MATH 365 — STUDY GUIDE FOR FINAL ExXAM

Sections 1.1, 1.2 Complex Numbers, the Complex Plane; Some Geometry.
o If z = x+iy with x,y real, then Z = x —iy and |2| = /22 + y?, Rez =z, Imz =y
o 2z = 2%, z/w = 2w /|w|?, |z] — Jw| < |z +w| < |z| + |w] (triangle inequality)
e Polar representation: z = re® = r(cos +isinf), r = |z| = /22 +y2, 0 = argz
angle from the positive z-axis; arg(zw) = arg(z) + arg(w), |zw| = |z] - |w|.
e arg(z) is multivalued; Arg z is the value that belongs to [—m, 7).
e The equation 2" = w = |w|e™ has n distinct solutions, given by

2, = |w|Y"e = |w|Y"(cos Oy, +isinby), O = (1 + 27k)/n, k=0,1,2,...,n— 1.

Section 1.3 Subsets of the Plane.

e The open disk of radius R centered at zy is given by {z : |z — 29| < R}.
e z is a boundary point of a set D if every open disk centered at z contains points
from D as well as points not in D.

A set D is

e open if it contains no boundary points; closed if it contains all boundary points;

e connected if any two points in D can be joined by a finite number of line segments
that lie in D;

e a domain if it is open and connected;

e convex if the line segment joining any two pairs of points in D is contained in D.

Section 1.4 Functions and Limits.

e lim, ., 2, = A if whenever ¢ > 0 there is N > 0 so that |z, — A| < e whenn > N.

o lim, ., f(z) = A if whenever € > 0 there is R > 0 so that |f(z) — A| < € when
|z — 20| < R.

e f is continuous at z if f(z) is defined and lim,,,, f(w) = f(2).
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Section 1.5 Exp, Log, and Trig Functions.
o "W = ¢%(cosy + isiny)
e ¢ =1 if and only if z = 27in for some integer n.
) eiz iz eiz + eiz

o sin(z) = — cos(z) =

e logz =1In|z| +iarg(z). A branch of log z means restricting values of arg(z) to an
interval of length 27. The principal branch is Log z = In |z| 4+ iArg (z2).

Section 1.6 Line Integrals and Green’s Theorem.
e A curve 7 is closed if it’s a loop, and simple if it doesn’t intersect itself.

e The line integral of f(z) over v is /f(z)dz = /b F(v(2))7 (t)dt.

e Estimate: ‘/f(z)dz < length(7) -max|f(z)|.

.
e Green’s Theorem: /f(z)d // = —|—z— )dzdy.
v
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Section 2.1 Analytic and Harmonic Functions; the Cauchy-Riemann Equa-
tions. Up to and including Theorem 2. Skip Theorem 3 and Examples 10,11.

e Analytic functions = functions that have derivative in the complex variable sense.

e ¢% cos(z), sin(z), (any branch of) log(z), and rational functions are analytic where
defined. The functions |z|, Re (z), Im (z) are not analytic.

e Sums, products, quotients of analytic functions are analytic where defined.

e Product rule, quotient rule, chain rule all hold as usual.

o If f = u+1v is analytic then v and v must satisfy the Cauchy-Riemann Equations:
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or Oy oy Oz
This implies that u is determined by v (and vice versa). See example after Theo-
rem 1.
e Theorem 2: If f = u + v is analytic and u (or v) or u? + v* is constant then f is
constant.

Section 2.2 Power Series. Up to and including Example 9. Skip Example 10.
e Radius of convergence. Theorem 2 says

R™' = lim ‘a"H’ = lim /|a,|
n—o0

n—00 ' (U

Study Examples 1-5.

e Derivative and anti-derivative of power series work as expected, e.g. % Yo o=
S>>  nz""'. In particular, power series are infinitely differentiable, hence define
analytic functions in their disk of convergence.

e Multiplying power series: See Theorem 4, Examples 8 and 9.

Section 2.3 Cauchy’s Theorem and Cauchy’s Formula. Up to and including Ex-
ample 7. Skip Theorems 2,3 and Examples 8,9,10.
e A domain D is simply connected if the inside of any simple closed curve in D is
contained in D. (D has “no holes”.)
e Roughly, when f is analytic and ~ is not encircling any holes:

/f(z)dz =0 (Cauchy’s Theorem)
.

f(z0) = G dz (Cauchy’s Formula)

2 ) 2 — 20

These are special cases of the Residue Theorem from Section 2.6.
e To solve trig integrals of the type fo% df/(2 + sinf), substitute z = € and use
Cauchy’s Formula (or the Residue Theorem). See Examples 6 and 7.

