ñ M be a 1-cochain. Then

pd2d1fqpx1, x2, x3q “ x1.
`

x2.fpx3q ´ x3.fpx2q ´ fprx2, x3sq
˘

´ x2.
`

x1.fpx3q ´ x3.fpx1q ´ fprx1, x3sq
˘

` x3.
`

x1.fpx2q ´ x2.fpx1q ´ fprx1, x2sq
˘

´
`

rx1, x2s.fpx3q ´ x3.fprx1, x2sq ´ fprrx1, x2s, x3sq
˘

`
`

rx1, x3s.fpx2q ´ x2.fprx1, x3sq ´ fprrx1, x3s, x2sq
˘

´
`

rx2, x3s.fpx1q ´ x1.fprx2, x3sq ´ fprrx2, x3s, x1sq
˘

“ 0.

19.3 Cocycles, Coboundaries, and Cohomology

For convenience, if i is a negative integer we put Cipg,Mq “ 0 and di “ 0.

Definition 19.4. Let i be a non-negative integer.

• An i-cochain f P Cipg,Mq is called an i-cocycle if df “ 0. The space of i-cocycles is denoted

Zipg,Mq “ kerpdiq

• An i-cochain f P Cipg,Mq is called an i-coboundary if f “ dg for some g P Ci´1pg,Mq. The
space of i-coboundaries is denoted

Bipg,Mq “ impdi´1q

Note that, since d ˝ d “ 0, every i-coboundary is an i-cocycle. Thus the following definition
makes sense.

Definition 19.5. The i:th cohomology group of g with values in M is defined as the quotient vector
space

H ipg,Mq “
Zipg,Mq

Bipg,Mq
.
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The zeroth cohomology group is already somewhat interesting. Since B0pg,Mq “ impd´1q “ 0,
we have H0pg,Mq – kerpd0q “ tv P M | x.v “ 0 @x P gu. This is the space of all g-invariants in M
and is usually denoted by Mg.

Of particular interest to us will be the first and second cohomology groups:

H1pg,Mq “
kerpd1q

impd0q
, H2pg,Mq “

kerpd2q

impd1q
.

Exercise 19.6. Show that for the adjoint representation M “ g, Z1pg, gq “ Derpgq and B1pg, gq “

ad g (the space of inner derivations). Conclude that H1pg, gq “ Derpgq{ ad g, sometimes called the
space of outer derivations.

20 Lecture 18: Whitehead’s First Lemma

In general, cohomology can be thought of as measuring the obstruction to carrying out certain
constructions. Thus, vanishing of cohomology means there are no obstructions; a desirable prop-
erty. Whitehead’s First and Second Lemma are two fundamental results about the vanishing of
cohomology for semisimple Lie algebras.

Theorem 20.1 (Whitehead’s First Lemma). Let g be a semisimple Lie algebra over a field of
characteristic zero, and let M be a finite-dimensional representation of g. Then

H1pg,Mq “ 0.

In this section we will prove this theorem.
We need two lemmas. The first one is a variant of the Jordan decomposition over not necessarily

algebraically closed fields.

Lemma 20.2 (Fitting’s Lemma). Let T be a linear transformation of a finite-dimensional vector
space V over a field of characteristic zero. Then there exists a decomposition

V “ V0 ‘ V1

into two subspaces Vi such that T pViq Ă Vi for i “ 1, 2; T |V0 is nilpotent and T |V1 is invertible.

Proof. Let ppxq be the minimal polynomial of T . Write ppxq “ xdqpxq where d is as large as
possible. By the Remainder Theorem, the natural map krxs{pppxqq Ñ krxs{pxdq ˆ krxs{pqpxqq is a
ring isomorphism. For i “ 0, 1, let eipxq P krxs such that

#

e0pxq ” 1 mod xd

e0pxq ” 0 mod qpxq

#

e1pxq ” 0 mod xd

e1pxq ” 1 mod qpxq

and define Vi “ eipT qV . We have eipT q2 “ eipT q, e0pT q ` e1pT q “ 1 and e0pT qe1pT q “ 0 (since
when T is replaced by x the corresponding congruences hold modulo ppxq). Hence V “ V0 ‘ V1.
Since eipT q is a polynomial in T hence commutes with T , it is clear that T pViq Ă Vi for i “ 0, 1.
Since e0pxq “ qpxqapxq for some apxq P krxs we have T dV0 “ ppT qapT qV “ 0 so T |V0 is nilpotent.
Since qpxq is relatively prime to x we can write bpxqqpxq ` cpxqx “ 1 for some bpxq, cpxq P krxs

(Bezout’s identity). Thus for v “ e1pT qw P V1 we have v “ bpT qqpT qe1pT qw ` cpT qTv “ cpT qTv
since xd divides e1pxq and qpxqxd “ ppxq. Thus T |V1 is invertible.
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The second result we need is a property of the trace of the Casimir operator. A representation
V is called faithful if ρV is injective.

Lemma 20.3. Let g be a semisimple Lie algebra, and V a faithful representation of g, and xx, yy “

Tr
`

ρV pxqρV pyq
˘

be the trace form (it is non-degenerate, invariant, symmetric, bilinear.) Let CV
be the corresponding Casimir operator. Then TrpCV q “ dim g. In particular, if g ‰ 0, then CV is
not nilpotent.

Proof. TrpCV q “
ř

i ρM pxiqρM pxiq “
ř

ixxi, x
iy “ dim g.

We are now ready to prove Theorem 20.1.

Proof of Whitehead’s First Lemma. Let f : g Ñ M be a 1-cocycle. Thus f is a linear map satisfying

f
`

rx, ys
˘

“ x.fpyq ´ y.fpxq @x, y P g. (20.1)

We must show that f is a 1-coboundary. That is, we must find v P M such that

fpxq “ x.v (20.2)

for all x P g.
Let I “ ker ρM . Then, in module notation, x.v “ 0 for all x P I and all v P M . By Proposition

17.14 and Corollary 18.2, there exists a semisimple ideal h of g such that g “ I‘h as vector spaces.
It suffices to find v P M such that (20.2) holds for all x P h because I “ rI, Is (by Corollary 18.1)
hence, by (20.1), fpIq “ fprI, Isq “ I.fpIq ´ I.fpIq “ 0. So (20.2) would then hold for all x P g by
linearity.

First, suppose that I “ g, i.e. h “ 0. In this case we may simply take v “ 0, since then (20.2)
holds trivially for all x P h.

So we may assume I ‰ g. Note that M is a faithful representation of h with representation
map ρ “ ρM

ˇ

ˇ

h
: h Ñ glpMq. Let txiu

m
i“1 be a basis for h and txiumi“1 be the corresponding dual

basis with respect to the trace form xx, yy “ Tr
`

ρpxqρpyq
˘

, x, y P h. By Lemma 20.3, the Casimir
operator CM “

ř

i ρpxiqρpxiq associated to h, is not nilpotent.
Thus, if M “ M0 ‘ M1 is the Fitting decomposition of M relative to CM (Lemma 20.2), we

have M1 ‰ 0. Write fpxq “ f0pxq ` f1pxq where fipxq P Mi. It is easy to check that fi both satisfy
(20.1). If dimMi ă dimM for both i “ 0, 1 it therefore follows by induction on dimM that there
exist vi P Mi such that fipxq “ x.vi for all x P h. Taking v “ v0 ` v1 we have (20.2) for all x P h.

So the case that remains is that M1 “ M . That is, CM is invertible. Consider the following
element of M :

w “
ÿ

i

xi.fpxiq.
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For any x P h we have

x.w “
ÿ

i

rx, xis.fpxiq ` xi.
`

x.fpxiq
˘

since M is a representation of h

“
ÿ

i,j

xrx, xis, x
jyxj .fpxiq `

ÿ

i

xi.
`

x.fpxiq
˘

by dual basis property (18.2)

“
ÿ

i,j

xj .f
`

´ xxi, rx, x
jsyxi

˘

`
ÿ

i

xi.
`

x.fpxiq
˘

by linearity of f and invariance of x¨, ¨y

“
ÿ

j

xj .f
`

rxj , xs
˘

` xj .
`

x.fpxjq
˘

by dual bases property (18.2) and bracket anti-commutativity

“
ÿ

j

xj .
`

xj .fpxq
˘

since f is a 1-cocycle

“ CM
`

fpxq
˘

by definition of CM .

Thus, define
v “ C´1

M pwq.

Since CM commutes with all ρpxq, x P h, the same is true of the inverse of CM . Consequently, for
all x P h,

x.v “ ρpxqC´1
M w “ C´1

M ρpxqw “ C´1
M px.wq “ fpxq.

21 Lecture 19: Abstract Jordan Decomposition

In this lecture we assume that k is algebraically closed.
Recall that in this case, the words “semisimple” and “diagonalizable” when talking about linear

operators on a finite-dimensional vector space.

Lemma 21.1. Assume k is algebraically closed. If D P Derpgq and D “ Ds ` Dn is the Jordan
decomposition of D, then Ds and Dn belong to Derpgq.

Proof. Write g “
À

λPk gλ, where gλ “ tx P g | pD ´ λqN pxq “ 0, N " 0u. Then Dsx “ λx for all
x P gλ. For x, y P g we have the identity

`

D ´ pλ` µq
˘N`

rx, ys
˘

“

N
ÿ

k“0

ˆ

N

k

˙

“

pD ´ λqN´kpxq, pD ´ µqkpyq
‰

which can be proved by induction on N . This proves that rgλ, gµs Ă gµ`λ.
So if x P gλ and y P gµ thenDs

`

rx, ys
˘

“ pλ`µqrx, ys “ rλx, ys`rx, µys “ rDspxq, ys`rx,Dspyqs.
By bilinearity, Ds P Derpgq. Then Dn “ D ´Ds P Derpgq as well.

Exercise 21.2. Prove the above identity.

The following proposition shows that in a semisimple Lie algebra over k “ k̄, any element can
be decomposed in a way that is similar to the Jordan decomposition for a linear transformation.

Proposition 21.3. Let g be a semisimple Lie algebra over k “ k̄ and let x P g. Then there exists
a unique pair pxs, xnq P g2 such that x “ xs ` xn, rxs, xns “ 0, adxs is semisimple and adxn is
nilpotent. Moreover, for any y P g such that ry, xs “ 0 we also have ry, xss “ 0 and ry, xns “ 0.
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Proof. Let D “ adx and let D “ Ds`Dn be the Jordan decomposition of D. Since D P Derpgq we
have Ds, Dn P Derpgq by Lemma 21.1. By Whitehead’s First Lemma (Theorem 20.1) and Exercise
19.6, Derpgq “ ad g. Thus there exist xs P g and xn P g such that adpxsq “ Ds and adpxnq “ Dn.
Now adx “ Ds `Dn “ adpxsq ` adpxnq “ adpxs ` xnq. Since ad is injective (its kernel equals zpgq

which is a solvable ideal of g hence zero since g is semisimple), we obtain x “ xs ` xn. Similarly,
0 “ rDs, Dns “ radpxsq, adpxnqs “ adrxs, xns implies rxs, xns “ 0. And adxs “ Ds is semisimple,
adxn “ Dn is nilpotent. This shows existence. If prxs, rxnq is another such pair, then ad rxs ` ad rxn
is the Jordan decomposition of adx, hence ad rxs “ adxs and ad rxn “ adxn by uniqueness. Thus
rxs “ xs and rxn “ xn. Lastly, if ry, xs “ 0 then 0 “ adry, xs “ rad y, adxs. So ad y commutes
with adx. By the usual Jordan decomposition, ad y therefore also commutes with the semisimple
and nilpotent parts, i.e. with adpxsq and adpxnq. So 0 “ rad y, adpxsqs “ adry, xss which implies
ry, xss “ 0. Similarly ry, xns “ 0.

The abstract Jordan decomposition behaves well under representations:

Theorem 21.4. Let g be a semisimple Lie algebra and V a representation of g. Then

ρV pxsq “ ρV pxqs, ρV pxnq “ ρV pxqn, (21.1)

where all subscripts refer to the abstract Jordan decomposition.

Proof. Put ρ “ ρV . Let ad denote the adjoint representation of the Lie algebra ρpgq. We have
ad ρpxq “ ad ρpxsq `ad ρpxnq since x “ xs`xn. Let y1, . . . , yn be a basis for g such that adpxsqyi “

λiyi. That is rxs, yis “ λiyiyi. Applying ρ this gives rρpxsq, ρpyiqs “ λiρpyiq. Therefore ad ρpxsq is
semisimple. Similarly ad ρpxnq is nilpotent, and they commute and sum to ad ρpxq. By uniqueness
of the abstract Jordan decomposition, we have ad ρpxsq “ ad ρpxqs and ad ρpxnq “ ad ρpxqn. Since
the image of ρ is isomorphic to a quotient of a semisimple Lie algebra, it is semisimple by Corollary
18.2. Therefore ad is injective. Thus we conclude that (21.1) holds.

Later on we will prove the following result. It actually requires some more work (Weyl’s Theo-
rem).

Theorem 21.5. Suppose k̄ “ k. If g Ă glpV q is a semisimple Lie subalgebra then the usual and
abstract Jordan decompositions coincide.

Once we establish this theorem, it means that representations map the abstract Jordan decom-
position to the concrete (linear) Jordan decomposition.

22 Lecture 20: Weyl’s Theorem on Complete Reducibility. Short
Exact Sequences of Lie Algebras.

22.1 Complete Reducibility

Definition 22.1. A representation V is irreducible if V ‰ 0 and the only subrepresentations are
t0u and V . A representation of is completely reducible if

V “

n
à

i“1

Vi

where Vi are irreducible subrepresentations.
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If V and W are representation of a Lie algebra g then the space HompV,W q of all linear maps
from V to W is also a representation of g with action

px.fqpvq “ x.pfpvqq ´ fpx.vq, @x P g, f P HomkpV,W q, v P V.

Exercise 22.2. Check that this makes HompV,W q into a representation of g. (That is, check that
rx, ys.f “ x.y.f ´ y.x.f .)

Note that x.f “ 0 for all x P g is equivalent to that f is an intertwining operator. The space
of intertwining operators from V to W is denoted HomgpV,W q. And the space of g-invariants of a
representation V is V g “ tv P V | x.v “ 0 @x P gu. Thus we have HompV,W qg “ HomgpV,W q.

Theorem 22.3 (Weyl’s Theorem on Complete Reducibility). Let g be a semisimple Lie algebra.
Then every finite-dimensional representation of g is completely reducible:

V “

n
à

i“1

Vi

where Vi are irreducible subrepresentations.

Proof. Let V be a finite-dimensional representation of g and let U Ă V be a subrepresentation.
By induction on dimV it suffices to show that there exists a subrepresentation U 1 of V such that
V “ U ‘ U 1.

Let

V “ tf P HompV,Uq | f
ˇ

ˇ

U
“ k IdUu,

U “ tf P HompV,Uq | f
ˇ

ˇ

U
“ 0u Ă V .

Let p : V Ñ U be any linear projection, i.e. p|U “ IdU . Then p P V and in fact the image of p in
the (one-dimensional) quotient space V {U is a basis.

For x P g and u P U we have px.pqpuq “ x.pppuqq ´ ppx.uq “ x.u ´ x.u “ 0. Thus x.p P U . Let
φ : g Ñ U be given by φpxq “ x.p for x P g. We show that φ P Z1pg,U q:

φprx, ysq “ rx, ys.p “ x.y.p´ y.x.p

“ x.φpyq ´ y.φpxq.

By Whitehead’s First Lemma (Theorem 20.1), there exists T P U such that φ “ d0T. That is,
x.p “ x.T for all x P g. Let π “ p ´ T . Then x.π “ 0 for all x P g. By the comment preceeding
the statement of the theorem, this means that π is an intertwining operator from V to U . Also,
π2pvq “ πpvq for all v P V which means π is a projection. Let U 1 “ kerpπq. Since π is an intertwining
operator, U 1 is also a subrepresentation of V . By standard linear algebra arguments, V “ U ‘ U 1.
(Any vector v P V can be written v “ πpvq ` pv ´ πpvqq and πpv ´ πpvqq “ 0 so v ´ πpvq P U 1. If
v P U X U 1 then v “ πpvq “ 0.)

22.2 Short Exact Sequences

Let I, g and rg be any three Lie algebras. A short exact sequence (SES)

0 ÝÑ I
ι

ÝÑ rg
π

ÝÑ g ÝÑ 0

is a sequence of Lie algebras and Lie algebra homomorphisms such that the kernel of each map is the
image of the previous map. This means that kerpιq “ imp0q “ 0 so ι is injective; impπq “ kerp0q “ g
so π is surjective; and kerpπq “ impιq which means that ιpIq is an ideal of rg and rg{ιpIq – g.
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Proposition 22.4. Given a SES

0 ÝÑ I
ι

ÝÑ rg
π

ÝÑ g ÝÑ 0

the following are equivalent:

(i) rg » g ˙α I for some α.

(ii) There exists a Lie algebra map σ : g Ñ rg called a section such that π ˝ σ “ Idg.

23 Lecture 21: Whitehead’s Second Lemma and Levi’s Theorem

23.1 Whitehead’s Second Lemma

Theorem 23.1 (Whitehead’s Second Lemma). Let g be a semisimple Lie algebra over a field of
characteristic zero, and let M be a finite-dimensional representation of g. Then

H2pg,Mq “ 0.

Proof. Let I “ ker ρM . By Proposition 17.14 and Corollary 18.2 we have g “ I ‘ h for some
semisimple subalgebra h of g. Let txiu

m
i“1 be a basis for h and txiumi“1 be the dual basis for h with

respect to the non-degenerate invariant symmetric bilinear form xx, yy “ Tr
`

ρpxqρpyq
˘

, x, y P h,
ρ “ ρM

ˇ

ˇ

h
. Let CM “

řm
i“1 ρpxiqρpxiq be the corresponding Casimir operator.

Let f P Z2pg,Mq. Thus f : g ˆ g Ñ M is a bilinear map satisfying fpx, yq “ ´fpy, xq and

y1.fpy1, y3q ´ y2.fpy1, y3q ` y3.fpy1, y2q`

´ f
`

ry1, y2s, y3
˘

` f
`

ry1, y2s, y2
˘

´ f
`

ry2, y3s, y1
˘

“ 0.

This may be written without minus signs in a cyclic permutation way reminiscent of the Jacobi
identity:

y1.fpy2, y3q ` f
`

y1, ry2, y3s
˘

` y2.fpy3, y1q ` f
`

y2, ry3, y1s
˘

` y3.fpy1, y2q ` f
`

y3, ry1, y2s
˘

“ 0.

