
Math 365 – Study Guide for Final Exam

Sections 1.1, 1.2 Complex Numbers, the Complex Plane; Some Geometry.

• If z = x+iy with x, y real, then z̄ = x−iy and |z| =
√
x2 + y2, Re z = x, Im z = y

• zz̄ = |z|2, z/w = zw̄/|w|2, |z| − |w| ≤ |z + w| ≤ |z|+ |w| (triangle inequality)

• Polar representation: z = reiθ = r(cos θ + i sin θ), r = |z| =
√
x2 + y2, θ = arg z

angle from the positive x-axis; arg(zw) = arg(z) + arg(w), |zw| = |z| · |w|.
• arg(z) is multivalued; Arg z is the value that belongs to [−π, π).
• The equation zn = w = |w|eiψ has n distinct solutions, given by

zk = |w|1/neiθk = |w|1/n(cos θk + i sin θk), θk = (ψ + 2πk)/n, k = 0, 1, 2, . . . , n− 1.

Section 1.3 Subsets of the Plane.

• The open disk of radius R centered at z0 is given by {z : |z − z0| < R}.
• z is a boundary point of a set D if every open disk centered at z contains points
from D as well as points not in D.

A set D is

• open if it contains no boundary points; closed if it contains all boundary points;
• connected if any two points in D can be joined by a finite number of line segments
that lie in D;

• a domain if it is open and connected;
• convex if the line segment joining any two pairs of points in D is contained in D.

Section 1.4 Functions and Limits.

• limn→∞ zn = A if whenever ε > 0 there is N > 0 so that |zn−A| < ε when n ≥ N .
• limz→z0 f(z) = A if whenever ε > 0 there is R > 0 so that |f(z) − A| < ε when
|z − z0| < R.

• f is continuous at z if f(z) is defined and limw→z f(w) = f(z).
•
∑∞

k=0 zk = limn→∞
∑n

k=0 zk

Section 1.5 Exp, Log, and Trig Functions.

• ex+iy = ex(cos y + i sin y)
• ez = 1 if and only if z = 2πin for some integer n.

• sin(z) =
eiz − e−iz

2i
, cos(z) =

eiz + eiz

2
• log z = ln |z|+ i arg(z). A branch of log z means restricting values of arg(z) to an
interval of length 2π. The principal branch is Log z = ln |z|+ iArg (z).

Section 1.6 Line Integrals and Green’s Theorem.

• A curve γ is closed if it’s a loop, and simple if it doesn’t intersect itself.

• The line integral of f(z) over γ is

∫
γ

f(z)dz =

∫ b

a

f
(
γ(z)

)
γ′(t)dt.

• Estimate:
∣∣∣ ∫

γ

f(z)dz
∣∣∣ ≤ length(γ) ·max

z∈γ
|f(z)|.

• Green’s Theorem:

∫
γ

f(z)dz = i

∫∫
Ω

(∂f
∂x

+ i
∂f

∂y

)
dxdy.
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Section 2.1 Analytic and Harmonic Functions; the Cauchy-Riemann Equa-
tions. Up to and including Theorem 2. Skip Theorem 3 and Examples 10,11.

• Analytic functions = functions that have derivative in the complex variable sense.
• ez, cos(z), sin(z), (any branch of) log(z), and rational functions are analytic where
defined. The functions |z|, Re (z), Im (z) are not analytic.

• Sums, products, quotients of analytic functions are analytic where defined.
• Product rule, quotient rule, chain rule all hold as usual.
• If f = u+iv is analytic then u and v must satisfy the Cauchy-Riemann Equations :

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x

This implies that u is determined by v (and vice versa). See example after Theo-
rem 1.

• Theorem 2: If f = u+ iv is analytic and u (or v) or u2 + v2 is constant then f is
constant.

Section 2.2 Power Series. Up to and including Example 9. Skip Example 10.

• Radius of convergence. Theorem 2 says

R−1 = lim
n→∞

∣∣an+1

an

∣∣ = lim
n→∞

n
√
|an|

Study Examples 1–5.
• Derivative and anti-derivative of power series work as expected, e.g. d

dx

∑∞
n=0 z

n =∑∞
n=1 nz

n−1. In particular, power series are infinitely differentiable, hence define
analytic functions in their disk of convergence.

• Multiplying power series: See Theorem 4, Examples 8 and 9.

Section 2.3 Cauchy’s Theorem and Cauchy’s Formula. Up to and including Ex-
ample 7. Skip Theorems 2,3 and Examples 8,9,10.

• A domain D is simply connected if the inside of any simple closed curve in D is
contained in D. (D has “no holes”.)

• Roughly, when f is analytic and γ is not encircling any holes:∫
γ

f(z)dz = 0 (Cauchy’s Theorem)

f(z0) =
1

2πi

∫
γ

f(z)

z − z0
dz (Cauchy’s Formula)

These are special cases of the Residue Theorem from Section 2.6.
• To solve trig integrals of the type

∫ 2π

0
dθ/(2 + sin θ), substitute z = eiθ and use

Cauchy’s Formula (or the Residue Theorem). See Examples 6 and 7.

Section 2.4 Consequences of Cauchy’s Theorem. Up to and including The Order
of a Zero. Skip the rest of Section 2.4, starting with Morera’s Theorem.

• If f is analytic at z = z0 then f(z) has a power series expansion at z0:

f(z) =
∞∑
n=0

an(z − z0)
n where an =

1

n!
f (n)(z0).
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• If f is analytic in a domain D and all its derivatives vanish at some point z0 then
actually f has to be identically zero everywhere in D.