Section 2.4 Consequences of Cauchy’s Theorem. Up to and including The Order
of a Zero. Skip the rest of Section 2.4, starting with Morera’s Theorem.

e If f is analytic at z = zy then f(z) has a power series expansion at zy:

f(z) = Z an(z — 29)" where a, = %f(”)(zo).
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o If f is analytic in a domain D and all its derivatives vanish at some point zy then
actually f has to be identically zero everywhere in D.
o If f(2) =0, f'(z) =0, ..., f™ Y(2) =0 but f™(z) # 0 then f has a zero of

order m at zy. This is the same thing as saying:
f(2) = am(z — 20)™ + amyr(z — 20)" T+ -+ and a,, # 0.
Section 2.5 Isolated Singularities. Up to and including Example 9. Also, skip Ex-
amples 4 and 7.

e There are three kinds of singularities: removable, poles, and essential singularities.
e f(z) has a pole at zy of order m precisely when 1/f(z) has a zero at zy of order
m. In this case f(z) has a Laurent series:

f(2) = acm(2=20) ™ Fa_mpr (z—20) ™ Fa_y (z—20) Hagtay (z—2g)+- - - and a_,, # 0.
and the residue of f at zy can be computed in three ways:

Res(f; 20) = L /I |= fz)dz = ( : )! ddzmm_—l ((Z - 20>mf(z)) |z:zo -4

271
In particular, if m = 1 we say f has a simple pole at zy and we have

Res(f;20) = ((z — 20)/(2)) ..,

meaning, simplify (z — 29) f(2) and plug in z = z.

m—1

Section 2.6 The Residue Theorem and Its Applications. Up to and including
Example 7. But skip Example 6. Skip everything after Example 7.

e The Residue Theorem: If f is analytic in a simply connected domain except for
isolated singularities 21, 2o, . . ., 2,, and 7 is a positively oriented closed curve, then

/f(Z)dz = ZWiZReS(f;zj)

where the sum is over all z; that lie inside .
e If P(z) and Q(x) are real polynomials and the deg Q(z) > 2+ deg P(z) and Q(z)
has no real zeroes, then

oop(x) = 271 es B'z-

| Gyt =2 Yo Res(gia)
T P@)cos b N Res(DE)T
[T e = e {2 Y Res(T )

* P(x)sinz = T { 2 s P(z)eiz'z.
[ gy = m e YR )

where the sums are over all zeroes z; of ) that lie in the upper half plane.
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Section 3.1 The Zeros of an Analytic Function. Up to and including Theorem 1 on
p-173.

e The zeros of a non-constant analytic function f are isolated: If f(zy) = 0 then
there is an open disk centered at zy which doesn’t contain any other zeros of f(z).

o Counting | l 1 [Rh(z) ,  (number of zeros\  (number of poles
ounting JormuLa. 2mi J., h(z) = of h inside ~y of h inside ~
Section 3.3 Linear Fractional Transformations. Up to and including Example 2
b
e I'(2) = az—id’ a,b,c,d complex, ad — bc # 0. Ex: translation T(z) = z + a;
cz
dilation T'(2) = rz (r > 0); rotation T'(z) = €?z; inversion T'(z) = 1/z.
—dz+b
o Tl(z) = 27
cw—a
o If T(2) = (Z Zl) (’Z? 23) then T'(z;) = 0, T(z) = 1, T(z3) = 0.
Z — Z3 29 — 21

Section 3.5 Riemann Mapping Theorem. Up to and including Example 5.

e Two regions are conformally equivalent if there exists a one-to-one analytic map-
ping from one onto the other.

e Every simply connected domain D, other than C, is conformally equivalent to the
open unit disk A. Moreover, if p is any point of D, there is a unique one-to-one
analytic mapping ¢ from D onto A such that ¢(p) =0 and ¢'(0) > 0

£
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Section 4.2. Only the subsection Flow of an Ideal Fluid, pages 261-264 up to and
including Example 2.

o If f = u+ iv describes the velocity of an ideal fluid then f = u — iv is analytic.

e Let G = ¢ 414 with G’ = f. Then ¢ is the potential function and 9 is the stream
function.

e The stream lines are the level curves ¢ = ¢, (c a real constant). They describe the
path followed by a particle within the flow.

e The uniform flow f(z) = A, (A a complex constant) has constant velocity and
streamlines are straight lines.

e If f(z) is a 1-to-1 analytic mapping from a horizontal strip a < Imz < b to a
domain D, then

Fo={f(z+ir):a <71 <b}

are streamlines in D. Similarly for vertical strips.
Euler’s Gamma Function. The posted lecture notes.

e For Rez > 0 the integral I'(z) = / e 't*"1dt converges and is analytic in z.
0

e Recursion relation:

I(z+4+1) = 2I'(2), r'a)=1.

e'(n+1)=nlforalln=0,1,2,...
T'(2) can be extended using I(z) Lz +n) Re (z) >
e ['(z) can be extended usin z) = e(z)>—n
& 2(z+1) - (z4+n—1)
e ['(2) is analytic everywhere except at z = 0, —1, —2, ... where it has simple poles

e Res(I'; —n) = (—1)"/n!
e Reflection relation: I'(2)['(1 — z) = —F

sin(7z)