Now choose y3 “ xi and act (via the representation) by xi, then sum over i to get:

0 “
ÿ

i

!

xi.y1.fpy2, x
iq ` xi.f

`

y1, ry2x
is
˘

` xi.y2.fpxi, y1q ` xi.f
`

y2, rx
i, xis

˘

` xi.f
`

xi, ry1, y2s
˘

)

` CM
`

fpy1, y2q
˘

Now use the module identity x.y.v “ y.v.x` rx, ys.v in the first and second line (ignore the colors
for now):

“
ÿ

i

!

y1.xi.fpy2, x
iq ` rxi, y1s.fpy2, x

iq ` xi.f
`

y1, ry2, x
is
˘

` y2.xi.fpxi, y1q ` rxi, y2s.fpxi, y1q ` xi.f
`

y2, rx
i, y1s

˘

` xi.f
`

xi, ry1, y2s
˘

)

` CM
`

fpy1, y2q
˘

. (23.1)
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We have, using the dual basis properties (18.2),
ÿ

i

rxi, y1s.fpy2, x
iq “

ÿ

i,j

xrxi, y1s, xjyxj .fpy2, x
iq “

ÿ

j

xj .fpy2, ry1, x
jsq

and
ÿ

i

rxi, y2s.fpxi, y1q “
ÿ

ij

xrxi, y2s, xjy.fpxi, y1q “
ÿ

j

xj .f
`

ry2, x
js, y1

˘

thus four terms (red and blue) in (23.1) cancel out pairwise, which yields

CM
`

fpy1, y2q
˘

`
ÿ

i

!

y1.xi.fpy2, x
iq ` y2.xi.fpxi, y1q ` xi.f

`

xi, ry1, y2s
˘

)

“ 0. (23.2)

First let us consider the case that h ‰ 0. Let M “ M0 ‘ M1 be the Fitting decomposition of
M relative to CM (Lemma 20.2). Since CM is an intertwining operator, the Mi are actually g-
subrepresentations ofM (the action of I is zero anyway and CM commutes with ρpxq for any x P h).
Since h ‰ 0 and M is a faithful representation of h, the Casimir CM is not nilpotent (Lemma 20.3).
Thus, M1 ‰ 0. Suppose that M0 ‰ 0 as well. Write fpx, yq “ f0px, yq ` f1px, yq for unique bilinear
functions fi : g ˆ g Ñ Mi. Since f is a 2-cocycle it is immediate that each fi is a 2-cocycle with
values in Mi. Thus, by induction on dimM , there are gi P C1pg,Miq such that d1gi “ fi. Taking
g “ g0 ` g1 we obtain that d1g “ f and thus f P B2pg,Mq. So we may assume that M0 “ 0. That
is, the linear operator CM :M Ñ M is invertible. In this case we define g : g Ñ M by

gpyq “

m
ÿ

i“1

C´1
M

`

xi.fpxi, yq
˘

.

Then we have

pd1gqpy1, y2q “ y1.gpy2q ´ y2.gpy1q ´ g
`

ry1, y2s
˘

“ C´1
M

`

m
ÿ

i“1

y1.xi.fpxi, y2q ´ y2.xi.fpxi, yq ´ xi.f
`

xi, ry1, y2s
˘

“ fpy1, y2q

by (23.2).
It remains to deal with the possibility that h “ 0. That is, x.v “ 0 for all x P g and v P M . In

this case the identity for f can be written

f
`

ry1, y2s, y3
˘

` f
`

ry2, y3s, y1
˘

` f
`

ry3, y1s, y2
˘

“ 0 (23.3)

Put M “ Hompg,Mq, regarded as a representatin of g, and define F P Hompg,M q “ C1pg,M q by
F pxqpyq “ fpx, yq. Then (23.3) implies that F P Z1pg,M q. Indeed,

F
`

ry1, y2s
˘

py3q “ f
`

ry1, y2s, y3
˘

while
`

y1.F py2q ´ y2.F py1q
˘

py3q “ ������
y1.fpy2, y3q ´ f

`

y2, ry1, y3s
˘

´������
y2.fpy1, y3q ` f

`

y1, ry2, y3s
˘

“ ´f
`

ry3, y1s, y2
˘

´ f
`

ry2, y3s, y1
˘

.

Therefore, by Whitehead’s first lemma (Theorem 20.1), there exists g P M such that d0g “ F .
Written out, this is saying px.gqpyq “ fpx, yq. By the definition of g action on M “ Hompg,Mq

this means x.
`

gpyq
˘

´ g
`

rx, ys
˘

“ fpx, yq. Since g is acting trivially on M , this is equivalent to that
x.gpyq ´ y.gpxq ´ g

`

rx, ysq “ fpx, yq. That is d1g “ f (now viewing g P Hompg,Mq “ C1pg,Mq).
Thus f P B2pg,Mq.
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It is natural to wonder about the third cohomology group. Although we won’t discuss it further
here, in general it is nonzero, even for a semisimple Lie algebra.

23.2 Semi-Direct Products of Lie Algebras

Definition 23.2. If a Lie algebra g is a vector space direct sum of a subalgebra a and an ideal I,
then g is said to be the (internal) semi-direct product of a and I and we write

g “ a ˙ I.

(or I ¸ a.)

Note that if g “ a ˙ I then the adjoint action on g gives a map

α : a Ñ DerpIq, αpaqpxq “ ra, xs P I

and the bracket in g can be expressed as

ra` x, b` ys “ ra, bs `
`

ra, ys ` rx, bs ` rx, ys
˘

“ ra, bs `
`

αpaqpyq ´ αpbqpxq ` rx, ys
˘

for any a, b P a and x, y P I.
We can use this formula the basis for an external semi-direct product of any two Lie algebras

(not a priori subalgebras of the same Lie algebra).

Definition 23.3. Let a and I be any two Lie algebras, and α : a Ñ DerpIq be a Lie algebra
homomorphism. Define a ˙α I to be the Lie algebra with underlying vector space a ‘ I with
bracket

ra` x, b` ys “ ra, bs `
`

αpaqpyq ´ αpbqpxq ` rx, ys
˘

for any a, b P a and x, y P I.

Exercise 23.4. Let g “ a ˙α I. Show that g is indeed a Lie algebra and that ra “ a ˆ t0u is a
subalgebra of g and rI “ t0u ˆ I is an ideal of I. Conclude that g is the internal semi-direct product
of ra and rI.

Thus we can go back and forth between internal and external semi-direct products.

23.3 Levi’s Theorem

We define
gss “ g{ rad pgq

This is the largest semisimple quotient of g.

Theorem 23.5 (Levi’s Theorem). Suppose char k “ 0. Any finite-dimensional Lie algebra g is
the semi-direct product of a semisimple and a solvable Lie algebra. More precisely, there exists a
semisimple subalgebra gss of g such that g “ gss ‘ rad pgq as vector spaces. Equivalently, there is a
Lie algebra homomorphism α : gss Ñ Derprad pgqq such that

g – gss ˙α rad pgq .

Proof.
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24 Lecture 22: Cartan Subalgebras and the Root Space Decom-
position

24.1 Toral and Cartan Subalgebras

Let g be a semisimple Lie algebra over k and assume k is algebraically closed.
Then we have the abstract Jordan decomposition available for any element x P g.

Definition 24.1. Call x P g semisimple if adx is semisimple, and nilpotent if adx is nilpotent.

Definition 24.2. A subalgebra h Ă g is toral if

(i) h is abelian, and

(ii) h consists of semisimple elements of g.

Note that, when g ‰ 0, there is always at least one nonzero toral subalgebra: If every x P g is
nilpotent then g is nilpotent by Engels theorem, hence solvable hence g “ rad pgq “ 0 which is a
contradiction. Therefore there exists x P g with xs ‰ 0. Then kxs is a toral subalgebra of g.

Definition 24.3. A subalgebra h Ă g is a Cartan subalgebra if h is toral and not properly contained
in another toral subalgebra.

In other words, a Cartan subalgebra is a maximal element of the family of all toral subalgebras
of g.

24.2 The Root Space Decomposition

Suppose we fix a toral subalgebra h Ă g. Eventually we will only be interested in the case of
a Cartan subalgebra but the contents of this section does not depend on any assumption about
maximality.

Let th1, h2, . . . , hru be a basis for h. Then tadhiu
r
i“1 is a family of commuting diagonalizable

linear operators on g. So there exists a basis for g consisting of vectors that are common eigenvectors
for all the operators adhi, i “ 1, 2, . . . , r.

Let x be such a common eigenvector. That means that there exist α1, α2, . . . , αr P k so that

rhi, xs “ αix, @i “ 1, 2, . . . , r.

We wish to express this in a basis independent way. Notice that if h P h and we write h “
ř

i cihi,
ci P k, then

rh, xs “ r
ÿ

i

cihi, xs “
ÿ

i

cirhi, xs “
`

ÿ

i

ciαi
˘

x

Thus if we define a linear functional α P h˚ “ Homph, kq by

αphiq “ αi

then we may express the property that x has as follows:

rh, xs “ αphqx @h P h. (24.1)

This is the basis independent form.
For any α P h˚ we put

gα “ tx P g | rh, xs “ αphqx @h P hu. (24.2)

The case α “ 0 plays a special role, because g0 coincides with the centralizer of h in g:

g0 “ Cgphq “ tx P g | rh, xs “ 0 @h P hu.
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Definition 24.4. Let g be a semisimple Lie algebra over k “ k̄ and h Ă g a toral subalgebra.

1. A nonzero linear functional α P h˚ is a root (of g with respect to h) if gα ‰ 0.

2. The set of roots of g is denoted by Φ “ Φpgq “ Φpg, hq and is called the root system of g.

3. x P g is called a root vector if x P gα for some α P Φ.

4. When α is a root, the vector space gα is called the root space associated to α.

Example 24.5. If h is one-dimensional, say h “ kh, then a root of g with respect to h is essentially
just an eigenvalue of adh acting on g. Similarly in this case a root vector is just an eigenvector of
adh, and root spaces are eigenspaces of adh.

As discussed above, in this new terminology we may say that g has a basis consisting of root
vectors. That can also be expressed as follows:

g “
à

αPh˚

gα

Since gα ‰ 0 only for α P t0u YΦ we obtain the so called root space decomposition of g with respect
to the toral subalgebra h:

g “ Cgphq ‘
à

αPΦ

gα (24.3)

Example 24.6. Let g “ sl3 and h be the set of diagonal matrices in g. Then Φ “ tεi ´ εj | 1 ď

i, j ď 3, i ‰ ju where εi : h Ñ k is defined by εipdiagpa1, a2, a3qq “ ai. To see this it suffices to note
that Eij P gεi´εj which follows from the computation

rh,Eijs “ r
ÿ

i

ciEii, Eijs “ ciEij ´ cjEij “ pεi ´ εjqphqEij

for any h “
ř

i ciEii P h.

This decomposition will play a key role in the classification of semisimple Lie algebras. Our
first steps towards that goal is the following proposition.

Proposition 24.7. Let g be a semisimple Lie algebra over k “ k̄ and h Ă g a toral subalgebra.

(a) For all α, β P h˚ we have
rgα, gβs Ă gα`β. (24.4)

(b) If α P h˚ and α ‰ 0 then every x P gα is nilpotent.

(c) If α, β P h˚ and α`β ‰ 0 then the spaces gα and gβ are orthogonal with respect to the Killing
form:

κpgα, gβq “ 0. (24.5)

Proof. (a) Let x P gα, y P gβ and h P h then by the Lebniz rule form of the Jacobi identity:

rh, rx, yss “ rrh, xs, ys ` rx, rh, yss “ αphqrx, ys ` βphqrx, ys “ pα ` βqphqrx, ys.

(b) Since g is finite-dimensional, Φ is a finite set. Let α P h˚ be nonzero. Choose n to be a
large enough positive integer such that @β P Φ : β ` nα R Φ. Then pad gαqn “ 0.

(c) Let h P h be such that pα ` βqphq ‰ 0. Then for every x P gα and y P gβ:

αphqκpx, yq “ κ
`

rh, xs, y
˘

“ ´κ
`

rx, hs, y
˘

“ ´κ
`

h, rh, ys
˘

“ ´βphqκpx, yq

This implies that κpx, yq “ 0.

Corollary 24.8. The restriction of the Killing form κ to Cgphq ˆ Cgphq is non-degenerate.
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25 Lecture 23: Properties of the Root Space Decomposition

Example 25.1. Let g “ slpn,Cq, then h “ tdiagonal matrices of trace 0u is a Cartan subalgebra.
Indeed, h is commutative, and if h P h,

adh : g Ñ g

x ÞÑ rh, xs @x P g

is diagonalizable h “

»

—

–

h1 0
. . .

0 hn

fi

ffi

fl

P h “
ÿ

i

hiEii. Then

pad hqpEijq “ rh, Eijs

“
ÿ

hkrEkk, Eijs

“ phi ´ hjqEij .

So h is toral. Also, if x P Cgphq, then rh, xs “ 0 @h P h. Pick h with distinct eigenvalues. This
implies any eigenvector for h is an eigenvector for x. Which implies x is diagonal and thus in x P h.

Lemma 25.2. Cgphq is a reductive Lie algebra.

Proof. If I is any ideal in Cgphq then so is IK (with respect to the Killing form on g) and Cgphq “

I ‘ IK. Repeating this argument (the Killing form on g will be non-degenerate on both I and IK)
we can write Cgphq as a sum of ideals which are either simple or one dimensional. The sum of the
one dimensional ideals make up the center. Thus Cgphq is the sum of a semisimple Lie algebra and
a central ideal.

Theorem 25.3. If h is a Cartan subalgebra then Cgphq “ h.

Proof. Let h Ă g be a Cartan subalgebra.

g “
à

αPh˚

gα, gα “ tx P g | rh, xs “ αphqx @h P hu.

Note, Cgphq “ g0. We claim that g0 is toral. (Then, since h Ă g0 and h maximal among toral
subalgebras, h “ g0.) Let x P g0. Then padxq|g0 is nilpotent. Otherwise, it has a nonzero eigenvalue
and padxsq|g0 ‰ 0. This implies xs R h, and h‘kxs is a toral subalgebra that strictly contains h
which is a contradiction. By Engel’s Theorem (Theorem 14.8), g0 is nilpotent. By Lemma 25.2,
therefore g0 is abelian.

It remains to show that g0 consists of semisimple elements. Let x P g0. We want to show that
xn “ 0. adxn is nilpotent and g0 is commutative; therefore, padxnqpad yq is nilpotent for every
y P g0. Thus Tr

`

padxnqpad yq
˘

“ 0 @y P g0. Hence, xn “ 0 since κ|g0 ˆ g0 is non-degenerate.

Fact: If h1 and h2 are two Cartan subalgebras of g, then there exists a Lie algebra automorphism
φ of g such that φph1q “ h1.

Definition 25.4. The rank of a semisimple Lie algebra g is rank g “ dim h where h is any Cartan
subalgebra.

Example 25.5. rank slpn,Cq “ n´ 1
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25.1 Representations of slp2,kq

Recall slp2,Cq has a basis te, f, hu

e “

„

0 1
0 0

ȷ

, f “

„

0 0
1 0

ȷ

, h “

„

1 0
0 ´1

ȷ

with re, f s “ h, rh, es “ 2e, rh, f s “ ´2f .

Theorem 25.6. For each non-negative integer λ there exists an pλ ` 1q-dimensional irreducible
representation V pλq of slp2,kq. Furthemore, any finite-dimensional irreducible representation of
slp2, kq is isomorphic to V pλq for a unique non-negative integer λ.

Proof. Let λ P Zě0, let Vλ “ krx, ysλ “ kxλ ‘ kxλ´1y ‘ ¨ ¨ ¨ ‘ kyλ and define

ρλ : slp2, kq Ñ glpV pλqq

by
ρλpeq “ xBy ρλpfq “ yBx ρλphq “ xBx ´ yBy

Note that dimVλ “ λ` 1.

Exercise 25.7. V pλq is an irreducible representation of slp2,kq.

Conversely, let pV, ρ “ ρV q be any finite dimensional irreducible representation of slp2, kq. Put
pE,F,Hq “ pρpeq, ρpfq, ρphqq and for µ P k put V rµs “ tv P V | Hv “ µvu.

Step 1:

EV rµs Ă V rµ` 2s

FV rµs Ă V rµ´ 2s

HV rµs Ă V rµs

hence, V 1 :“
à

µPk
V rµs is a subrepresentation of V . Since V is finite dimensional and k is algebraically

closed, Dµ P k such that V rµs ‰ 0 ñ V 1 ‰ 0 ñ V “ V 1 since V is irreducible.
Step 2: Dλ P k and vλ P V rλszt0u with Evλ “ 0. Indeed, pick any nonzero wµ P V rµs some

µ P k. Then Enwµ P V rµ`2ns. Since V is finite dimensional, eigenvectors are linearly independent,
ñ Dn ě 0 Enwµ ‰ 0, En`1wµ “ 0. Put λ “ µ` 2n, Vλ “ Enwµ.

Step 3: Wλ “ spantFnvλuně0 is a submodule of V , hence V “ Wλ. Indeed

HFnvλ “ pλ´ 2nqFnvλ

FFnvλ “ Fn`1vλ

EF 0vλ “ Evλ “ 0

and for n ą 0:

EFnvλ “
`

rE,F s ` FE
˘

Fn´1vλ

“ HFn´1vλ ` FEFn´1Vλ.

Now HFn´1vλ P Wλ and by induction EFn´1vλ P Wλ. Thus HF
n´1vλ ` FEFn´1Vλ P Wλ.
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Step 4: λ P Zně0, V “ V rλs ‘ V rλ´ 2s ‘ ¨ ¨ ¨ ‘ V r´λs and V rλ´ 2ns “ kFnvλ. To see this, let
n be the smallest positive integer such that Fnvλ “ 0. Then

0 “ EFnvλ “ rE,Fnsvλ

“ pHFn´1 ` FHFn´2 ` ¨ ¨ ¨ ` Fn´1Hqvλ

“ pλ´ 2pn´ 1q ` λ´ 2pn´ 2q ` ¨ ¨ ¨ ` λqFn´1vλ

This implies λ “ n´ 1 ñ n “ λ` 1 and tvλ, Fvλ, . . . , F
λvλu is a basis.

Step 5: Define

Φ: V Ñ V pλq “ Crx, ysλ, Fnvλ ÞÑ
1

pλ´ nq!
xλ´nyn.

Then
`

ρpfq ˝ Φ
˘

pFnvλq “ ΦpFn`1vλq “
1

pλ´ n´ 1q!
xλ´n´1yn`1

while

pρλpfq ˝ ΦqpFnvλq “ yBxp
1

pλ´ nq!
xλ´nynq “

1

pλ´ n´ 1q!
xλ´n´1yn`1.

Similarly Φ ˝ ρpeq “ ρλpeq ˝ Φ and Φ ˝ ρphq “ ρλphq ˝ Φ. This implies a bijective intertwining
operator.

25.2 From Semisimple to Simple

g is finite dimensional semisimple Lie algebra over k and h Ă g a fixed choice of Cartan subalgebra.
The following is easy to check:

Theorem 25.8 (Theorem 6.39 in Kirillov). Let g “
ś

i gi. Then

i) Every Cartan subalgebra of g has the form h “
ś

i hi where hi is a Cartan subalgebra of gi.

ii) Then Φ “
Ů

iΦi a disjoint union where Φi Ă phiq
˚ ãÑ ‘phiq

˚ “ h˚ is the root system of gi.

