Math 365 - Study Guide for Final Exam

Sections 1.1, 1.2 Complex Numbers, the Complex Plane; Some Geometry.

- If z = x + iy with x, y real, then $\overline{z} = x iy$ and $|z| = \sqrt{x^2 + y^2}$, Re z = x, Im z = y
- $z\bar{z} = |z|^2$, $z/w = z\bar{w}/|w|^2$, $|z| |w| \le |z + w| \le |z| + |w|$ (triangle inequality)
- Polar representation: $z = re^{i\theta} = r(\cos\theta + i\sin\theta), r = |z| = \sqrt{x^2 + y^2}, \theta = \arg z$ angle from the positive x-axis; $\arg(zw) = \arg(z) + \arg(w), |zw| = |z| \cdot |w|.$
- $\arg(z)$ is multivalued; $\operatorname{Arg} z$ is the value that belongs to $[-\pi, \pi)$.
- The equation $z^n = w = |w|e^{i\psi}$ has n distinct solutions, given by

 $z_k = |w|^{1/n} e^{i\theta_k} = |w|^{1/n} (\cos \theta_k + i \sin \theta_k), \ \theta_k = (\psi + 2\pi k)/n, \ k = 0, 1, 2, \dots, n-1.$

Section 1.3 Subsets of the Plane.

- The open disk of radius R centered at z_0 is given by $\{z : |z z_0| < R\}$.
- z is a boundary point of a set D if every open disk centered at z contains points from D as well as points not in D.

A set D is

- open if it contains no boundary points; *closed* if it contains all boundary points;
- connected if any two points in D can be joined by a finite number of line segments that lie in D;
- a *domain* if it is open and connected;
- convex if the line segment joining any two pairs of points in D is contained in D.

Section 1.4 Functions and Limits.

- $\lim_{n\to\infty} z_n = A$ if whenever $\varepsilon > 0$ there is N > 0 so that $|z_n A| < \varepsilon$ when $n \ge N$.
- $\lim_{z\to z_0} f(z) = A$ if whenever $\varepsilon > 0$ there is R > 0 so that $|f(z) A| < \varepsilon$ when $|z - z_0| < R.$
- f is continuous at z if f(z) is defined and lim_{w→z} f(w) = f(z).
 ∑_{k=0}[∞] z_k = lim_{n→∞} ∑_{k=0}ⁿ z_k

Section 1.5 Exp, Log, and Trig Functions.

- $e^{x+iy} = e^x(\cos y + i\sin y)$
- $e^z = 1$ if and only if $z = 2\pi i n$ for some integer n.

•
$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}, \ \cos(z) = \frac{e^{iz} + e^{iz}}{2}$$

• $\log z = \ln |z| + i \arg(z)$. A branch of $\log z$ means restricting values of $\arg(z)$ to an interval of length 2π . The principal branch is $\text{Log } z = \ln |z| + i \text{Arg}(z)$.

Section 1.6 Line Integrals and Green's Theorem.

• A curve γ is *closed* if it's a loop, and *simple* if it doesn't intersect itself.

• The line integral of
$$f(z)$$
 over γ is $\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(z))\gamma'(t)dt$.

- Estimate: $\left| \int_{\gamma} f(z) dz \right| \leq \operatorname{length}(\gamma) \cdot \max_{z \in \gamma} |f(z)|.$
- Green's Theorem: $\int_{\Omega} f(z)dz = i \iint_{\Omega} \left(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y}\right)dxdy.$

Section 2.1 Analytic and Harmonic Functions; the Cauchy-Riemann Equations. Up to and including Theorem 2. Skip Theorem 3 and Examples 10,11.

- Analytic functions = functions that have derivative in the complex variable sense.
- e^z , $\cos(z)$, $\sin(z)$, (any branch of) $\log(z)$, and rational functions are analytic where defined. The functions |z|, $\operatorname{Re}(z)$, $\operatorname{Im}(z)$ are not analytic.
- Sums, products, quotients of analytic functions are analytic where defined.
- Product rule, quotient rule, chain rule all hold as usual.
- If f = u + iv is analytic then u and v must satisfy the Cauchy-Riemann Equations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

This implies that u is determined by v (and vice versa). See example after Theorem 1.

• Theorem 2: If f = u + iv is analytic and u (or v) or $u^2 + v^2$ is constant then f is constant.