• If f(z0) = 0, f ′(z0) = 0, ..., f (m−1)(z0) = 0 but f (m)(z0) ̸= 0 then f has a zero of
order m at z0. This is the same thing as saying:

f(z) = am(z − z0)
m + am+1(z − z0)

m+1 + · · · and am ̸= 0.

Section 2.5 Isolated Singularities. Up to and including Example 9. Also, skip Ex-
amples 4 and 7.

• There are three kinds of singularities: removable, poles, and essential singularities.
• f(z) has a pole at z0 of order m precisely when 1/f(z) has a zero at z0 of order
m. In this case f(z) has a Laurent series :

f(z) = a−m(z−z0)−m+a−m+1(z−z0)−m+1+· · ·+a−1(z−z0)−1+a0+a1(z−z0)+· · · and a−m ̸= 0.

and the residue of f at z0 can be computed in three ways:

Res(f ; z0) =
1

2πi

∫
|z−z0|=ε

f(z)dz =
1

(m− 1)!

dm−1

dzm−1

(
(z − z0)

mf(z)
)∣∣
z=z0

= a−1

In particular, if m = 1 we say f has a simple pole at z0 and we have

Res(f ; z0) =
(
(z − z0)f(z)

)∣∣
z=z0

meaning, simplify (z − z0)f(z) and plug in z = z0.

Section 2.6 The Residue Theorem and Its Applications. Up to and including
Example 7. But skip Example 6. Skip everything after Example 7.

• The Residue Theorem: If f is analytic in a simply connected domain except for
isolated singularities z1, z2, . . . , zn, and γ is a positively oriented closed curve, then∫

γ

f(z)dz = 2πi
∑

Res(f ; zj)

where the sum is over all zj that lie inside γ.
• If P (x) and Q(x) are real polynomials and the degQ(x) ≥ 2+ degP (x) and Q(x)
has no real zeroes, then∫ ∞

−∞

P (x)

Q(x)
dx = 2πi

∑
Res(

P

Q
; zj)∫ ∞

−∞

P (x) cosx

Q(x)
dx = Re

{
2πi

∑
Res

(P (z)eiz
Q(z)

; zj
)}

∫ ∞

−∞

P (x) sinx

Q(x)
dx = Im

{
2πi

∑
Res

(P (z)eiz
Q(z)

; zj
)}

where the sums are over all zeroes zj of Q that lie in the upper half plane.
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Section 3.1 The Zeros of an Analytic Function. Up to and including Theorem 1 on
p.173.

• The zeros of a non-constant analytic function f are isolated : If f(z0) = 0 then
there is an open disk centered at z0 which doesn’t contain any other zeros of f(z).

• Counting formula:
1

2πi

∫
γ

h′(z)

h(z)
dz =

(
number of zeros
of h inside γ

)
−
(
number of poles
of h inside γ

)
Section 3.3 Linear Fractional Transformations. Up to and including Example 2.

• T (z) =
az + b

cz + d
, a, b, c, d complex, ad − bc ̸= 0. Ex: translation T (z) = z + a;

dilation T (z) = rz (r > 0); rotation T (z) = eiθz; inversion T (z) = 1/z.

• T−1(z) =
−dz + b

cw − a

• If T (z) =
(z − z1
z − z3

)(z2 − z3
z2 − z1

)
then T (z1) = 0, T (z2) = 1, T (z3) = ∞.

Section 3.5 Riemann Mapping Theorem. Up to and including Example 5.

• Two regions are conformally equivalent if there exists a one-to-one analytic map-
ping from one onto the other.

• Every simply connected domain D, other than C, is conformally equivalent to the
open unit disk ∆. Moreover, if p is any point of D, there is a unique one-to-one
analytic mapping ϕ from D onto ∆ such that ϕ(p) = 0 and ϕ′(0) > 0.
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Section 4.2. Only the subsection Flow of an Ideal Fluid, pages 261–264 up to and
including Example 2.

• If f = u+ iv describes the velocity of an ideal fluid then f̄ = u− iv is analytic.
• Let G = ϕ+ iψ with G′ = f̄ . Then ϕ is the potential function and ψ is the stream
function.

• The stream lines are the level curves ψ = c, (c a real constant). They describe the
path followed by a particle within the flow.

• The uniform flow f(z) = A, (A a complex constant) has constant velocity and
streamlines are straight lines.

• If f(z) is a 1-to-1 analytic mapping from a horizontal strip a < Im z < b to a
domain D, then

Γc = {f(x+ iτ) : a < τ < b}
are streamlines in D. Similarly for vertical strips.

Euler’s Gamma Function. The posted lecture notes.

• For Re z > 0 the integral Γ(z) =

∫ ∞

0

e−ttz−1dt converges and is analytic in z.

• Recursion relation:

Γ(z + 1) = zΓ(z), Γ(1) = 1.

• Γ(n+ 1) = n! for all n = 0, 1, 2, . . .

• Γ(z) can be extended using Γ(z) =
Γ(z + n)

z(z + 1) · · · (z + n− 1)
, Re (z) > −n

• Γ(z) is analytic everywhere except at z = 0,−1,−2, . . . where it has simple poles
• Res (Γ;−n) = (−1)n/n!
• Reflection relation: Γ(z)Γ(1− z) = π

sin(πz)