25.3 Coroots

Definition 25.9. For each α P R, there is a corresponding coroot α_ “ hα P h.

Let p , q be an invariant non-degenerate symmetric bilinear form on g. We know that the
restriction to h is non-degenerate. This implies that h – h˚ by h ÞÑ p´, hq. Let Hα be the inverse
image of α under this map. Then

pHα, hq “ αphq @h P h .

Also convenient to define h˚ by pα, βq :“ pHα, Hβq “ αpHβq.

Lemma 25.10. pα, αq “ pHα, Hαq ‰ 0.

Then we can define hα “
2Hα

pα, αq
.

Note 25.11.

i) The 2 is to get an integer later.
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ii) If g is simple we know that p¨, ¨q is unique up to scalar i.e. p¨, ¨q1 “ ξp¨, ¨q, ξ P kˆ. Then

h1
α “

2H 1
α

pα, αq1
“

2ξ´1Hα

ξ´2 ¨ ξpα, αq
“ hα

Hence, hα is independent of p¨, ¨q.

26 Lecture 24: The Root System of a semisimple Lie Algebra

Today we discuss the connections between finite dimensional semisimple Lie algebras over k and
Root systems.

finite dimensional semisimple Lie algebra over k Ñ Root systems
`

Ñ Dynkin diagrams
˘

ix

Let g be a finite-dimensional Lie algebra over k, p¨, ¨q is the Killing form, h a Cartan subalgebra
of g, and R root system of g.

Lemma 26.1 (slp2,kq triples). Let α P R. Pick eα P gα where eα ‰ 0. Choose fα P g´α by

peα, fαq “
2

pα, αq
.

(Recall by lemma 25.10 that pα, αq ‰ 0.) Define slp2,Cqα :“ Ceα ‘ Cfα ‘ Chα, which is a Lie
subalgebra of g isomorphic to slp2,Cq.

Proof. Claim: reα, fαs “ peα, fαqHα. Indeed for all h P h

ph, reα, fαsq “ ´preα, hs, fαq

“ prh, eαs, fαq

“ pαphqeα, fαq

“ peα, fαq ¨ pHα, hq

“ ppeα, fαqHα, hq

“ ph, peα, fαqHαq.

Since the form is non-degenerate, the claim holds. Now hα “
2Hα

pα, αq
, so

reα, fαs “ peα, fαq ¨
pα, αq

2
¨ hα “ hα.

Also,

rhα, eαs “ αphαqeα “ pHα, hαqeα “
2pHα, Hαq

pα, αq
“ 2eα.

Similarly rhα, fαs “ ´2fα.

Lemma 26.2 (Lemma 6.43 in Kirillov). Let α P R. Then

V “ khα ‘
à

kPZ
k‰0

gkα Ă g

is an irreducible subrepresentation of g with respect to the adjoint action of slp2,Cqα on g.
ixIt turns out these maps are isomorphisms, but we save this for a later time.
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Proof. We check V is a subrepresentation of g. We have eα. gkα “ reα, gkαs Ă gpk`1qα. Note that
V r0s “ khα and V r2k ` 1s “ 0 since hα.x “ 2kx for all x P gkα. By Exercise 4.11 in the text, V is
irreducible.

Theorem 26.3 (Structure of semisimple Lie Algebras over k “ k̄).

(1) R spans h˚ as a k-vector space and thαuαPR span h as a k-vector space.

(2) dim gα “ 1 for all α P R.

(3) @α, β P R then

βphαq “
2pβ, αq

pα, αq
P Z.

(4) For any α P R, the reflection

sα : h˚ Ñ h˚

λ ÞÑ λ´ λphαqα

λ´ 2
pλ, αq

pα, αq
α

preserves R, i.e. sαpβq P R @α, β P R. In particular, ´α “ sαpαq P R @α P R.

(5) @α P R pkαq XR “ tα,´αu

(6) @α P R, @β P R such that β ‰ ˘α then V “ ‘kPZ gβ`k`α is an irreducible slp2,kqα represen-
tation with respect to the adjoint action.

(7) If α, β P R such that α ` β P R, then rgα, gβs “ gα`β.

Proof. (1) Suppose h P h with αphq “ 0 for all α P R. Then adh : g Ñ g is the zero map. This
implies h P zpgq “ 0 ñ h “ 0. Thus R spans h˚. The final part comes from h Ø h˚ by hα ÞÑ α.

(2) By Lemma 26.2 and representation theory for slp2, kq, V “ khα ‘
À

gkα gkα has dim1 for
all k, α ñ k “ 1 for all α P R.

(3) βphαq is the weight of x P gβ with slp2, kq-action hαpxq “ βphαqx. By representation theory
of slp2,kq, they are all integers.

(4) x P gβ has weight n :“ βphαq suppose n ą 0, Then fnα : gβ
–
Ñ gβ´αn, so if 0 ‰ v P gβ then

gβ´nα ‰ 0. Which implies β ´ nα P R with sαpβq “ β ´ nα. For n ă 0 we use enα instead. (5)-(7)
Read yourselves.

Example 26.4. g “ slp3, kq, h “ kh1 ` kh2 with

h1 “

»

–

1 0 0
0 ´1 0
0 0 0

fi

fl and h2 “

»

–

0 0 0
0 1 0
0 0 ´1

fi

fl .

Note that
rh1, E12s “ 2E12 and rh1, E12s “ ´E12

so E12 P gα with αph1q “ 2 and αph2q “ ´1. Similarly E23 P gβ with βph1q “ ´1 and βph2q “ 2.

Now E13 “ rE12, E23s P gα`β. So R “ t˘α,˘β,˘pα ` βqu and

»

–

α α ` β
´α β

´α ´ β ´β

fi

fl with

pα, βq “ pHα, Hβq “ 2 cosp120°q “ ´1.
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27 Lecture 25: (Abstract) Root Systems

Definition 27.1. An (abstract) root system is a finite subset of a Euclidean space R Ă Ezt0u

where E is a Euclidean space, such that

(R1) spanRR “ E;

(R2) @α, β P R: nαβ “
2pα, βq

pβ, βq
P Z;

(R3) Let sα : E Ñ E given by

sαpλq “ λ´
2pλ, αq

pα, αq
α.

Then sαpβq P R @α, β P R.

(R4) @α P R pRαq XR “ tα,´αu.

Note 27.2. sα is the orthogonal reflection in the root hyperplane Lα:

Lα “ αK “ tλ P E | pλ, αq “ 0u.

Example 27.3. Let g be a finite dimensional semisimple Lie algebra over k and h Ă g Cartan
subalgebra. Then the set of roots of g with respect to h is a root system is a root system in h˚

R
where

hR “ spanRthα | α P Ru

a real form of h i.e. hR bRk “ h. h˚
R “ tλ P h˚ | λphαq P R @α P Ru (By a lemma p¨, ¨q Killing form

restricted to h˚
R is a positive definite inner product.)

Notation 27.4. If v P V , λ P V ˚ we define xv, λy “ xλ, vy :“ λpvq.

Definition 27.5. Let R Ă E be an (abstract) root system. The coroot α_ of α P R is defined by
α_ P E˚ where

xα_, λy “
2pλ, αq

pα, αq
.

Note 27.6.

(1) This is consistent with the Lie algebra definition of coroot:

α_ “ hα “
2Hα

pα, αq

where pHα, hq “ αphq @h P h.

(2) Integrality says xα, β_y P Z @α, β P R and sαpλq “ λ´ xλ, α_yα.

Example 27.7 (Root system of type An´1). Let tεiu
n
i“1 be the the orthonormal basis for Rn. Let

E “ tpλ1, . . . , λnq P R |

n
ÿ

i“1

λi “ 0u

R “ tεi ´ εj | 1 ď i, j ď n, i ‰ ju.
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Then R spans E over R. pεi ´ εj , εi ´ εjq “ 2 ñ pα, βq P Z @α, β P R ñ
2pα, βq

pβ, βq
“ pα, βq P Z.

Now,

sεi´εj pλ1, . . . , λi, . . . , λj , . . . , λnq “ pλ, εi ´ εjq ¨ pεi ´ εjq

“ λ´ pλi ´ λqpεi ´ εjq

“ λ´ λiεi ´ λεj ` λiεj ` λjεi

“ λ1, . . . , λj , . . . , λi, λn

ñ sεi´εj Ø pijq P Sn.

Clearly sαpβq P R. Lastly, Rα XR “ t˘αu is clear. Fact: An´1 ”is” the root system of slpn,kq.

Definition 27.8. An isomorphism fromR1 Ă E1 toR2 Ă E2 is a R-linear isomorphism φ : E1 Ñ E2

such that

i) φpR1q “ R2;

ii) nφpαqφpβq “ nαβ for all α, β P R1.

Example 27.9. R Ă E is isomorphic to c.R a root system by φ : E Ñ E by λ ÞÑ c ¨ λ for all
c P Rzt0u.

Definition 27.10. The Weyl group W “ W pRq of a root system R Ă E is the subgroup of GLpEq

generated by tsα | α P Ru.

Lemma 27.11. Let W be the Weyl group of a root system R Ă E.

1) W is finite;

2) W ď OpEq the orthogonal group

3) If w P W , α P R then wsαw
´1 “ swpαq.

Proof. 1) We know W pRq Ă R since sαpRq Ă R, so we get a map φ : W Ñ SR. We claim that φ is
injective. Suppose w P kerφ, then wpαq “ α for all α P R. By R spanning E we get that w “ IdE .

2) Each sα is an orthogonal transformation (i.e, psαpλq, sαpµqq “ pλ, µq for all λ, µ) ñ W ď OpEq

3) Consider the following calculation

pwsαw
´1qpλq “ wpsαpw´1pλqqq

“ w

ˆ

w´1pλq ´
pw´1pλq, αq

pα, αq
α

˙

“ λ´ 2
pλ,wpαqq

pwpαq, wpαqq
wpαq

“ swpαqpλq.
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28 Lecture 26: More on Root Systems

Theorem 28.1. Let α, β be non-parallel roots of a root system R. Let θ P p0, 2πq be the angle

between them. Then θ P Z
2π

12
Y Z

2π

8
and ˘tnαβ, nβαu P

␣

t0, 0u, t1, 1u, t1, 2u, t1, 3u
(

.

Proof.

Z Q nαβnβα “
2pα, βq

pβ, βq

2pβ, αq

pα, αq

“
4|α|2|β|2 cos1 θ

|α|2|β|2

“ 4 cos2 θ

28.1 Root Systems of Rank 2

A1 ˆA1 p or A1 \A1q Ø slp2,kq ˆ slp2,kq

A2 Ø slp3,kq

B2 “ C2 Ø sop5,kq – spp4, kq

G2 Ø DerpOq

Where DerpOq is the Lie algebra of derivations of the octonions, which is one of the five exceptional
simple Lie algebras.

28.2 Ereg, Weyl chambers, and Positive Roots

Definition 28.2. Let R Ă E be a root system. The set of regular vectors in E is

Ereg “ tτ P E | @α P R : pτ, αq ‰ 0u “ Ez
ď

αPR

Lα where Lα “ αK

The connected components of Ereg are called the Weyl chambers of R.
Given a Weyl chamber C, we associate a polarization of R:

R “ R` \R´, where R˘ “ tα P R | ˘pα, τq ą 0u, τ P Ereg

Call α P R` (respectively R´) a positive (respectively negative) root.
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Remark 28.3. This doesn’t depend on the choice of τ P C. C, being defined as a set of linear
inequalities of the form pα, τq ą 0 (or pα, τq ă 0), is intersection of (open) half-spaces. Therefore,
C is convex. So if τ, τ 1 P C then the straight line segment rτ, τ 1s Ă C. By the intermediate value
theorem, Rτ` “ Rτ

1

` .

Remark 28.4. If τ P Ereg and α P R, then @β P R:

psαpτq, βq “ pτ, sαpβqq ‰ 0

Now sαpβq P R, hence sαpτq P Ereg. Moreover, if τ, τ 1 belong to the same connected component C
of Ereg. Let p “ r0, 1s Ñ Ereg be a path from τ to τ 1. Then sα ˝ p is a path from sαpτq to sαpτ 1q.
So W acts on π0pEregq “ tC | connected componentsu. Lastly, note that, the Weyl group acts on
R by root system automorphisms. (More generally we have OpEq Ñ AutpRq).

Theorem 28.5. The action ofW on π0pEregq is transitive. @C,C 1 P π0pEregq Dw P W : wpCq “ C 1.
Thus every root system has a unique polarization, up to a Weyl group automorphism of R.

Proof. Let C,C 1 be any two Weyl chambers. Pick τ P C, τ 1 P C 1 such that τ ` τ 1 ‰ 0. Then the
line segment rτ, τ 1s is contained in Ezt0u and crosses some of the hyperplanes Lβ1 , Lβ2 , . . . , Lβk .
Claim: If C1 and C2 are adjacent, i.e. Lβ “ spanRpC1 X C2q, then sβpC1q “ C2. Pick τ P C1, the
line segment rτ, sβpτqs only intersects Lβ. Hence, psβpτq, αq and pτ, αq have the same sign for all
α P Rztβu. Thus C 1 “ sβk ¨ ¨ ¨ sβ1pCq.

29 Lecture 27: Simple Roots

Last time discussed how any root system R has a unique (up to Weyl group automorphism) polar-
ization R “ R` \R´.

Definition 29.1. α P R` is simple if it is not a sum of two positive roots.

Lemma 29.2. Every positive root is a sum of simple roots.

Proof. Let α P R. If α is simple we are done. If not, α “ β ` γ, for β, γ P R`. Then pick
τ P C` “ tλ P E | pλ, α1q ą 0 @α1 P R`u. Then pα, τq “ pβ, τq ` pγ, τq each of which is strictly
greater of zero ñ pβ, τq, pγ, τq ă pα, τq. The set tpα1, τq | α1 P R`u is finite; therefore, totally
ordered. So we proceed by induction (or by contradiction).

Proposition 29.3. Every root is a unique combination of simple roots with integer coefficients:

α “

r
ÿ

i“1

niαi, ni P Z

Where Π “ tαi, . . . , αru is the set of simple roots. Moreover, α P R˘ ô ˘ni ě 0 @i

Proof. With out loss of generality α P R`.
Step 1: Linear algebra fact: If tviui Ă E is a set of vectors, all lying on the same side of some

hyperplane, such that pvi, vjq ď 0 @i ‰ j, then tviui is linearly independent. (Exercise)
Step 2: By Step 1, it suffices to show that pαi, αjq ď 0 @i ‰ j. Fix i ‰ j and let R1 “

pZαi ` Zαjq X R. By Exercise 29.4 below, R1 is a root system of rank two. Let R1
˘ “ R1 X R˘.

Then R1 “ R1
` \ R1

´ is a polarization of R1 and αi, αj are the two simple roots with respect to
this polarization. By the description of the root systems of rank two, it now follows that the angle
between αi and αj is obtuse, hence pαi, αjq ď 0.
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Exercise 29.4. If α, β P R, α ‰ ˘β, then pZα ` Zβq XR is a root system of rank 2.

Corollary 29.5. Π is a basis for E over R, so |Π| “ dimE “ rankR.

Proof. Π linear independent and spans R over Z, and R spans E over R ñ Π spans E over R.

29.1 Simple Reflections

Definition 29.6. R “ R` \R´, Π “ tα1, . . . , αru. Then si “ sαi are called simple reflections.

Proposition 29.7. Any simple reflection si permutes the positive roots other than αi, i.e. sipR`ztαiuq “

R`ztαiu.

Proof. Let β P R` with β “
ř8
j“1 njαj nj ě 0. Then sipβq “ β ´ xă β, αiyαi. So if sipβq P R´,

then nj ď 0 for all j ‰ i. This implies that nj “ 0 for all j ‰ i. Thus β “ niαi ñ β “ αi.

Corollary 29.8. The Weyl vector, ρ “ 1
2

ř

αPR`
α satisfies:

xρ, α_
i y “ 1 @i “ 1, . . . , r

equivalently sipρq “ ρ´ αi.

Theorem 29.9.

i) The simple reflections generate the Weyl group.

ii) @α P R Dw P W , αi P Π: α “ wpαiq.

iii) W acts simple transitively on π0pEregq i.e. if wpCq “ C, then w “ 1.

30 Example: spp4,kq

For C4 we have symplectic form w : C4 ˆ C4 Ñ C, i.e. w is

• bilinear

• non-degenerate

• skew-symmetric

spp4,Cq “ tx P glp4,Cq | wpx.v, uq ` wpv, x.uq “ 0u.

Theorem 30.1. Over C all symplectic forms are equivalent (i.e coincide after a change of basis).

We have matrix for w:
J “ pwpei, ejqqi,j

i.e., wpa, bq “ aTJb.

Example 30.2. A good choice J “

„

0 I2
´I2 0

ȷ

¨

˚

˚

˝

or

»

—

—

–

0 1
´1 0

0 1
´1 0

fi

ffi

ffi

fl

˛

‹

‹

‚

.
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As such

spp4,Cq “ tx | px.vqTJu` vTJpx.uq “ 0 @u, v P C4u

“ tx | vTxTJu` vTJxu “ 0 @u, v P C4u

“ tx | xTJ ` Jx “ 0u

“

#

x “

„

A B
C D

ȷ

ˇ

ˇ

ˇ

ˇ

ˇ

„

AT CT

BT DT

ȷ „

0 I2
´I2 0

ȷ

`

„

0 I2
´I2 0

ȷ „

A B
C D

ȷ

+

“

"

x “

„

A B
C D

ȷ

ˇ

ˇ

ˇ

ˇ

ˇ

´ CT ` C “ 0, AT `D “ 0, BT ´B “ 0

+

“

#

„

A B “ BT

C “ CT ´AT

ȷ

+

Now we claim we can generate a Cartan subalgebra h by the following two matrices (here and
everywhere else we adopt the convention that empty entries are supposed to be zero):

h1 “

»

—

—

–

1
0

´1
0

fi

ffi

ffi

fl

h2 “

»

—

—

–

0
1

0
´1

fi

ffi

ffi

fl

.

Now we construct matrices for generating the rest of spp4,Cq:

F12 “

»

—

—

–

0 1
0 0

0 0
´1 0

fi

ffi

ffi

fl

F13 “

»

—

—

–

1 0
0 0

fi

ffi

ffi

fl

F14 “

»

—

—

–

0 1
1 0

fi

ffi

ffi

fl

F24 “

»

—

—

–

0 0
0 1

fi

ffi

ffi

fl

F21 “ F T12 F31 “ F T13 F41 “ F T14 F42 “ F T24.

Recall: rEij , Ekℓs “ δjkEiℓ ´ δiℓEkj . Where Eij are matrix units.

Note 30.3.

rhi, x
T s “ rx, hTi sT

“ rx, his
T

“ ´rhi, xsT

“ ´αphiqx
T

ñ xT P g´α and pgαqT “ g´α, when h Ă tdiagonal matricesu (or tsymmetricu).