Section 2.2 Power Series. Up to and including Example 9. Skip Example 10.

• Radius of convergence. Theorem 2 says

$$R^{-1} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

Study Examples 1–5.

- Derivative and anti-derivative of power series work as expected, e.g. $\frac{d}{dx} \sum_{n=0}^{\infty} z^n =$ $\sum_{n=1}^{\infty} nz^{n-1}$. In particular, power series are infinitely differentiable, hence define analytic functions in their disk of convergence.
- Multiplying power series: See Theorem 4, Examples 8 and 9.

Section 2.3 Cauchy's Theorem and Cauchy's Formula. Up to and including Example 7. Skip Theorems 2,3 and Examples 8,9,10.

- A domain D is simply connected if the inside of any simple closed curve in D is contained in D. (D has "no holes".)
- Roughly, when f is analytic and γ is not encircling any holes:

$$\int_{\gamma} f(z)dz = 0 \qquad (Cauchy's \ Theorem)$$

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz \qquad (Cauchy's \ Formula)$$

These are special cases of the Residue Theorem from Section 2.6. • To solve trig integrals of the type $\int_0^{2\pi} d\theta/(2 + \sin \theta)$, substitute $z = e^{i\theta}$ and use Cauchy's Formula (or the Residue Theorem). See Examples 6 and 7.

Section 2.4 Consequences of Cauchy's Theorem. Up to and including The Order of a Zero. Skip the rest of Section 2.4, starting with Morera's Theorem.

• If f is analytic at $z = z_0$ then f(z) has a power series expansion at z_0 :

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 where $a_n = \frac{1}{n!} f^{(n)}(z_0)$

- If f is analytic in a domain D and all its derivatives vanish at some point z_0 then actually f has to be identically zero everywhere in D.
- If $f(z_0) = 0$, $f'(z_0) = 0$, ..., $f^{(m-1)}(z_0) = 0$ but $f^{(m)}(z_0) \neq 0$ then f has a zero of order m at z_0 . This is the same thing as saying:

$$f(z) = a_m(z - z_0)^m + a_{m+1}(z - z_0)^{m+1} + \cdots$$
 and $a_m \neq 0$.

Section 2.5 Isolated Singularities. Up to and including Example 9. Also, skip Examples 4 and 7.

- There are three kinds of singularities: *removable*, *poles*, and *essential singularities*.
- f(z) has a pole at z_0 of order m precisely when 1/f(z) has a zero at z_0 of order m. In this case f(z) has a Laurent series:

$$f(z) = a_{-m}(z-z_0)^{-m} + a_{-m+1}(z-z_0)^{-m+1} + \dots + a_{-1}(z-z_0)^{-1} + a_0 + a_1(z-z_0) + \dots$$
 and $a_{-m} \neq 0$
and the *residue of f at z*₀ can be computed in three ways:

$$\operatorname{Res}(f;z_0) = \frac{1}{2\pi i} \int_{|z-z_0|=\varepsilon} f(z)dz = \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \left((z-z_0)^m f(z) \right) \Big|_{z=z_0} = a_{-1}$$

In particular, if m = 1 we say f has a simple pole at z_0 and we have

$$\operatorname{Res}(f; z_0) = ((z - z_0)f(z))\big|_{z=z_0}$$

meaning, simplify $(z - z_0)f(z)$ and plug in $z = z_0$.

Section 2.6 The Residue Theorem and Its Applications. Up to and including Example 7. But skip Example 6. Skip everything after Example 7.

• The *Residue Theorem*: If f is analytic in a simply connected domain except for isolated singularities z_1, z_2, \ldots, z_n , and γ is a positively oriented closed curve, then

$$\int_{\gamma} f(z)dz = 2\pi i \sum \operatorname{Res}(f; z_j)$$

where the sum is over all z_i that lie inside γ .

• If P(x) and Q(x) are real polynomials and the deg $Q(x) \ge 2 + \deg P(x)$ and Q(x) has no real zeroes, then

$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} dx = 2\pi i \sum \operatorname{Res}(\frac{P}{Q}; z_j)$$
$$\int_{-\infty}^{\infty} \frac{P(x) \cos x}{Q(x)} dx = \operatorname{Re}\left\{2\pi i \sum \operatorname{Res}\left(\frac{P(z)e^{iz}}{Q(z)}; z_j\right)\right\}$$
$$\int_{-\infty}^{\infty} \frac{P(x) \sin x}{Q(x)} dx = \operatorname{Im}\left\{2\pi i \sum \operatorname{Res}\left(\frac{P(z)e^{iz}}{Q(z)}; z_j\right)\right\}$$

where the sums are over all zeroes z_i of Q that lie in the upper half plane.