Now we calculate the root decomposition.

rh1, F12s “ rE11 ´ E33, E12 ´ E43s

“ E12 ´ E43

“ 1 ¨ F12;

rh2, F12s “ rE22 ´ E44, E12 ´ E43s

“ ´E12 ` E43 “ p´1q ¨ F12.
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So F12 P gα and F21 P g´α, where αph1q “ 1 and αph2q “ ´1. Similarly,

rh1, F13s “ rE11 ´ E33, E13s

“ 2 ¨ F13;

rh2, F12s “ rE22 ´ E44, E13s

“ 0.

So F13 P gβ and F31 P g´β, where βph1q “ 2 and βph2q “ 0. By similar calculations we get

rh1, F14s “ rE11 ´ E23, E14 ` E23s “ ¨ ¨ ¨ “ F14;

rh2, E14s “ F14;

with F14 P gγ and F41 P g´γ , where γph1q “ γph2q “ 1, and

rh1, F24s “ rE11 ´ E33, E24s

“ 0;

rh2, F24s “ rE22 ´ E44, E24s

“ 2 ¨ F24;

with F24 P gδ and F42 P g´δ, where δph1q “ 0 and δph2q “ 2.

Note 30.4. The following relations hold for our roots: α ` δ “ γ, α ` γ “ 2α ` δ “ β.

Thus R “ ˘tα, δ, γ “ α ` δ, β “ δ ` 2αu. Using the trace form on hR “ Rh1 ‘ Rh2, we have
phi, hjq “ Trphihjq “ 2δij . By rescaling we define phi, hjq :“ δij

Now we work to find the coroots. Hα “ a1h1 ` a2h2, by the definition of coroots we know that

1 “ αph1q “ pHα, h1q “ a1

´1 “ αph2q “ pHα, h2q “ a2.

This implies that Hα “ h1 ´ h2 ñ α_ “ hα “
2Hα

pHα, Hαq
“ Hα “ h1 ´ h2. Similarly, Hδ “ 2h2

implies δ_ “
2Hδ

pHδ, Hδq
“

1

2
Hδ “ h2.

Now we compute nδα and nαδ:

nδα “
2pδ, αq

pα, αq
“ δpα_q “ δph1 ´ h2q “ ´2

nαδ “ αpδ_q “ αph2q “ ´1.

Note 30.5. pδ, δq “ 2pα, αq.

So

4 cos2 θ “ nαδnδα

“ p´1qp´2q

cos2 θ “
1

2
.

Now pα, δq ă 0 implies that cos θ ă 0. Hence, cos θ “ ´1?
2

ñ θ “ 3 ¨ 2π
8 . A suitable choice for R`
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α

δ

Figure 17: Root System of spp4,Cq

would be R` “ tα, δ, δ ` α, δ ` 2αu and Π “ tα, δu.
The Weyl group W “ xs1 “ sα, s2 “ sδy such that s1s2 “ ρ 2π

4
, so W – D4 the dihedral group

of order 8.
The Cartan matrix (which will be discussed more next time) is:

„

2 ´1
´2 2

ȷ

.

31 Lecture 28: Cartan Matrices and Dynkin Diagrams

Let R root system Ă E; R` choice of positive roots; Π Ă R` simple roots Π “ tα1, ¨ ¨ ¨ , αru.

Theorem 31.1. R can be recovered from Π and the numbers nαβ P Π.

Proof. Recall R “ W pΠq and W is generated by the simple reflections (by Theorem 29.9). So if
α P R, then Di1, . . . , ik, j P t1, . . . , ru such that α “ sik ¨ ¨ ¨ si2si1pαjq.

Note 31.2. si1pαjq “ αj ´ xαj , α
_
i1

yαi1 “ αj ´ pnαjαi1
qαi1 .

By linearity, si2si1pαjq can be computed from nαjαi2
, nαjαi1

, nαi1
αi2

. By induction α can be
computed using only knowledge of Π and nαβ for α, β P Π.

Definition 31.3. The cartan matrix of R is defined by: A “ paijq
r
i,j“1 where

aij “ nαjαi “ xαj , α
_
i y “

2pαj , αiq

pαi, αiq
.

Corollary 31.4. R is uniquely determined by A.
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Example 31.5. We look at the cartan matrices for rank 2 root systems.

A1 \A1 :

„

2 0
0 2

ȷ

A2 :

„

2 ´1
´1 2

ȷ

B2 “ C2 :

„

2 ´1
´2 2

ȷ

G2 :

„

2 ´3
´1 2

ȷ

Note 31.6.

i) aii “ 2 for all i

ii) paij , ajiq P tp0, 0q, p´1,´1qu Y pt´2,´3u ˆ t´1uq Y pt´1u ˆ t´2,´3uqu

iii) |aij | ă |aji| ô |αi| ą |αj |.

31.1 Rank 2 Dynkin diagrams

A1 \A1

A2

B2

G2

Definition 31.7. The Dynkin diagram D of R is a graph with vertex set Π (often identified with
t1, . . . , ru) and edges of the following four kinds:

i j no-edge aij “ aji “ 0

i j aij “ aji “ ´1

i j paij , ajiq “ p´1,´2q note: |αi| ą |αj |

i j paij , ajiq “ p´1,´3q note: |αi| ą |αj |

Main point: A, hence R, can be recovered from D.

Definition 31.8. A set S Ă E is the orthogonal union of two subsets S1, S2 Ă S if

1) S “ S1 Y S2

2) u K v @u P S1, v P S2.

Notation: S “ S1
Ť

K S2

Definition 31.9. S Ă E decomposable if S “ S1
Ť

K S2, Si ‰ 0.
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32 Lecture 29: Classification of Root Systems

Lemma 32.1. Let R be a root system, Π a set of simple roots, A the cartan matrix, and D the
Dynkin diagram. TFAE:

1) R is irreducible, i.e. R “ R1
Ť

K R2 ñ R1 “ H or R2 “ H.

2) Π is irreducible.

3) D is connected.

4) A is indecomposable, i.e. it cannot be written as a block diagonal matrix A “

„

A1 0
0 A2

ȷ

even

after reordering Π.

Proof. Bonus Homework Question.

Lemma 32.2. If R is a reducible subset of E: R “ R1
Ť

K R2 with Ri ‰ 0, then Ri are root systems
in Ei “ spanRi.

Proof. Bonus Homework Question.

Corollary 32.3. Without loss of generality, we may assume R is irreducible.

Thus our goal should be to describe all connected Dynkin diagrams!

32.1 Coxeter Graphs

Definition 32.4. A coxeter graph Γ “ pΓ0,Γ1q is an undirected loopless graph such that each edge
e P Γ1 has multiplicity me P Zą0. By thinking of no-edge as multiplicity 0, we may think of

Γ1 Ă
`

Zě0

˘

ˆ

Γ0

2

˙

and the adjacency mattrix for Γ

A “

»

—

–

0 aij
. . .

aji 0

fi

ffi

fl

is symmetric with aij P Zě0.

Example 32.5. Below are two examples of coxeter graphs.

Example 32.6. Forgetting the direction of a Dynkin diagram gives a coxeter-graph.
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32.2 Admissible Sets

Definition 32.7. An admissible set U “ te1, . . . , eru Ă E is a set of linearly independent unit
vectors such that @i ‰ j:

1) cosφij “ pei, ejq ď 0;

2) 4pei, ejq
2 P t0, 1, 2, 3u.

Example 32.8. The following will be our main example to consider U “
␣

α
|α|

| α P Π
(

.

To any admissible set U , we can attach a coxeter graph Γ “ pΓ0,Γ1q where Γ0 “ U and ej , ei
are connected by an edge of multiplicity 4pei, ejq

2. So we have the following commuting diagram:

Π ⇝ U

⇝ œ ⇝

D ⇝ Γ

Theorem 32.9 (Classification of Root systems). Let R be any root system. Then its Dynkin
diagram D is a union of diagram of the following type:

Ar pr ě 1q

Br pr ě 2q

Cr pr ě 3q

Dr pr ě 4q

E6

E7

E8

F4

G2

Moreover, any two from this list correspond to non-isomorphic root systems.

Remark 32.10. Types A through D are called classical types, and types E through G are the five
exceptional types.

Proof. We show that any connected admissible graph is one the above types (with orientation
removed). Let U “ te1, . . . , eru be any admissible set, and Γ be its coexeter graph. Then:

1) Any subset of an admissible set is admissible.

Proof of 1). Clear.
2) c :“ |ttei, eju | i ‰ j and ei, ej connectedu|. Then c ă r.

Proof of 2). Let e “
ř

ei. Then

0 ă pe, eq “ r `
ÿ

iăj

2pei, ejq ď r ` p´cq.

Hence, c ă r.
3) Γ has no cycles.
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Proof of 3). If Γ1 Ă Γ is a cycle, by 1) Γ1 is an admissible graph, but this contradicts 2) because in
cycles c “ r.

4) The degree of any vertex (with multiplicity) is ď 3.

Proof of 4). Suppose e P U has edges to η1, η2, . . . , ηk, then 4pe, ηiq
2 P t1, 2, 3u. By 3) pηi, ηjq “ 0

@i ‰ j (else Γ would contain a cycle). W “ spantηiu e
1 :“ projW e “

řk
i“1pe, ηiqηi. Now e1 ‰ e

since te, η1, . . . , ηku are linearly independent. Hence,

4 “ 4 ¨ pe, eq ą 4pe1, e1q “

k
ÿ

i“1

4pe, ηiq
2 “ deg e.

5) By 4) the only possible diagrams containing a triple edge is

.

6) If tη1, . . . , ηku Ă U with their induced subgraph is

η1 ηk

then they can be replaced by a single point, i.e. pUztη1, . . . , ηkuq Y tηu, where η “
řk
i“1 ηi is, is

admissible.

33 Lecture 30: Classification Proof Continued

Proof of Theorem 32.9 Con’t. 6) Linear roots can be deformed to a single point. U 1 “ pUztη1, . . . , ηkuqY

tηu with η “
řk
i“1 ηi.

Proof of 6). Clearly, U 1 is linearly independent. Now

pη, ηq “ p
ÿ

ηi,
ÿ

ηiq “ k ` pk ´ 1q ¨ p´1q “ k ´ k ` 1 “ 1

We want to show that 4pε, ηq2 P t0, 1, 2, 3u for all ε P U 1ztηu. Now any ϵ P U 1ztηu is connected
to at most one of the tη1, . . . , ηku (else there would be a cycle), so pε, ηq “ 0 or pε, ηq “ pε, ηiq for
exactly one i. Hence, 4pε, ηq2 “ 4pϵ, ηiq

2 P t0, 1, 2, 3u.
7) Γ contain no subgraphs of the form shown in Figure 19.

Figure 19: None of these can occur as subgraphs in an admissible graph.
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"1 "2 "p ηq η1

"1 "p−1 ζr−1

ζ1

 

ηq−1

η1

Figure 20: Any connected graph Γ of an admissible set must be one of these.

Proof of 7). If we collapse lines to points as in 6), then we would reach a vertex of degree greater
than 3 from each of these graphs which is a contradiction to 4).

8) Any connected Γ of an admissible set must be of the form shown in Figure 20 9) The only
graphs of the second variety are

ptype F4q

&
ptype BCnq

Proof of 9). Define ε :“
řp
i“1 iεi and η :“

řq
j“1 jηj . Then

pε, εq “

p
ÿ

1

i2 ´

p´1
ÿ

1

ipi` 1q “
ppp` 1q

2

Similarly,

pη, ηq “
qpq ` 1q

2
.

Now

pε, ηq2 “ p2q2pεp, ηqq
2 “

p2q2

2

By Cauchy-Schwarz:
p2q2

2
“ pε, ηq2 ă pε, εqpη, ηq “

ppp` 1q

2

qpq ` 1q

2

This implies pp´ 1qpq ´ 1q ă 2, so either p “ 1 or q “ 1 (Type BCn), or p “ q “ 2 (Type F4).
10) The only Γ of the fourth type is Dn or E6, E7, E8.

Proof of 10). Define ε :“
řp´1
i“1 iεi, η :“

řq´1
j“1 jηj , and ζ :“

řr´1
ℓ“1 ℓζℓ. Then ε, η, and ζ are

necessarily orthogonal and linearly independent, and ψ R spantε, η, ζu as in 4) cos2 θε ` cos2 θη `
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cos2 θζ ă 1 where these are the angles between the projection of projspantε,η,ζu ψ and the respective
roots. On the other hand,

cos2 θε “
pε, ψq2

|ϵ|2
“

pp´ 1qpεp´1, ψq

|ε|2
“

1

2
p1 ´

1

p
q.

Similarly for θη and θζ . This implies that

1

p
`

1

q
`

1

r
ą 1

With out loss of generality, p ě q ě r. If r “ 1 we get An, else r “ 2. Then 2 ď q ă 4. As such we
get pp, 2, 2q for type Dn, p3, 3, 2q, p4, 3, 2q, p5, 3, 2q are E6, E7, E8 respectively.

This completes the proof.

33.1 Serre’s Theorem

We have seen that

tf.d. s.s. Lie alg{Cu{iso
D
ÝÑ tnot necessarily connected Dynkin diagramsu

by

g
Choose C.S.A

ÞÝÑ R
Choose tPEreg

ÞÝÑ R` ÞÑ Π
ordering

ÞÝÑ A ÞÑ D.

Serre’s Theorem shows that D is bijective by constructing an explicit inverse D ÞÑ gpDq.

Theorem 33.1 (Chevalley-Serre). Let g be as above, and D its Dynkin Diagram, A = cartan
matrix (with respect to some order on vertices). Then g is generated by a subset tei, fi, hiu

r
i“1

satisfying

Chevalley 1940’s

$

’

&

’

%

rei, fjs “ δijhi

rhi, ejs “ aijej

rhi, fjs “ aijfj

Serre 1960’s

#

adpeiq
1´aij pejq “ 0

adpfiq
1´aij pfjq “ 0

Theorem 33.2 (Serre’s Theorem). Let D be a Dynkin diagram and A its cartan matrix. Let gpDq

be the free Lie algebra on 3r symbols tei, fi, hiu
r
i“1 module the Chevalley-Serre relations.

Then gpDq is a finite dimensional semisimple Lie algebra over C with Dynkin diagram D.
Moreover, g – gpDq for any g whose Dynkin diagram is D.

34 Further Reading: Summary of Representation Theory for Lie
Groups

34.1 Representations of Lie Groups and Lie Algebras

Definition 34.1. A representation of a Lie group is a finite dimensional vector space V together
with a morphism ρ “ ρV : G Ñ GLpV q of Lie groups.
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V

V

W

W

ρV pgq ρW pgq

f

f

Definition 34.2. Amorphism between two representation V andW ofG is a linear map f : V Ñ W
which intertwines the action of G:

f ˝ ρV pgq “ ρW pgq ˝ f

for all g P G i.e.
commutes.

Definition 34.3. V and W are equivalent (or isomorphic) if there exists invertible f : V Ñ W .
Denoted V – W .

Definition 34.4. A representation of a Lie algebra g is a vector space with a morphism ρ : g Ñ

glpV q of Lie algebras.
A morphism of Lie algebra reps f : V Ñ W is a defined as for groups. As are HomgpV,W q and

V – W .

Note 34.5. We always assume that V is a complex vector space. If G is a real Lie group we regard
GLpV q as a real Lie group, and want ρ : G Ñ GLpV q to be smooth.

Theorem 34.6. G Lie group, g “ Lie pGq.

(1) Every representation ρ : G Ñ GLpvq gives a representation ρ˚ : gl Ñ glpV q. Every morphism
of G-representation is automatically a g-representation. In other words we have a functor

RepG Ñ Rep g

pV, ρq ÞÑ pV, ρ˚q

(2) If G is connected and simply connected, then the above is an equivalence of categories. In
particular, any representation of g can be lifted to a representation of G, and HomGpV,W q “

HomgpV,W q.

Example 34.7.

ρ : GLp2,Cq Ñ GLpCrx, ysdq A ÞÑ
`

ρpx, yq ÞÑ ρpax` by, cx` dyq
˘

where Crx, ysd “
Àd

n“0Cxnyd´n. Also,

ρ˚ : glp2,Cq Ñ glpCrx, ysdq Eij ÞÑ xiBj

with px1, x2q “ px, yq.

Example 34.8.

Ad: G Ñ GLpgq Ad˚ “ ad: g Ñ glpgq x ÞÑ padx : y ÞÑ rx, ysq.
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Remark 34.9. If g is a real Lie group then

Rep g – Rep gC pV, ρq ÞÑ pV, ρCq

where
ρCpx` iyq “ ρpxq ` iρpyq

for any representation pV, ρq of g and

HomgCpV,W q “ HomgpV,W q.

Note 34.10. The theory of representations in real and/or 8-dimensional vector spaces is very
different.

34.2 Operations on Representations

Let G be a Lie group, g a Lie algebra.

Definition 34.11. Let V be a representation of G (respectively g). A subrepresentation of V is a
linear subspace W Ă V such that

ρpxqW Ă W

for all x P G (respectively x P g).

Definition 34.12. If V is a representation of G (or g), and W Ă V is a subrepresentation then
V {W becomes a representation:

ρV {W pxqpv `W q “ ρV pxqv `W

for all x P G (or g) and v `W P V {W .

Definition 34.13. For representations V and W we can define V ‘W by

ρV ‘W pgqpv ` wq “ ρV pgqpvq ` ρW pgqpwq

Definition 34.14. For a representation V we can define a representation structure on the dual
space V ˚. For Lie group case:

pρV ˚pgqλqpvq “ λpρV pg´1qvq

for all v P V , λ P V ˚ , g P G. Lie algebra case:

pρV ˚pxqλqpvq “ λpρV p´xqvq

for x P g.

Definition 34.15. For two representations V and W define a representation structure on V bW .
For the Lie group case:

ρV bW pgqpv b wq “ ρV pgqv b ρW pgqw

For Lie algebras: We compute pρV bW q˚ to find the correct definition. Let x P g. Consider
γptq “ expptxq.

pρV bW q˚pxqpv b wq “
d

dt
|t“0ρV bW pγptqqpv b wq

“
d

dt
|t“0ρV pγptqqv b ρW pγptqqw

Leibniz
“ ρV p 9γp0qqv b ρW pγp0qqw ` ρV pγp0qqv b ρW p 9γp0qqw

“ ρV pxqv b w ` v b ρW pxqw.
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This motivates defining
ρV bW pxqpv b wq “ ρV pxqv b ρW pxqw.

Exercise 34.16. Check that ρV bW thus defined is indeed a representation of any Lie algebra g,
given representations ρV , ρW .

Corollary 34.17. If V is a representation of G (or g) then so is V bk b pV ˚qbℓ.

Definition 34.18. Let V and W be representations. Then HompV,W q – V ˚ b W by pv ÞÑ

λpvqwq Ð[ λb w. This gives HompV,W q the structure of a representation with

pg.φqpvq “ g.
´

φpg´1.vq

¯

g P G

or
px.φqpvq “ x.

´

φpvq

¯

´ φpx.vq x P g

34.3 Invariants

Definition 34.19. A vector v in a representation V of G (or g) is invariant if ρpgqv “ v @g P G
(ρpxqv “ v @x P g). V G “ tv P V | v is invariantu pV g “ tv P V | v is invariantuq.

Example 34.20. pHompV,W qqG “ HomGpV,W q (respectively pHompV,W qqg “ HomgpV,W q).

Example 34.21. B be a bilinear form on a representation V .

B : V ˆ V Ñ C bilinear ô B : V b V Ñ C linear

“ô B P pV b V q˚

So G (respectively g) acts on pV b V q˚ via

pg.Bqpv, wq “ Bpg´1v, g´1wq

respectively
px.Bqpv, wq “ Bp´x.v, wq `Bpv,´x.wq

so B is invariant iff
Bpv, wq “ Bpgv, gwq @g P G

respectively
0 “ Bpx.v, wq `Bpv, x.wq @x P g .

34.4 Irreducible Representations

Definition 34.22. A representaion V ‰ 0 is irreducible (or simple) if the only subrepresentations
of V are 0 and V . Otherwise V is reducible.

Example 34.23. The standard representation Cn of SLpn,Cq is irreducible. (Exercise) Hint: Use
I ` Eij , i ‰ j to get p1, 0, ¨ ¨ ¨ , 0q.

Suppose V ‰ 0 is reducible. Let W Ă V be a proper nonzero subrepresentation. We get a SES

0 Ñ W Ñ V Ñ V {W Ñ 0 p˚q
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Note 34.24. dimW and dimV {W are both strictly less than dimV .

(When) does p˚q split? i.e V – W ‘ V {W?

Definition 34.25. A representation V is completely reducible (or semisimple) if

V – ‘N
i“1Vi, Vi irreducible.

Then:
V – ‘k

i“1niVi “ ‘k
i“1V

‘ni
i

where Vi fl Vj @i ‰ j. ni is the multiplicity of Vi in V .

Example 34.26. G “ R, g “ Lie pGq “ R. A representation of g is just a complex finite di-
mensional vector space V with an R-linear map ρ : R Ñ glpV q “ EndCpV q. ρptq “ tρp1q “ t ¨ A,
where A “ ρp1q, A P EndCpV q. Conversely any A P EndCpV q gives a representation ρ : R Ñ glpV q.
V – W ô AV “ TAWT

´1, some T P GLpV q. This implies that Jordan canonical form classifies
up to equivalence all representations of the Lie algebra R. A representation of V is completely
reducible iff Av is diagonalizable. V is irreducible iff dimV “ 1.

Some Goals of Representation Theory

1) Given G, classify irreducible representations of G.

2) Given a reducible representation, how to decompose it into irreducible representations?

3) For which G are all representations completely reducible?

34.5 Intertwining Operators (=morphisms of representation)

Suppose A : V Ñ V is a diagonalizable intertwining operator:

V “ ‘λPCVλ, Vλ “ tv P V | Av “ λvu

Then @g P G, @v P Vλ:
Aρpgqv “ ρpgqAv “ ρpgqλv “ λρpgqv.

This implies ρpgqv P Vλ, so ρpgqVλ Ă Vλ for all g P G. So @λ : Vλ is a subrepresentation of V .

Corollary 34.27. If z P ZpGq such that ρpzq is diagonalizable, then V “ ‘Vλ where Vλ= eigenspace
of ρpzq.

Proof. ρpzqρpgq “ ρpzgq “ ρpgzq “ ρpgqρpzq @g P G. This show that ρpzq is an intertwining
operator.

Example 34.28. V “ Cn bCn representations of G “ GLpn,Cq p : vbw ÞÑ wb v commutes with
G action implies it is an intertwiner. V “ V` ‘ V´ eigenspace decomposition.

V` “ Spantv b w ` w b vu

V´ “ Spantv b w ´ w b vu

In face, V˘ are irreducible representations of G.
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34.6 Schur’s Lemma

Recall all representations are assumed complex and finite dimensional.

Lemma 34.29 (Schur’s Lemma).

1) Let V be an irreducible representation of G. Then

HomGpV, V q “ C Id

2) If V and W are irreducible representations, such that V fl W . Then HomGpV,W q “ 0.

Proof. Φ: V Ñ W intertwining operator. Then kerΦ and ℑΦ are subrepresentations of V and W
respectively. V and W irreducible implies Φ “ 0 or an isomorphism. Which shows 2). To get
1), pick any eigenvalue λ of Φ. Then Φ ´ λ Id is an intertwiner with kerpΦ ´ λ Idq ‰ 0. By V
irreducible, we have V “ kerpΦ ´ λ Idq. Thus Φ “ λ Id.

34.7 Unitary representations

Goal: Show that any representation of a compact real Lie group is completely reducible. Steps:

(1) Any unitary representation is completely reducible.

(2) Any representation of a compact real Lie group is unitary.

Definition 34.30. A representation pV, ρq of G is unitary (or unitarizable) if there exists a positive
definite Hermitian form on V , p¨, ¨q : V ˆ V Ñ C that is G-invariant, i.e.

pg.u, g.vq “ pu, vq @g P G, u, v P V.

A representation V of a Lie algebra g is unitarizable if D p¨, ¨q positive definite Hermitian form which
is g-invariant:

px.v, wq ` pv, x.wq “ 0 @x P g, v, w P V.

Example 34.31. Let G be a finite group acting on a set X.

V “ CX “ tfunctions f : X Ñ Cu.

Define ρ : G Ñ GLpV q by pρpgqfqpxq “ f´1pg´1.xq x P X, f P V , and g P G. Then pV, ρq is a rep of

G. Define pf, gq “
ÿ

xPX

fpXqgpxq, f, g P V . Then p¨, ¨q is a G-invariant positive definite Hermitian

form hence V is unitarizable.

Theorem 34.32. Every unitarizable representation is completely reducible.

Proof. The proof is by induction on dimV . W Ă V nonzero proper subrepresentation. Consider
WK with respect to p¨, ¨q on V . We have @v P WK, w P W

pg.v, wq
˚
“ pv, g´1.wq “ 0.

Where ˚ is by G-invariance and g´1.w P W because it is a subrepresentation. This implies that
g.WK Ă WK, so WK is also a subrepresentation, V “ W ‘ WK. So dimW , dimWK ă dimV .
Proceed by induction. Same idea for for Lie algebras.

34.7.1 The Haar Measure

Let G Ă Rn be a real Lie group. Recall A Ă G is open in G (respectively. closed in G) if A “ BXG
for some open (resp. closed) subset B Ă Rn. Let Σ Ă PpGq be the smallest subset closed under
complements and countable

Ť

,
Ş

, containing all open sets in G. x

xΣ is called a σ-algebra.
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Definition 34.33. A measure on G is a map µ : Σ Ñ r0,8s such that

i) µ

˜

8
ğ

n“1

An

¸

“

8
ÿ

n“1

µpAnq (
Ů

denotes a disjoint union).

ii) µpHq “ 0.

Definition 34.34.
ż

G
ciχAidµ “

ÿ

ciµpAiq.

Where χAi “

#

1 x P Ai

0 otherwise
. Through a limit process we can define

ş

G fdµ integral of f over G.

Definition 34.35. A right Haar measure on a real Lie group is a Borel measure dg which is
invariant under right action of G on itself.

Thus if dg is a Haar measure on G then for an integrable function f : G Ñ R (i.e. f P L1pG, dgq)
ż

G
fpghqdg “

ż

G
fpgqdg @h P G.

Example 34.36. Lebesgue measure on R.
ż

R
fpx` yqdx “

ż

R
fpxqdx @y P R.

Example 34.37. The Haar measure on Up1q is given by dz
2πiz . We have:

ż

Up1q

fpzq
dz

2πiz
“

„

z “ e2πiθ

dz “ 2πizdθ

ȷ

“

ż 1

0
fpe2πiθqdθ.

Note 34.38. @w “ e2πiα P Up1q we have
ż

Up1q

fpzwq
dz

2πiz
“

ż 1

0
fpe2πipθ`αqqdθ

“

ż 1`α

α
fpe2πiθqdθ

“

ż 1

α
fpe2πiθqdθ `

ż 1`α

1
fpe2πiθqdθ

“

ż 1

α
fpe2πiθqdθ `

ż α

0
fpe2πiθqdθ by periodicity of e2πiθ

“

ż 1

0
fpe2πiθqdθ.

Theorem 34.39. Let G be a compact real Lie group. Then G has a canonical Borel measure dg
which is invariant under

g ÞÑ gh @h P G

g ÞÑ hg @h P G

g ÞÑ g´1

and such that
ş

G dg “ 1. This is the Haar measure on G.
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34.8 Complete Reducibility

We assume that G is a compact real Lie group.

Theorem 34.40. Any (finite dimensional) representation of G is unitary, hence completely re-
ducible.

Proof. Let p¨, ¨q be any positive definite Hermitian form on a representation V ofG. Define x¨, ¨y : V ˆ

V Ñ C by

xv, wy “

ż

G
pρpgqv, ρpgqwqdg.

Then x¨, ¨y is positive definite and Hermitian. Also @h P G,

xρphqv, ρphqwy “ xv, wy

by left invariance of Haar measure.

34.9 Characters

Definition 34.41. The character of a representation V of G is χV : G Ñ C, χV pgq “ Trpρpgqq.

Lemma 34.42 (Lemma 4.4 in Kirillov).

(1) χtriv “ 1 (Recall: triv “ C and g.1 “ 1 @g.

(2) χV ‘W “ χV ` χW

(3) χV bW “ χV ¨ χW

(4) χV pghg´1q “ χV phq @g, h P G

(5) χV ˚pgq “ χV pgq @g P G.

Proof. Homework.

Theorem 34.43 (Orthonormality of characters).

(1) If V,W are non-isomorphic irreducible representations, then

ż

G
χV pgqχW pgqdg “ 0.

(2) If V is any irreducible representation

ż

G
|χV pgq|2 “ 1.

Corollary 34.44. If V – ‘niVi where Vi are nonisomorphic irreducible representations, then
ni “ pχV , χViq @i.

Corollary 34.45. If V and W are two representations then V – W iff χV “ χW

Proof. Homework.
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34.10 The Hilbert space L2pG, dgq

Let G be a compact real Lie group. Let

L2pG, dgq “ tf : G Ñ C |

ż

G
|fpgq|2dg ă 8u

This is a Hilbert space with respect to

pf1, f2q “

ż

G
f1pgqf2pgqdg.

Recall: Hilbert ñ Normed ñ metric ñ topological space. Hence we have a notion of closure and
denseness.

G acts on the left and right:

pg.fqphq “ fphgq @g, h P G

pf.gqphq “ fpghq @f P L2pG, dgq.

34.11 Matrix Coefficients

Let V be a representation of G. To pλ, vq P V ˚ ˆ V we associate a function ρλ,vV : G Ñ C by

ρλ,vV pgq “ λpρV pgqvq.

Definition 34.46. ρλ,vV is the matrix coefficient corresponding to V, λ, v.

Note 34.47 (Notes).

(1) ρλ,vV P L2pG, dgq, because ρλ,vV is continuous and G is compact.

(2) The right hand side depends bilinearly on pλ, vq, therefore we get a map V ˚ bV Ñ L2pG, dgq

by x ÞÑ pg ÞÑ ρXV pgqq.

(3) Under the isomorphism V ˚ b V Ñ EndpV q this is equivalent to defining for φ P EndpV q,

ρφV : G Ñ C, ρφV pgq “ Trpφ ˝ ρV pgqq

Example 34.48. Fix a basis tviu for V , let v˚
i P V be dual basis: v˚

i pvjq “ δij . Then ρ
v˚
i bvj
V pgq is

just the (i,j) entry of the matrix ρV pgq in the basis tviu.

G Q g
ρV
ÝÝÑ ρV pgq P GLpV q – GLpn,Cq.

Taking 1 “
ř

i v
˚
i b vi, we get

ρ1V pgq “ TrpρV pgqq “ χV pgq.

So matrix coefficients generalize characters.

Theorem 34.49 (Orthogonality of Matrix Coefficients). Let G be a compact real Lie group.

1) Let V fl W be irreducible representations. Then

pρφV , ρ
ψ
W q “ 0

for all φ P EndpV q, ψ P EndpW q.
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2) Let V be an irreducible representation. Then

pρφ1

V , ρ
φ2

V q “
Trpφ1 ˝ φ2q

dimV

for all φ1, φ2 P EndpV q.

Proof. For all irreducible representations V,W we have:

pρφ1

V , ρ
ψ
W q “

ż

G
Trpφ ˝ ρV pgqqTrpψ ˝ ρW pgqqdg

“ TrV bW˚

ż

G
pρV pgq ˝ φq b pψ ˝ ρW pgqq˚dg

“ TrV bW˚

ż

G
pρV pgq ˝ φq b pρW˚pgq ˝ ψ˚qdg

“ TrV bW˚

ż

G
ρV bW˚pgq ˝ pφb ψ˚qdg

“ TrV bW˚pΦq

where Φ: V bW ˚ Ñ V bW ˚ is the value-average of φb ψ :

Φ “

ż

G
ρV bW˚pgq ˝ pφb ψ˚qdg.

The image of Φ is thus contained in pV bW ˚qG.
Now if V fl W then

pV bW ˚qG – HomGpW,V q “ 0

in which case we get Φ “ 0. Hence,

pρφV , ρ
ψ
W q “ TrΦ “ 0.

On the other hand if W “ V then

pV bW ˚qG – EndGpV q “ C ¨ IdV .

Which means dimprange Φq “ 1. So

ΦpIdvq “ pTrΦq ¨ IdV

¨

˚

˚

˚

˝

Φ „

»

—

—

—

–

TrΦ ˚ ¨ ¨ ¨ ˚

0
... 0
0

fi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‚

ñ TrV pΦpIdV qq “ pTrΦq ¨ dimV.

On the other hand,

TrV pΦpIdvqq “ TrV

ż

G
ρV bV ˚pgq ˝ pφb ψ˚qpIdV qdg

“ TrV

ż

G
ρV bV ˚pgq ˝ φ ˝ ψ

“ TrV

ż

G
ρV pgq ˝ φ ˝ ψ ˝ ρV pgq´1dg

“

ż

G
TrV pρV pgq ˝ φ ˝ ψ ˝ ρV pgq´1qdg

“

ż

G
Trpφ ˝ ψqdg

“ Trpφ ˝ ψq
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This implies that

pρφV , ρ
ψ
V q “ TrV bV ˚pΦq “

Trpφ ˝ ψq

dimV

34.12 The Peter-Weyl Theorem

Let G be a compact real Lie group. The Peter-Weyl Theorem

1) describes L2pG, dgq as a G-bimodule

2) says that any f P L2pG, dgq can be approximated by a linear combination of matrix coefficients
coming from irreducible representations.

Let Ĝ be the set of equivalence classes of irreducible representations of G.
For rV s P Ĝ, define a G-invariant inner product on V ˚ b V – EndpV q

pφ,ψq “
Trpφ ˝ ψq

dimV

Let ˆà

rV sPĜ
V ˚ b V denote the Hilbert space completion with respect to this form.

Theorem 34.50 (Peter-Weyl). The map

m : ˆà

rV sPĜ
V ˚ b V Ñ L2pG, dgq by V ˚ b V Q X ÞÑ ρXV

is an isometric isomorphism of G-bimodules.

Proof. The onto part requires analysis, we skip the proof.

Corollary 34.51. The set of characters tχV | rV s P Ĝu is an orthonormal Hilbert space basis for
L2pG, dgqG, the space of conjugate-invariant functions on G.

35 Lecture 31: Universal enveloping algebra

Important tool in representation theory.
Recall If A is an associative k-algebra can turn A into a Lie algebra, LA, by defining rx, ys “

xy ´ yx.
Consider a representation ρ : g Ñ glpV q.

Note 35.1. glpV q “ LEndpV q.

Replacing EndpV q by an arbitrary associative, we get the notion of an enveloping algebra.

Definition 35.2. An enveloping algebra of a Lie algebra g is a pair pA, jq where A is an associative
algebra and j : g Ñ LA is a Lie algebra morphism, i.e. jprx, ysq “ jpxqjpyq ´ jpyqjpxq and j is
linear.

Any representation pV, ρq gives an enveloping algebra pEndpV q, ρq.

Question 35.3. What is the ”most general” enveloping algebra?
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Definition 35.4. Let g be a Lie algebra over a field k. The universal enveloping algebra of g,
denoted U g (or Upgq), is the associative k-algebra with 1 generated by symbols ipxq for x P g
subject to relations

ipx` yq “ ipxq ` ipyq @x, y P g

ipcxq “ cipxq @x P g, c P k

and

iprx, ysq “ ipxqipyq ´ ipyqipxq @x, y P g .

Remark 35.5. The map

g Ñ U g

x ÞÑ ipxq

which we might as well call i, is a Lie algebra morphism

i : g Ñ LpU gq

This is immediate by construction of U g: i is linear and iprx, ysq “ ipxqipyq ´ ipyqipxq. Abusing
notation, we write x instead of ipxq. This is ok since we will show g Ñ U g, x ÞÑ ipxq is injective.

Remark 35.6. U g – T g {I where I “ px b y ´ y b x ´ rx, ys | x, y P gq and T g “ k ‘

g‘ gb2 ‘ gb3 ‘ ¨ ¨ ¨ . The isomorphism sends ipx1q ¨ ¨ ¨ ipxnq to x1 b ¨ ¨ ¨ b xn ` I.

Example 35.7. g abelian Lie algebra with basis txiu
n
i“1. This implies U g – S g – krx1, . . . , xns a

polynomial algebra. (Recall: S g “ T g {pxb y ´ y b xq)

Example 35.8. g “ slp2,Cq. Then U g is the associative C-algebra generated by e, f, h subject to
the relations ef ´ fe “ h, he´ eh “ 2e, hf ´ fh “ ´2f .

Note 35.9.

e “

„

0 1
0 0

ȷ

P slp2,Cq Ă M2pCq.

In M2pCq, e2 “

„

0 0
0 0

ȷ

but in U g, e2 ‰ 0 (as we will see).

Example 35.10. The quadratic casimir element of Upslp2,Cqq is c “ ef ` fe ` 1
2h

2. Then
c P ZpUpslp2,Cqqq. Consider the following calculation

cf “ ef2 ` fef `
1

2
h2f

“ pfe` hqf ` fpfe` hq `
1

2
hpfh´ 2fq

“ fef ` fh´ 2f ` ffe` fh`
1

2
pfh´ 2fqph´ 2q

“ fpef ` feq ` fph´ 2 ` h`
1

2
ph´ 2q2q

“ fpef ` fe`
1

2
h2q “ fc.
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g U g

A

i

j
D!rj

Theorem 35.11 (Universal property of U g). Let pA, jq be any enveloping algebra of g. Then there
exists a unique morphism rj : U g Ñ A of associative algebras such that j “ rj ˝ i, i.e. the following
diagram commutes

Corollary 35.12. Given any representation

ρ : g Ñ glpV q “ LEndpV q

there is a unique algebra morphism
rρ : U g Ñ EndpV q

such that rρpipxqq “ ρpxq @x P g.