Section 3.1 The Zeros of an Analytic Function. Up to and including Theorem 1 on p.173.

• The zeros of a non-constant analytic function f are *isolated*: If $f(z_0) = 0$ then there is an open disk centered at z_0 which doesn't contain any other zeros of f(z).

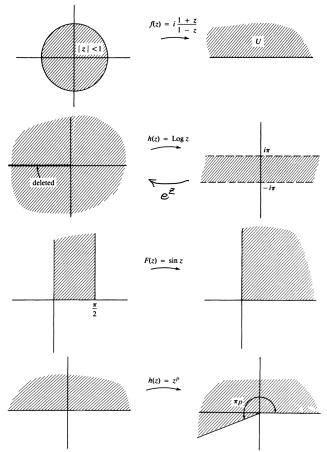
• Counting formula:
$$\frac{1}{2\pi i} \int_{\gamma} \frac{h'(z)}{h(z)} dz = \begin{pmatrix} \text{number of zeros} \\ \text{of } h \text{ inside } \gamma \end{pmatrix} - \begin{pmatrix} \text{number of poles} \\ \text{of } h \text{ inside } \gamma \end{pmatrix}$$

Section 3.3 Linear Fractional Transformations. Up to and including Example 2.

- $T(z) = \frac{az+b}{cz+d}$, a, b, c, d complex, $ad bc \neq 0$. Ex: translation T(z) = z + a; dilation T(z) = rz (r > 0); rotation $T(z) = e^{i\theta}z$; inversion T(z) = 1/z.
- dilation T(z) = rz (r > 0); rotation $T(z) = e^{i\theta}z$; inversion T(z) = 1/z. • $T^{-1}(z) = \frac{-dz+b}{cw-a}$ • If $T(z) = \left(\frac{z-z_1}{z-z_3}\right) \left(\frac{z_2-z_3}{z_2-z_1}\right)$ then $T(z_1) = 0$, $T(z_2) = 1$, $T(z_3) = \infty$.

Section 3.5 Riemann Mapping Theorem. Up to and including Example 5.

- Two regions are *conformally equivalent* if there exists a one-to-one analytic mapping from one onto the other.
- Every simply connected domain D, other than \mathbb{C} , is conformally equivalent to the open unit disk Δ . Moreover, if p is any point of D, there is a unique one-to-one analytic mapping ϕ from D onto Δ such that $\phi(p) = 0$ and $\phi'(0) > 0$.



Section 4.2. Only the subsection Flow of an Ideal Fluid, pages 261–264 up to and including Example 2.

- If f = u + iv describes the velocity of an ideal fluid then $\overline{f} = u iv$ is analytic.
- Let $G = \phi + i\psi$ with $G' = \overline{f}$. Then ϕ is the potential function and ψ is the stream function.
- The stream lines are the level curves $\psi = c$, (c a real constant). They describe the path followed by a particle within the flow.
- The uniform flow f(z) = A, (A a complex constant) has constant velocity and streamlines are straight lines.
- If f(z) is a 1-to-1 analytic mapping from a horizontal strip a < Im z < b to a domain D, then

$$\Gamma_c = \{ f(x + i\tau) : a < \tau < b \}$$

are streamlines in D. Similarly for vertical strips.

Euler's Gamma Function. The posted lecture notes.

- For $\operatorname{Re} z > 0$ the integral $\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$ converges and is analytic in z.
- Recursion relation:

$$\Gamma(z+1) = z\Gamma(z), \qquad \Gamma(1) = 1.$$

- $\Gamma(n+1) = n!$ for all n = 0, 1, 2, ...
- $\Gamma(z)$ can be extended using $\Gamma(z) = \frac{\Gamma(z+n)}{z(z+1)\cdots(z+n-1)}$, $\operatorname{Re}(z) > -n$ $\Gamma(z)$ is analytic everywhere except at $z = 0, -1, -2, \ldots$ where it has simple poles
- $\operatorname{Res}(\Gamma; -n) = (-1)^n / n!$
- Reflection relation: $\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$