This makes V into a U g-module: X.v “ rρpXqv. Conversely, given any U g-module V , we get a
representation of g by

ρ : g Ñ glpV q

ρpxqv “ ipxqv

So Reppgq – U g´Mod is an equivalence of categories.

36 Lecture 32: The Poincaré-Birkhoff-Witt Theorem

Theorem 36.1 (PBW Theorem). Upgq is a filtered algebra and its associated graded algebra is
congruent to Spgq.

36.1 Graded Algebras

Definition 36.2. A gradation G on an algebra A is a collection of subspaces GnA (or just An if
the gradation is obvious) such that

i) A “

8
à

n“0

An;

ii) AnAm Ă An`m.

Example 36.3. The tensor algebra on a vector space is naturally graded

T pV q “ k ‘ V ‘ V b2 ‘ V b3 ‘ ¨ ¨ ¨

namely T pV qn “

#

V bn, n ą 0

k, n “ 0
.
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36.2 Filtered Algebras

Definition 36.4. A filtration F on an algebra A is a collection of subspaces FnA (or Apnq if the
filtration is obvious) such that

i) Ap0q Ă Ap1q Ă Ap2q Ă ¨ ¨ ¨ ;

ii)
8
ď

n“0

Apnq “ A;

iii) ApmqApnq Ă Apm`nq.

Any graded algebra A is naturally filtered by Apnq “ A0 ‘ ¨ ¨ ¨ ‘An, but not conversely.

Example 36.5. ef P Upslp2,Cqqp2q Note: ef “ fe ` h, so it is not graded. This filtration is
uniquely determined by requiring x P Upgqp1q @x P g.

36.3 Associated Graded Algebra

Think of this as formalizing the idea of a leading term.

Definition 36.6. Given a filtered algebra A the associated graded algebra is as follows

gr A “

8
à

n“0

Apnq{Apn´1q Ap´1q “ 0 by convention

Example 36.7. ef ` Upslp2,Cqqp1q “ fe` Upslp2,Cqqp1q in pgr Upslp2,Cqqq2.

So the PBW theorem says that gr Upgq – Spgq as graded algebras. As a word of warning, there
is no algebra homomorphism from A Ñ gr A when A is filtered.

However there is a function f : A Ñ gr A defined as follows. Let a P A and n ě 0 be the
smallest such that a P Apnq. Then fpaq “ a`Apn´1q P pgr Aqn. We do have that fpabq “ fpaqfpbq,
but f is not linear.

Proof of PBW thm (sketch).
Step 1: Define φ : Spgq Ñ grUpgq by

φpx1 ¨ ¨ ¨xnq “ x1 ¨ ¨ ¨xn ` Upgqpn´1q.

Is φ well-defined?

φpx1 ¨ ¨ ¨xixi`1 ¨ ¨ ¨xnq ´ φpx1 ¨ ¨ ¨xi`1xi ¨ ¨ ¨xnq “ x1 ¨ ¨ ¨xi´1rxi, xi`1sxi`2 ¨ ¨ ¨xn ` Upgqpn`1q “ 0

So we have that φ is well-defined. To show φ is onto, let txiu
n
1 be a basis.

φ

˜

ÿ

kPNn

ckx
k1
1 ¨ ¨ ¨xknn

¸

“
ÿ

ℓPN

ÿ

kPNn
ř

ki“ℓ

ckx
k1
1 ¨ ¨ ¨xknn ` Upgqpℓ´1q

Using commutators we can reorder the terms, where φpxk11 ¨ ¨ ¨xknn q “ xk11 ¨ ¨ ¨xknn ` Upgqpn´1q are
called ordered monomials. We want to show that any element Upgq can be written as a linear
combination of ordered monomials.
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It follows by induction in the following way,

xy “ yx` rx, ys

were x ą y. As an example
h2e “ hpeh` 2eq “ heh` 2he.

Finialy to show that φ is one-to-one, we show that there exists a unique way to reduce the following:
for x ă y ă z we want to reorder zyx. We can either switch z Ø y or y Ø x. For the first choice
we have

zyx “ yzx` rz, ysx “ yxz ` yrz, xs ` rz, ysx “ xyz ` ry, xsz ` yrz, xs ` rz, ysx, p˚q

and for the later we have,

zyx “ zxy ` zry, xs “ xzy ` rz, xsy ` zry, xs “ xyz ` xrz, ys ` rz, xsy ` zry, xs. p˚˚q

We need to show that the p˚q ´ p˚˚q “ 0. We notice that the LHS is zero due to the Jacobi
identity.

The following corollary is also known as the PBW theorem:

Corollary 36.8. Let g be a Lie algebra and let pxiqiPI be an ordered basis for g (I is some index
set). Then the set of ordered monomials

txi1 ¨ ¨ ¨xik | ij P I; i1 ď ¨ ¨ ¨ ď iku

is a basis for Upgq. When g is finite-dimensional, say I “ t1, 2, . . . , nu, then the basis may be
written

txa11 ¨ ¨ ¨xann | ai P Zě0u.

37 Lecture 33: Highest Weight Theory

Motivation: Recall the representation Vn of slp2,Cq:

Vn “ spantxn, xn´1y, . . . , ynu

ρpeq “ xBy

ρpfq “ yBx

ρphq “ xBx ´ yBy

Vn contains a special vector v0 “ xn with three properties:

1) v0 is a weight vector :
h.v0 “ pxBx ´ yByqpxnq “ nxn “ nv0.

2) V0 is a highest weight vector :
e.v0 “ pxByqpxnq “ 0.
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3) Vn is generated by v0:

Vn “ spanCta1 ¨ pa2 ¨ p¨ ¨ ¨ pak ¨ v0qq ¨ ¨ ¨ q | k ě 0 ai P slp2,Cqu

equivalently, using that

a1 ¨ pa2 ¨ p¨ ¨ ¨ pak ¨ v0qq ¨ ¨ ¨ q “ pa1a2 ¨ ¨ ¨ akq ¨ v0

where pa1a2 ¨ ¨ ¨ akq P Upslp2,Cqq, Vn “ Upslp2,Cqq.v0.

Definition 37.1. Let g be a finite dimensional semisimple Lie algebra over C, choose a Cartan
subalgebra h Ă g, and R` Ă R a choice of positive roots. A representation of g V “ pV, ρq is a
highest weight representation if Dv0 P V and λ P h˚ such that

1. v0 is a weight vector of weight λ:

h.v0 “ λphqv0 @h P h .

2. v0 is a highest weight vector :
n`.v0 “ 0

where n` “ ‘αPR`
gα i.e. e.v0 “ 0 @e P gα, @α P R`.

3. V is generated by v0
V “ Upgq.v0

Theorem 37.2. Any finite dimensional irreducible representation of g is a highest weight repre-
sentation.

Proof. tρphq | h P hu is a family of commuting linear operators on V , hence there is at least one
common eigenvector, w, say. Let µ P h˚ be defined by ρphqw “ µphqw. So V 1 “ ‘ξPh˚Vξ is a
non-zero subspace of V , where Vξ “ tv P V | ρphqv “ ξphqvu. So w P Vµ. But V 1 is actually a
subrepresentation:

gα ¨Vξ Ă Vξ`α.

V irreducible implies that V “ V 1.
Let SupppV q “ tξ P h˚ | Vξ ‰ 0u be the support of V . Choose h P h such that xα, hy ą 0

@α P R` (e.g. h “ τ_, where τ defines R`). Then let λ P SupppV q be such that xλ, hy is maximal.
Then xλ ` α, hy ą xλ, hy for all α P R`. This implies that @α P R` λ ` α R SupppV q. Hence,
gα Vλ Ă Vλ`α “ 0 for all α P R`.

Let v0 be any nonzero vector in Vλ. Then 1) and 2) hold. that v0 generates V is obvious since
V is irreducible.

Proposition 37.3. If V is a finite dimensional irreducible representation of g of highest weight λ,
then λpα_

i q P Zě0 for ever simple coroot α_
i “ hi.

Proof. Consider the action of slp2,Cqαi Ă g on V . Let v0 P V be a highest weight vector. Consider

Vi “ ‘kPZě0Vλ´kαi
.

This is an slp2,Cqαi-subrepresentation of V . v0 satisfies hiv0 “ λphiqv0, ei.v0 “ 0 and v0 generates
a finite dimensional slp2,Cqαi-representation.

Let N be minimal such that fNi .v0 “ 0. Then

0 “ ei.pf
N
i .v0q “ pfNi eiq.v0 ` rei, f

N
i s.v0 “ ¨ ¨ ¨ “ pλphiq ´ pN ´ 1qqfN´1

i .v0

Thus λphiq “ N ´ 1, so we are done.
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So we have a map

tf.d. irreps of gu{iso.
Φ
Ñ P`

where P` “ tλ P h˚ | λpα_
i q P Zě0 @i “ 1, 2, . . . , ru are the dominant integral weights.

Goal: Show that we can go back (i.e. there exists an inverse of Φ).
Plan:

1) To any λ P h˚ construct a universal highest weight representation Mpλq of highest weight λ.
(Verma Module)

2) Each Mpλq has a unique irreducible quotient Lpλq.

3) Show that Lpλq is finite dimensional iff λ P P`.

4) Lpλq – Lpµq ô λ “ µ.

38 Lecture 34: Verma Modules

We will need the definition of tensor product of modules over a noncommutative ring.

Definition 38.1. Let R be a ring, M a right R-module, and N a left R-module. Then M bR N
is the abelian group generated by the symbols mb n subject to the relations:

1) Z bilinearity

pm1 `m2q b n “ m1 b n`m2 b n

mb n1 ` n2 “ mb n1 `mb n2

2) R-balanced
pm.rq b n “ mb pr.mq

Moreover, if M is a pS,Rq-bimodule, then M bR N is a left S-module via s.pmb nq “ s.mb n.

Recall that a highest weight representation of g is a representation generated by a highest weight
vector :

1) hv0 “ λphqv0 for all h P h

2) ev0 “ 0 for all e P gα and α P R`

3) V “ Upgqv0

The following defines a universal highest weight representation associated to any λ P h˚.

Definition 38.2. Let λ P h˚. The corresponding Verma module Mpλq is defined by

Mpλq “ Upgq bUpbq C1λ

where b “ h‘n` “ h‘αPR`
gα, and C1λ is the 1-dimensional representation of b given by:

h.1λ “ λphq1λ @h P h
x.1λ “ 0 @x P n`

and Upgq is regarded as a right Upbq module.
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Note that, since Mpλq “ Upgq bUpbq C1λ with C1λ is a left Upbq-module and Upgq is a
pUpgq, Upbqq-bimodule, the Verma module Mpλq is a left Upgq-module.

Example 38.3. g “ slp2,Cq, b “ Ch ‘ Ce, C1λ for λ P h˚ – C such that h.1λ “ λphq1λ “ λ11λ
and e.1λ. Below we see how we can simplify elements in Mpλq.

Mpλq Q hef b 1λ “ hpfe` re, f sq b 1λ

“ phfe` h2q b 1λ

“ hfeb 1λ ` h2 b 1λ

“ hf b 0 ` 1 b h21λ

“ 1 b pλ1q21λ

“ pλ1q2p1 b 1λq

Recall: The PBW theorem (Thm 36.1) says that Upslp2,Cqq has a basis

tfkhℓem | k, ℓ,m ě 0u

So
Mpλq “

ÿ

k,ℓ,mě0

Cfkhℓem b 1λ “
ÿ

k,ℓě0

Cfk b hℓ1λ “
ÿ

kě0

Cfk b 1λ

This property holds in general:

Theorem 38.4. Mpλq – Upn´q as left Upn´q-modules

Proof. φ : Upn´q Ñ Mpλq by x ÞÑ xb 1λ. φ is a surjective using the PBW theorem (thm 36.1):

Mpλq “ Upgq bUpbq bUpbqC1λ
“ Upn´qUpbq bUpbq C1λ
“ Upn´q b C1λ
Ă imφ.

φ is injective: By PBW theorem Upgq is free as a right Upbq-module on a basis for upn´q: Upgq –

Upn´q bC Upbq by properties of tensors one can show that

Upgq bUpbq C1λ – pUpn´q bC Upbqq bUpbq C1λ
“ Upn´q bC pUpbq bUpbq C1λq

– Upn´q bC C1λ
– Upn´q.

Corollary 38.5. The support of Mpλq is

SupppMpλqq “ λ´Q` “ tλ´

r
ÿ

i“1

k ` iαi | ki P Zě0u

where tα1, . . . , αru “ Π the set of simple roots. Q “ ZR “ ‘r
1Zαi and Q` “

řr
1 Zě0αi
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Proof. fk1β1 ¨ ¨ ¨ fknβn b 1λ where R` “ tβ1, . . . , βnu. Then

h.pfk1β1 ¨ ¨ ¨ fknβn b 1λq “ hfk1β1 ¨ ¨ ¨ fknβn b 1λ

“ pfk1β1 ¨ ¨ ¨ fknβnh` rh, fk1β1 ¨ ¨ ¨ fknβn sq b 1λ

p˚q
“ λphqfk1β1 ¨ ¨ ¨ fknβn b 1λ ´ pk1β1 ` ¨ ¨ ¨ ` knβnqphqfk1β1 ¨ ¨ ¨ fknβn b 1λ

“ pλ´ pk1β1 ` ¨ ¨ ¨ ` knβnqqphqfk1β1 ¨ ¨ ¨ fknβn b 1λ.

Where p˚q is by rh, fβis “ ´βiphqfβi for every i.

Example 38.6. slp3,Cq λ “ k1w1`k2w2 where wi P h˚ and wiphjq “ δij which are the fundamental
weights. Where the blue lattice is SupppMpλqq.

´α1

´α2

λλ´ α1

λ´ α2λ´ α1 ´ α2

39 Lecture 35: Classification of Finite-Dimensional Irreducible
Representations

Goal: Classify all finite dimensional irreducible represents of a finite dimensional semisimple Lie
algebra over C g, pV, ρq.

Mpλq “ Upgq bUpbq C1λ

Proposition 39.1.

i) Mpλq is a highest weight representation of g of highest weight λ.

ii) Every highest weight representation of g of highest weight λ is a quotient of Mpλq.

iii) Mpλqλ “ Cp1 b 1λq

iv) SupppMpλqq “ λ´Q` “ tλ´
ř

kiαi | ki P Zě0u

v) Mpλq has a unique maximal (proper) submodule Npλq. Hence Mpλq has a unique irreducible
quotient Lpλq “ Mpλq{Npλq.
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Proof. i) Put vλ “ 1 b 1λ P Mpλq,

h.vλ “ h.p1 b 1λq “ h1 b 1λ

“ hb 1λ

“ 1 b h.1λ

“ 1 b λphq1λ

“ λphqp1 b 1λq.

This implies vλ is a weight vector of weight λ. Also @e P n`,

e.vλ “ eb 1λ “ 1 b 0 “ 0

because n` Ă b. So vλ is a highest weight vector.

Upgqvλ “ Upgq.p1 b 1λq “ Upgq b 1λ “ Mpλq.

ii) Let W be any highest weight representation of g of highest weight λ. wλ P W be a (non-zero)
highest weight vector of weight λ.

Consider the map

ψ : Upgq ˆ C1λ Ñ W

pa, ξ1λq ÞÑ ξa.wλ

Then

• ψ is Z-bilinear (biadditive)

• Write Upbq “ Upn`qUphq. We show that b P Upbq ψpab, ξ1λ “ ψpa, b.ξ1λq. If b “ h P h, then

ψpah, ξ1λq “ ξah1λ

“ ξaλphq1λ

“ λphqξa1λ

“ ψpa, λphqξ1λq

“ ψpa, h.ξ1λq.

Similarly for b “ e P n`. So ψ induces a map from Mpλq “ Upgq bUpbq C1λ
rψ

ÝÑ W . Since W

is generated by wλ, the map rψ is surjective. So W –
Mpλq

ker rψ
.

v) Let

Npλq :“
ÿ

SĹMpλq

subrepresentations

.

We want to show that Npλq Ĺ Mpλq.
Facts: Any subrepresentation of a weight representation is a weight representation. This implies

all S have a weight decomposition S “ ‘µPλ“Q`
Sµ and so does Npλq:

Npλq “ ‘µPλ´Q`
Npλqµ.

Since each S Ă Mpλq Sλ “ 0. pSλ Ă Mpλqλ Ă Cvλq. Hence Npλqλ “ ‘SĹMpλqSλ “ 0.
Thus Npλq is proper subrepresentation.
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Lemma 39.2. If λ, µ P h˚ such that Lpλq – Lpµq, then λ “ µ.

Proof. Suppose φ : Lpλq Ñ Lpµq is an isomorphism. Then φpvλq P Lpµqrλs. Therefore λ P µ´Zě0Π,
i.e. λ ď µ. Switching roles of λ and µ we also have µ ď λ. Thus λ “ µ.

To summarize:

• Every finite dimensional irreducible representation is a finite dimensional irreducible highest
weight representation.

• Every irreducible highest weight representation is – Lpλq for some unique λ P h˚.

• Question: When is dimLpλq ă 8?

So tLpλq | λ P h˚u is a complete set of representatives for isoclasses of irreducible highest weight
representations of g.

Theorem 39.3. dimLpλq ď 8 iff λ P P` i.e. λpα_
i q P Zě0 @i “ 1, . . . , r.

Proof. pñq: Last time using slp2,Cqαi .
pðq: Somewhat lengthy.

Consequently, we obtain the following theorem, which provides a classification of finite-dimensional
irreducible representations of a semisimple Lie algebra g:

Theorem 39.4. The set P` of dominant integral weights is in bijection with the set of isomorphism
classes of finite-dimensional irreducible representations of g. The bijection is given by λ ÞÑ rLpλqs,
where Lpλq is the unique irreducible quotient of the Verma module Mpλq.

40 Lecture 36: Examples

41 Lecture 37: Central Characters

Definition 41.1. A character of an associative algebra A is an algebra homomorphism A Ñ k.

Recall that by Zpgq we mean the center of the universal enveloping algebra of g. That is,
Zpgq “ ZpUpgqq “ tz P Upgq | zu “ uz @u P Upgqu.

Definition 41.2. A central character of a Lie algebra g is a character of Zpgq.

Example 41.3. Let g “ slp2, kq. Choosing the ordered basis pe, h, fq, it is easy to check that the
dual basis for g with respect to the traceform is given by pf, 12h, eq. the

1
2 comes from the fact that

square of the matrix h (in M2pkq) has trace 2. Thus the Casimir element is

C “ ef ` fe`
1

2
h2.

This is an element of Zpgq. In fact, as we shall see, this element generates the center (as an
associative algebra). That is, Zpgq “ krCs. Furthermore, C is algebraically independent over k so
krCs is a polynomial algebra in one variable.

Thus a central character χ for g is determined by the value χpCq at the Casimir.

We will show that each finite-dimensional simple Upgq-module gives rise to a central character.
We need an instance of Schur’s Lemma which can be stated as follows in our case.
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Lemma 41.4 (Schur’s Lemma). If V is a simple Upgq-module, then

EndUpgqpV q “ k IdV .

That is, if φ : V Ñ V is a Upgq-module endomorphism of V , then φ must be a scalar multiple of
the identity.

Proof. First we show that any nonzero Upgq-module endomorphism ψ of V has to be invertible.
Indeed, since kerψ ‰ V and V is a simple module, we have kerψ “ 0. Similarly, imψ ‰ 0 so
imψ “ V by simplicity.

Now let φ : V Ñ V be a Upgq-module endomorphism and let ξ P k be an eigenvalue of φ.
Such a ξ exists because V is finite-dimensional and k is assumed to be algebraically closed. Then
consider ψ “ φ ´ ξ IdV . Since ξ is an eigenvalue for φ, the map ψ is not injective. Therefore, by
the first part, ψ must be identically zero. Thus φ “ ξ IdV .

Now we can show the following result.

Proposition 41.5. Let V be a finite-dimensional simple Upgq-module. Then there exists a central
character χ for g such that

z.v “ χpzqv @z P Zpgq, @v P V. (41.1)

Proof. Let z P Zpgq. Then the map v ÞÑ z.v is a Upgq-module endomorphism of V : u.pz.vq “

puzq.v “ pzuq.v “ z.pu.vq@u P Upgq, z P Zpgq, v P V . Thus, by Schur’s Lemma, there exists a scalar
χpzq such that (41.1) holds. Thus, for any v P V and z1, z2 P Zpgq,

pz1z2q.v “ z1.pz2.vq “ z1.pχpz2qvq “ χpz2qz1.v “ χpz1qχpz2qv

which, choosing v ‰ 0, implies that χpz1z2q “ χpz1qχpz2q. Similarly one shows that χ is linear.
Thus χ is a central character of g.

Notation 41.6. We know that when g is semisimple, any finite-dimensional simple Upgq-module
is isomorphic to Lpλq for some dominant integral weight λ. In this case we denote the associated
central character by χλ.

Example 41.7. If we go back to the case of g “ sl2, let V “ Lpnωq “ kxn ‘kxn´1y‘ ¨ ¨ ¨ ‘kyn be
the n`1-dimensional simple module pω “ 1

2αq. Let us describe the corresponding central character
χ “ χnω. Since Zpgq is generated by the Casimir C it suffices to compute χpCq. Furthermore, since
we know C has to act by a scalar, it suffices to compute the action of C on any vector we want.
We choose the highest weight vector. This motivates us to rewrite C in the PBW basis coming
from the ordered basis pf, h, eq, because it is very easy to compute the action on the highest weight
vector by a monomial having e on the right: it is zero. We have

C “ ef ` fe`
1

2
h2 “

“ pfe` hq ` fe`
1

2
h2 “

“ 2fe`
1

2
ph2 ` 2hq “

“ 2fe`
1

2

`

ph` 1q2 ´ 1
˘

.
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The last equality is not important right this moment but will become important in what follows.
For now, observe that since fe kills the highest weight vector v`, and hv` “ nv`, we have

Cv` “
1

2

`

pn` 1q2 ´ 1
˘

v`

Thus we conclude

χnωpCq “
1

2

`

pn` 1q2 ´ 1
˘

.

Remark 41.8. In physics one would use the parametrization ℓ “ n{2 for the representations, and
normalize the Casimir to be 2C. In those conventions, the value of the Casimir would be ℓpℓ` 1q.

The example can be generalized. Notice that the procedure of rewriting z P Zpgq in the PBW
basis and throwing away terms having any positive root vector on the right, is equivalent to applying
the Harish-Chandra homomorphism to z.

Proposition 41.9. Let g be a semisimple Lie algebra, and V be a finite-dimensional simple Upgq-
module. Then the corresponging central character χ is given by

χpzq “ λ
`

φHCpzq
˘

(41.2)

where φHC denotes the Harish-Chandra homomorphism, and λ has been extended to a character
Uphq Ñ k.

Proof. It once again suffices to check this identity on the highest weight vector v` of V . By the
PBW theorem, we have a direct sum decomposition Upgq “ Uphq ‘ pn´Upgq ` Upgqn`q. For any
u P Upgq, write u “ u0 ` u1 where u0 P Uphq and u1 P n´Upgq ` Upgqn`. Clearly u.v` “ u0.v`

since n`.v` “ 0. Note also that u0 “ φHCpuq. Thus we have for any z P Zpgq:

z.v` “ z0.v` “ φHCpz0q.v`

Now, the action of an element a of Uphq on v` is given by λpaqv`. Thus we obtain (41.2)

For an n-dimensional vector space V , let krV s denote the algebra of all functions f : V Ñ k such
that when we choose a basis tviu

n
i“1 for V , we have fpx1v1 ` x2v2 ` ¨ ¨ ¨ ` xnvnq “ ppx1, x2, . . . , xnq

for some polynomial p P krx1, x2, . . . , xns. Notice that the property that f has is independent of
the choice of basis, since a linear change of variables map polynomials to polynomials. Thus, in
fact, once we fix a basis we have an isomorphism krV s Ñ krx1, x2, . . . , xns. But krV s exists as an
object independent of choice of basis. The relation between krV s and krx1, x2, . . . , xns is exactly
analogous to the relation between EndkpV q and Mnpkq.

Lemma 41.10. Let V be a finite-dimensional vector space. Then there is a canonical isomorphism

SpV ˚q – krV s.

Proof. We have an inclusion map i : V ˚ Ñ krV s. Since krV s is commutative, by the universal
property of the symmetric algebra there exists a unique algebra homomorphism SpV ˚q Ñ krV s

whose restriction to V is i. Conversely, the inclusion map V ˚ Ă SpV ˚q extends uniquely (using
that if tx1, . . . , xnu is a basis for V ˚ then krV s » krx1, x2, . . . , xns) to an algebra map krV s Ñ SpV ˚q

which is inverse to the previous map.
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Notice that Uphq “ Sphq – krh˚s often one identifies Uphq with krh˚. With this in mind, the
following theorem describes the center of the universal enveloping algebra of any semisimple Lie
algebra.

Theorem 41.11 (Harish-Chandra). When restricted to the center, the Harish-Chandra homomor-
phism

φHC : Zpgq Ñ krh˚s (41.3)

is injective, with image equal to
krh˚sW ¨

where W is the Weyl group and W ¨ refers to the dot action, given on h˚ by

w ¨ λ “ wpλ` ρq ´ ρ (41.4)

where ρ is the Weyl vector ρ “ 1
2

ř

αPR`
α, with induced action on krh˚s:

pw ¨ pqpλq “ ppw´1 ¨ λq

42 Lecture 38: Kac-Moody Algebras

We follow Introduction to Quantum Groups and Crystal Bases by Hong and Kang.
Let I be a finite index set.

Definition 42.1. A square matrix A “ paijqi,jPI with integer entries is a generalized Cartan matrix
(GCM) if

1. aii “ 2, @i P I

2. aij ď 0, i ‰ j

3. aij “ 0 ô aji “ 0.

Definition 42.2. A GCM A is called symmetrizable if there exists a diagonal matrix D “ diagpbi |

i P Iq with bi P Zą0 such that DA is symmetric.

Definition 42.3. A GCM A is indecomposable if for all partitions I “ I1 \ I2, Ii ‰ H, there is
i P I1, j P I2 such that aij ‰ 0.

For an I ˆ I-matrix, let corankA “ |I| ´ rankA.

Definition 42.4. A Cartan datum is a quintuple pA,Π,Π_, P, P_q where

1. P_ is a free abelian group of rank |I| ` corankA with Z-basis denoted thi | i P Iu Y tds | s “

1, 2, . . . , corankAu;

2. P “ tλ P h˚ | λpP_q Ă Zu where h “ k bZ P
_;

3. Π_ “ thi | i P Iu;

4. Π “ tαi | i P Iu is a linearly independent subset of h˚ satisfying

αjphiq “ aij αjpdsq P t0, 1u. (42.1)
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We call

• h the Cartan subalgebra (CSA)

• Π the set of simple roots,

• Π_ the set of simple coroots,

• P the weight lattice,

• P_ the dual weight lattice

Given a Cartan datum pA,Π,Π_, P, P_q we define the root lattice to be

Q “
à

iPI

Zαi (42.2)

and the positive (cone in the) root lattice

Q` “
ÿ

iPI

Zě0αi. (42.3)

and set Q´ “ ´Q`. The fundamental weights ωi P h˚ for i P I are given by

ωiphjq “ δij , ωipdsq “ 0. (42.4)

We have a partial order on h˚ given by λ ě µ “ô λ´ µ P Q`.
The simple reflections si P GLph˚q, i P I, are given by

sipλq “ λ´ λphiqαi, @λ P h˚. (42.5)

and the Weyl group W is the subgroup of GLph˚q generated by the set of simple reflections.

Definition 42.5. The Kac-Moodyxi (KM) algebra g associated with a Cartan datum pA,Π,Π_, P, P_q

is the Lie algebra with generators
tei, fiuiPI Y P_ (42.6)

subject to relations saying that P_ is a subgroup of g together with

rh, h1s “ 0 h, h1 P P_, (42.7)

rei, fjs “ δijhi, (42.8)

rh, eis “ αiphqei, (42.9)

rh, fis “ ´αiphqfi, (42.10)

pad eiq
1´aij pejq “ 0, i ‰ j, (42.11)

pad fiq
1´aij pfjq “ 0, i ‰ j. (42.12)

Proposition 42.6. g has a root space decomposition

g “
à

αPQ

gα, gα “ tx P g | rh, xs “ αphqx@h P hu (42.13)

and a triangular decomposition

g “ g´ ‘ h ‘ g`, g˘ “
à

αPQ˘

gα. (42.14)

xiIndependently discovered in 1967–1968 by three people: V.G. Kac, R. V. Moody and I.L. Kantor
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GCMs, hence KM algebras, are classified into three types. For an integer column vector u “

puiq
T
iPI we write u ą 0 (resp. u ě 0) if @i P I : ui ą 0 (resp. ui ě 0).
The following is Theorem 4.3 of Kac’s book Infinite dimensional Lie algebras

Theorem 42.7. Let A be an indecomposable GCM. Then exactly one of the following three possi-
bilities hold:

(Finite Type): corankA “ 0, and Du ą 0 : Au ą 0, and Av ě 0 ñ pv ą 0 or v “ 0q.

(Affine Type): corankA “ 1, and Du ą 0 : Au “ 0, and Av ě 0 ñ Av “ 0.

(Indefinite Type): Du ą 0 : Au ă 0 and pAv ě 0 and v ě 0q ñ v “ 0.

Example 42.8. Examples of GMCs of affine type are

„

2 ´2
´2 2

ȷ „

2 ´4
´1 2

ȷ

»

–

2 ´1 ´1
´1 2 ´1
´1 ´1 2

fi

fl

An example of a GCM of indefinite type is

„

2 ´5
´1 2

ȷ

42.1 The Dynkin Diagram of a GCM

Given a GCM A, we associate a (generalized) Dynkin diagram DpAq as follows. The vertex set is
I. For the edges one convention is as follows:

• In the case when aijaji ď 3 we retain the conventions from finite type (see Definition 31.7).

• When aij “ aji “ ´2 we depict the edge as , and when paij , ajiq “ p´4,´1q we draw it
as .

• When aijaji ą 4 we draw a bold line between i and j and put the label p|aij |, |aji|q above the
edge.

The following proposition is not hard to prove, given Kac’s theorem above.

Proposition 42.9. Let A be an indecomposable GCM. Then A is of affine type if and only if
det A “ 0 and all proper subdiagrams of DpAq are of finite type.

Using this result one can obtain a complete list of the connected Dynkin diagrams of affine
type. The white node corresponds to the unique simple root α0 with α0pdq “ 1. The significance
of this will be explained in the next theorem.
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A
p1q

1

A
p1q

ℓ pℓ ě 2q

B
p1q

ℓ pℓ ě 3q

C
p1q

ℓ pℓ ě 2q

D
p1q

ℓ pℓ ě 4q

E
p1q

6

E
p1q

7

E
p1q

8

F
p1q

4

G
p1q

2

A
p2q

2

A
p2q

2ℓ pℓ ě 2q

A
p2q

2ℓ´1pℓ ě 3q

D
p2q

ℓ`1pℓ ě 2q

E
p2q

6

D
p3q

4

Example 42.10. The three cartan matrices from the previous example correspond to the affine

Dynkin diagrams A
p1q

1 , A
p2q

2 , and A
p1q

2 respectively.

42.2 Realization of Affine Kac-Moody Algebras as Extensions of Loop Algebras

A very important fact about the affine KM algebras is their realization as extensions of loop
algebras.

Theorem 42.11. The untwisted affine KM algebras are isomorphic to the Lie algebra

˝
g b krt, t´1s ‘ kc‘ kd (42.15)

where
˝
g is the so called underlying finite type Lie algebra obtained by deleting the white node from

the Dynkin diagram, and the Lie bracket is given by

rxb tm, y b tns “ rx, ys b tm`n `mδm`n,0px, yqc (42.16)

rd, xb tms “ mxb tm (42.17)

c is central (42.18)

The twisted affine KM algebras can be realized as the subalgebra gθ of all elements fixed by an
automorphism θ of order 2 or 3, inside an untwisted affine KM algebra g. The automorphism comes
from a diagram automorphism of the untwisted affine Dynkin diagram.
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43 Lecture 39: Hopf Algebras and Quantum Groups

43.1 Vector spaces

We make some remarks about the category of vector spaces over k.
Bilinear maps are not morphisms in the category of vector spaces. This indicates that they

are not the correct thing to look at. By the universal property of tensor products, bilinear maps
U ˆ V Ñ W are in bijection with linear maps U b V Ñ W .

Selecting an special element v P V , such as an identity element of an algebra, is also not a
categorical notion, since we don’t have “elements”. The solution here is that elements of V are in
bijection with linear maps k Ñ V .

We also recall that b is a bifunctor, which means that for any two linear maps f1 : V1 Ñ W1

f2 : V2 Ñ W2 we get a linear map f1 b f2 : V1 b V2 Ñ W1 b W2, given by pf1 b f2qpv1 b v2q “

f1pv1q b f2pv2q and extended linearly.
The category of vector spaces has a special object, k, which is the tensor unit object. We have

natural isomorphisms k b V – V – V b k for any vector space V .
Lastly, the flip τ “ τV,W : V bW

–
Ñ W b V , v b w ÞÑ w b v, is a natural isomorphism for any

vector spaces V,W .

43.2 Algebras

An associative algebra is often defined as a vector space together with a bilinear map AˆA Ñ A,
pa, bq ÞÑ ab and an element 1A P A satisfying some axioms. We reformulate this definition in a way
that is purely expressed in terms of objects and morphisms in the category of vector spaces.

Definition 43.1. An algebra is a triple pA,m, uq where A is a vector space with linear maps

m “ mA : AbA ÝÑ A, u “ uA : k ÝÑ A

such that these diagrams commute:

AbAbA

AbA AbA

A

mb1 1bm

m m

k bA AbA Ab k

A

ub1

–
m

1bu

–

The left diagram is associativity the right diagram is unitality.
An algebra map f : A Ñ B is a linear map such that these diagrams commute:

AbA A

B bB B

mA

fbf f

mB

A

k

B

f

uA

uB

Example 43.2. k is an algebra with mk the natural isomorphism k b k Ñ k and uk the identity
map k Ñ k.
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Example 43.3. If A and B are algebras then the vector space A b B can be equipped with an
algebra structure with mAbB and uAbB the unique maps making these diagrams commute:

AbB bAbB AbB

AbAbB bB

mAbB

1bτb1
mAbmB

k AbB

k b k

uAbB

–
uAbuB

43.3 Coalgebras

In category theory any notion has a dual notion. For example the dual notion of products is
coproducts. Therefore, now that we have formulated the notion of an algebra in categorical terms,
we naturally obtain the definition of a coalgebra.

Definition 43.4. A coalgebra is a triple pC,∆, εq where C is a vector space and

∆ : C Ñ C b C, ε : C Ñ k

are linear maps so that these diagrams commute:

C b C b C

C b C C b C

C

∆b1 1b∆

∆ ∆

k b C C b C C b k

C

εb1 1bε

– –
∆

A coalgebra map f : C Ñ D is a linear map such that these diagrams commute:

C b C C

D bD D

fbf

∆C

f

∆D

A

k

D

f

εA

εD

Example 43.5. Let A be a finite-dimensional algebra. Then the dual space A˚ is a coalgebra
with ∆ “ m˚ and ε “ u˚. (For this to make sense we must use that the natural injective map
A˚ bA˚ Ñ pAbAq˚ that we always have is surjective in the case that A is finite-dimensional.)

43.4 Bialgebras

Definition 43.6. A bialgebra is a quintuple pB,m, u,∆, εq such that pB,m, uq is an algebra and
pB,∆, εq is a coalgebra and one of the following equivalent conditions hold:

(i) ∆ and ε are algebra maps,

(ii) m and u are coalgebra maps.

A bialgebra map f : B Ñ C is a linear map which is both an algebra map and a coalgebra map.
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Example 43.7. LetM be a finite monoid, and B “ kM be the set of all functions ξ :M Ñ k. This
is an algebra with respect to pointwise operations. To define the comultiplication, we note that
kM b kM – kMˆM . We define ∆ by ∆pξqpm,nq “ ξpmnq. The counit is given by εpξq “ ξp1M q.

Example 43.8. The universal enveloping algebra Upgq of any Lie algebra g is not just an algebra
but a bialgebra. We show there are algebra maps ∆ : Upgq Ñ Upgq b Upgq and ε : Upgq Ñ k
satisfying

∆pxq “ xb 1 ` 1 b x, εpxq “ 0 @x P g. (43.1)

Define ∆1 : g Ñ Upgq b Upgq by ∆1pxq “ x b 1 ` 1 b x for x P g. This is a linear map, hence by
the universal property of the tensor algebra, ∆1 induces an algebra map r∆ : T pgq Ñ Upgq b Upgq.
One checks that r∆pIq Ă I, where I is the ideal defining Upgq. Thus r∆ descends to an algebra map
∆ : Upgq Ñ Upgq b Upgq. Similarly one proves the existence of the counit ε : Upgq Ñ k.

Warning: The rule ∆pxq “ x b 1 ` 1 b x only holds for x in the Lie algebra g, not for all
x P Upgq. For example, for x, y P g, ∆pxyq is defined to be ∆pxq∆pyq “ pxb1`1bxqpyb1`1byq “

pxyq b 1 ` xb y ` y b x` 1 b pxyq. A similar remark applies to the counit.

43.5 Quantum groups

A quantum group is a certain bialgebra (in fact, Hopf algebra, see next lecture) that we associate
to any Cartan datum.

Definition 43.9. Let F “ kpqq be the field of rational functions in an indeterminate q. Let
pA,Π,Π_, P, P_q be a Cartan datum where A is a symmetrizable GCM. The associated (Drinfeld-
Jimbo) quantum group, denoted Uqpgq is the F-algebra with generators tei, fiuiPI and tqhuhPP_

satisfying

q0 “ 1, qh`h1

“ qhqh
1

, @h, h1 P P_, (43.2)

qheiq
´h “ qαphqei, @h P P_, (43.3)

qhfiq
´h “ q´αphqfi, @h P P_, (43.4)

eifj ´ fjei “ δij
Ki ´K´1

i

qi ´ q´1
i

, (43.5)

1´aij
ÿ

n“0

p´1qk
„

1 ´ aij ,
k

ȷ

qi

e
1´aij´k
i eje

k
i “ 0, @i ‰ j, (43.6)

1´aij
ÿ

n“0

p´1qk
„

1 ´ aij ,
k

ȷ

qi

f
1´aij´k
i fjf

k
i “ 0, @i ‰ j. (43.7)

where Ki “ qbihi and qi “ qbi . The last two relations are the quantum Serre relations. The
q-binomial coefficients are elements of F defined by

„

n
k

ȷ

q

“
rnsq!

rn´ ksq!rks1!
, rnsq! “ rnsq ¨ rn´ 1s1 ¨ ¨ ¨ r1sq, rnsq “

qn ´ q´n

q ´ q´1
. (43.8)
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The comultiplication and counit on Uqpgq are given by

∆pqhq “ qh b qh, @h P P_, (43.9)

∆peiq “ ei bK´1
i ` 1 b ei, (43.10)

∆pfiq “ fi b 1 `Ki b fi, (43.11)

εpqhq “ 1, @h P P_, (43.12)

εpeiq “ 0, (43.13)

εpfiq “ 0. (43.14)

44 Lecture 40: Hopf algebras contd.

44.1 Convolution Algebras

If C is a coalgebra and A is an algebra, then the space HomkpC,Aq becomes an associative algebra
as follows. For f, g P HomkpC,Aq we define f ˚ g to be the composition

C
∆

ÝÑ C b C
fbg
ÝÑ AbA

m
ÝÑ A. (44.1)

The identity element of HomkpC,Aq is the composition of the maps

C
ε

ÝÑ k u
ÝÑ A.

44.2 Hopf Algebras

Definition 44.1. A Hopf algebra H is a bialgebra pH,m, u,∆, εq such that the identity map
H Ñ H is invertible in the convolution algebra EndkpHq. That is, if there exists a linear map

S : H ÝÑ H (44.2)

such that this diagram commutes:

H

H bH H bH

k

H bH H bH

H

∆ ∆

ε

Sb1 1bS

u

m m

(Note that this diagram is self-dual.) S is called the antipode.
Abusing notation one often denotes a Hopf algebra by pH,m, u,∆, ε, Sq even though S is not

an additional piece of data, rather it is a property of the data already present.

44.3 Examples

1. Let G be a group and let kG be the group algebra defined as the vector space with basis G
and multiplication extended bilinearly from the multiplication in G. This is a Hopf algebra
with

∆pgq “ g b g, εpgq “ 1, Spgq “ g´1

for all g P G. Note that these formulas have to be extended linearly to all of kG. For example
∆pg ` hq “ ∆pgq ` ∆phq “ g b g ` hb h ‰ pg ` hq b pg ` hq.
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2. Let g be a Lie algebra and Upgq its universal enveloping algebra. Then Upgq is a Hopf algebra
with

∆pxq “ xb 1 ` 1 b x, εpxq “ 0, Spxq “ ´x

for all x P g. This time these formulas have to be extended multiplicatively to all of Upgq. For
example ∆pxyq “ ∆pxq∆pyq “ pxb 1` 1bxqpyb 1` 1b yq “ xyb 1`xb y` ybx` 1bxy.

3. Let G be a finite (resp. compact) group, and FpGq be the algebra of all (resp. continuous)
functions from G to k (resp. R). It is known that FpGˆGq – FpGq b FpGq. Thus we may
define a comultiplication on FpGq by

∆pfqpg, hq “ fpghq, @f P FpGq, @g, h P G.

The counit and antipode are given by

εpfq “ fp1q, Spfqpgq “ fpg´1q.

44.4 Sweedler Notation

Let C be a coalgebra. For every x P C we have that ∆pxq P C b C. Therefore there are Nx P Zě0

and elements xi
p1q
, xi

p2q
P C such that

∆pxq “

Nx
ÿ

k“1

xip1q b xip2q. (44.3)

However, neither Nx nor the elements xi
pjq

are unique, due to the bilinear nature of C b C.

Example 44.2. Let C “ kG be the group algebra of a group G and let g P G. Then, by definition
of the comultiplication,

∆pgq “ g b g

With this choice of writing it, we have Ng “ 1 and g1
p1q

“ g1
p2q

“ g. However we may also write

∆pgq “ pg ´ 1q b g ` 1 b g

where 1 P G is the identity element of G. With this choice, Ng “ 2 and g1
p1q

“ g´ 1, g1
p2q

“ g, g2
p1q

“

1, g2
p2q

“ g.

Due to this non-uniqueness, we have to make sure that any map out of C b C is actually
well-defined.

For example, the map

f : C Ñ C, fpxq “

Nx
ÿ

k“1

xkp1q ` xkp2q

is not well-defined, because the expression is not bilinear in pxk
p1q
, xk

p2q
q. Concretely, the two different

choices of writing ∆pgq in the example above would give different results (check!).
Similarly,

f : C Ñ C, fpxq “ x1p1qεpx
1
p2qq

is not well-defined, because it only involves the two factors from the first term in ∆pxq, which is
not unique.
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Sweedler notation uses more efficient notation, while at the same time making it harder to write
down ill-defined expressions. Instead of (44.3) we write

∆pxq “
ÿ

pxq

xp1q b xp2q (44.4)

With the superscripts suppressed, it is impossible to “select” any particular term, and that is a
good thing because they are not well-defined anyway.

There is also a “summation-less”xii Sweedler notation, wherein we simply write

∆pxq “ xp1q b xp2q (44.5)

The summation is implied, because of the subscripts p1q and p2q appearing.
Let us practice by writing out the relevant Hopf algebra axioms in summationless Sweedler

notation:
Coassociativity reads

xp1qp1q b xp1qp2q b xp2q “ xp1q b xp2qp1q b xp2qp2q (44.6)

while counit axiom is
εpxp1qqxp2q “ x “ xp1qεpxp2qq (44.7)

and the antipode axiom becomes

Spxp1qqxp2q “ uεpxq “ xp1qSpxp2qq. (44.8)

In an algebra known to be associative, we don’t need to use parenthesis when writing an iterated
product such as xyz. The dual version of this is that with a coassociative comultiplication, we write
each side of (44.6) simply as

xp1q b xp2q b xp3q. (44.9)

We may iterate this too and write

∆npxq “ xp1q b xp2q b ¨ ¨ ¨ b xpn`1q (44.10)

which means we have applied ∆ n times to various tensor factors; which ones we chose doesn’t
matter by coassociativity.

44.5 Opposites and Co-opposites; A Property of the Antipode

Recall the flip τ : xb y ÞÑ y b x.
If A is an algebra, the opposite algebra, denoted Aop is pA,mop, uq where mop “ m ˝ τ .
Dually, if C is a coalgebra, the co-opposite coalgebra, denoted Ccop is pC,∆op, εq where ∆op “

τ ˝ ∆.

Theorem 44.3. Let H be a Hopf algebra. Then S is a bialgebra map Hop,cop Ñ H. That is,

(i) Spxyq “ SpyqSpxq and S ˝ u “ u.

(ii) Spxqp1qSpxqp2q “ Spxp2qqSpxp1qq and ε ˝ S “ ε.

xiianalogous to Einstein’s summation convention in tensor calculus
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Proof. We only prove Spxyq “ SpyqSpxq, leving the other statements as an exercise.
Define λ, ρ P HomkpH bH,Hq in a way that corresponds to the left and right hand sides:

λpxb yq “ Spxyq, ρpxb yq “ SpyqSpxq.

Here we regard H bH as a coalgebra and H as an algebra, thus HomkpH bH,Hq is an associative
algebra with respect to the convolution product. To show that λ “ ρ it suffices to show that

λ ˚m “ uεHbH “ m ˚ ρ

Indeed, then
λ “ λ ˚ uεHbH “ λ ˚m ˚ ρ “ uεHbH ˚ ρ “ ρ

Using that
∆HbHpxb yq “ p1 b τ b 1q∆pxq b ∆pyq “ xp1q b yp1q b xp2q b yp2q

we have by definition of the convolution product ˚,

pλ ˚mqpxb yq “ λpxp1q b yp1qqmpxp2q b yp2qq

“ Spxp1qyp1qqxp2qyp2q

“ Sppxyqp1qqpxyqp2q since ∆ is an algebra map

“ uεpxyq by antipode axiom for H

“ uεpxqεpyq

“ uεHbHpxb yq.

On the other hand,

pm ˚ ρqpxb yq “ mpxp1q b yp1qqρpxp2q b yp2qq

“ xp1qyp1qSpyp2qqSpxp2qq

“ xp1quεpyqSpxp2qq by antipode axiom

“ uεpxquεpyq since uεpyq P k and using antipode axiom

“ uεHbHpxb yq.

This finishes the proof.

45 Lecture 41: Tensor Products of Modules

The following principle will be key: If f : A Ñ B is an algebra map, and V is a B-module, then V
becomes an A-module by

a.v “ fpaq.v

Next we make three observations about left modules over algebras:

(i) If V is an A-module and W is a B-module, then V bW is an AbB-module via

pab bq.pv b wq “ pa.vq b pb.wq

(ii) k is obviously a k-module.
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(iii) If V is a left A-module then the dual space V ˚ is a left Aop-module by pa.ξqpvq “ ξpa.vq.

As a direct corollary we get the following statement about modules over Hopf algebras.

Lemma 45.1. Let H be a Hopf algebra.

(i) If V and W are H-modules (regarding H as just an algebra), then V b W is an H-module
with action

h.pv b wq “ php1q.vq b php2q.wq

(ii) The vector space ⊮ “ k is an H-module with action

h.1 “ εphq

(iii) If V is an H-module then V ˚ is an H-module with action

ph.ξqpvq “ ξ
`

Sphq.v
˘

Proof. (i) Use that the comultiplication ∆ : H Ñ H bH is an algebra map together with the two
observations above.

(ii) Use that the counit ε : H Ñ k is an algebra map.
(iii) Use that the antipode is an algebra map S : Hop Ñ H

46 Lie Superalgebras

47 Reduction Algebras and Extremal Projectors

48 Gelfand-Tsetlin Bases for Representations of gln

49 Crystal Bases

50 Category O

51 The Weyl Character Formula

Let V “ ‘λPh˚Vλ. Then we define the following, chV :“
ř

pdimVλqeλ P Zrh˚s with eλeµ “ eλ`µ

and e0 “ 1.

Theorem 51.1.

1) chpV ‘W q “ pchV q ` pchW q

2) chpV bW q “ pchV qpchW q

3) If V,W are finite dimensional, then V – W iff chV “ chW .

Theorem 51.2 (Weyl Character Formula). λ P P` then

chpLpλqq “

ÿ

wPW

p´1qℓpwqewpλ`ρq

ś

αPR`
peα{2 ´ e´α{2q

where ρ “
1

2

ÿ

αPR`

α
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52 Appendix: A Brief Introduction to Category Theory

52.1 Classes

A class is like a set but can be bigger. Every set is a class but not all classes are sets. A class
which is not a set is a proper class. Just like with sets we can form the cartesian product of classes,
consider functions between classes and so on.

The main reason that we need classes is so that we can talk about things like the class of all sets
because there is no set that contains all sets. (Likewise there is no class that contains all classes,
but somehow we don’t need to really worry about that!)

52.2 Partial binary operations

A partial binary operation ˚ on a class X is a function from some subclass of X ˆ X to X. We
write ˚ : X ˆX 99K X to indicate that the domain of ˚ may not be all of X ˆX.

52.3 Definition of category

Definition 52.1. A category C is a quintuple C “ pC0, C1, s, t, ˝q where

• C0 is a class whose elements are called the objects of C,

• C1 is a class whose elements are called the morphisms of C,

• s : C1 Ñ C0 is a map called the source map,

• t : C1 Ñ C0 is a map called the target map,

• ˝ : C1 ˆ C1 99K C1 is a partial binary operation called composition (of morphisms) so that
α ˝ β is defined for any morphisms α, β P C1 with tpβq “ spαq,

subject to the following two axioms:

(i) (identity) for every object x P C0 there exists a morphism 1x P C1 with

sp1xq “ tp1xq “ x

α ˝ 1x “ α for all morphisms α P C1 with spαq “ x

1x ˝ β “ β for all morphisms β P C1 with tpβq “ x

(ii) (associativity) we have
pα ˝ βq ˝ γ “ α ˝ pβ ˝ γq

for any morphisms α, β, γ P C1 with tpγq “ spβq and tpβq “ spαq.

Notation 52.2. C0 and C1 are sometimes denoted Ob C and Mor C respectively. You should think
of the source and target maps as giving the domain and codomain of a morphism. In this spirit, if
α P C1 is a morphism with spαq “ x and tpαq “ y we write α : x Ñ y.
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52.4 Examples

To specify a category we have to say what the objects and morphisms are. The source, target and
˝ are almost always the domain, codomain and usual composition.

Example 52.3. 1) The category of sets and functions Set. This means that by definition Set0
is the class of all sets, and Set1 is the class of all functions between sets.

2) The category of abelian groups and group homomorphisms Ab.

3) For any ring R the category of left R-modules and R-module homomorphisms R-Mod.

4) If L and R are rings the category of pL,Rq-bimodules and pL,Rq-bimodule homomorphisms
is denoted by L-Mod-R.

5) The category of topological spaces and continuous functions Top.

52.5 Functors

Just like a group homomorphism is a structure preserving function between groups, a functor is a
structure preserving function between categories. Since a category has two underlying classes, a
functor needs to be a pair of functions.

Definition 52.4. Let C and D be categories. A (covariant) functor F from C to D is a pair of
maps F “ pF0, F1q where Fi : Ci Ñ Di for i “ 0, 1 such that

(i) F1p1xq “ 1F0pxq for all x P C0

(ii) if α : x Ñ y then F1pαq : F0pxq Ñ F0pyq

(iii) F1pα ˝ βq “ F1pαq ˝ F1pβq for all morphisms α, β P C1 with tpβq “ spαq.

A contravariant functor F from C to D is the same things as a covariant functor except it reverses
the direction of morphisms in the sense that (ii) and (iii) are replaced by

(ii’) if α : x Ñ y then F1pαq : F0pyq Ñ F0pxq

(iii’) F1pα ˝ βq “ F1pβq ˝ F1pαq for all morphisms α, β P C1 with tpβq “ spαq.

Notation 52.5. Usually we write Fx for F0pxq and Fα for F1pαq if no confusion can arise.

52.6 Examples

All examples will be a covariant functors. The following examples are related to the universal
property of free R-modules (see next section).

Example 52.6. 1) The forgetful functor OR : R-Mod Ñ Set (where O stands for oblivion)
sends any left R-module M to the underlying set M , and any R-module homomorphism to
itself (now regarded as just a function).

2) The free functor FR : Set Ñ R-Mod sends any set X to the free left R-module on the set X,
denoted FRX. And if α : X Ñ Y then FRα : FRX Ñ FRY is the morphism induced by the
composition X Ñ Y Ñ FRY .

119



The next two examples are important in the context of tensor products (see next section on
adjoint functors). Let L, S,R be rings with 1 and fix an pS,Rq-bimodule B.

Example 52.7. 1)
´ bS B : L-Mod-S Ñ L-Mod-R

is the functor that sends an pL, Sq-bimodule A to the pL,Rq-bimodule AbS B, and sends an
pL, Sq-bimodule morphism α : A Ñ A1 to the pL,Rq-bimodule morphism αb 1B : AbS B Ñ

A1 bS B.

2) In the opposite direction we have the following functor:

HomRpB,´q : L-Mod-R Ñ L-Mod-S

which sends an pL,Rq-bimodule A to HomRpB,Aq, the set of right R-module maps B Ñ A.
HomRpB,Aq is an pL, Sq-bimodule through

pℓ ¨ φqpbq “ ℓ ¨ pφpbqq ℓ P L, b P B,φ P HomRpB,Aq

pφ ¨ sqpbq “ φps ¨ bq @s P S, b P B,φ P HomRpB,Aq

On morphisms the functor HomRpB,´q takes α : A Ñ A1 to the map rα : HomRpB,Aq Ñ

HomRpB,A1q given by post-composition (push forward): rαpφq “ α ˝ φ.

52.7 Pairs of adjoint functors

52.8 Definition

Definition 52.8. Given categories C and D, and covariant functors F : C Ñ D and G : D Ñ C we
say that F is left adjoint to G and G is right adjoint to F if there is a natural bijection

HomCpx,Gyq HomDpFx, yq
ηx,y

for all x P C0 and y P D0. Here HomCpa, bq denotes the class of morphisms in C from an object a
to an object b. That the family pηx,yqxPC0,yPD0 is “natural” means that whenever α : x Ñ x1 and
β : y Ñ y1 are morphisms in C1 and D1 respectively the following diagram commutes:

HomCpx1, Gyq HomDpFx1, yq

HomCpx,Gyq HomDpFx, yq

HomCpx,Gy1q HomDpFx, y1q

ηx1,y

´˝α ´˝Fα

ηx,y

Fpβq˝´ β˝´

ηx,y1

The commutativity of this diagram makes mathematically precise the vague statement that ηx,y
should be defined “the same way” regardless of the objects x and y. There is an analogous definition
for contravariant functors.
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52.9 Examples

Many universal properties can be expressed in terms of adjoint functors.

Example 52.9. 1) In example 52.6, the free functor FR : Set Ñ R-Mod is left adjoint to the
forgetful functor OR : R-Mod Ñ Set because

HomSetpX,ORMq – HomRpFRX,Mq

for any set X and R-module M . In words, any set map X Ñ M extends uniquely to an
R-module morphism FRX Ñ M . The naturality is a tedious but straightforward exercise.

2) In Example 52.7, the functor ´bSB is left adjoint to HomRpB,´q. Let LHomRpX,Y q denote
the set of pL,Rq-bimodule homomorphisms between pL,Rq-bimodules X and Y . Then what
we are saying is that there is a natural bijection

LHomSpA,HomRpB,Cqq – LHomRpAbS B,Cq.

Taking L “ R “ Z the left hand side can be identified with the set of S-balanced maps
AˆB Ñ C, so this expresses precisely the universal property of the tensor product.
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