Math 365 - Practice Problems for Final Exam

1. Let $z=i e^{i \pi / 5}$ and $w=-2+2 i$. Find the polar representation of z / w.
2. Find all complex numbers z such that $z^{6}=2 z^{3}-2$.
3. For which values of the real number $r \geq 0$ is the set

$$
D_{r}=\{z:|z|<2 \text { and }|z-r| \geq r\}
$$

(a) convex? (b) open? (c) simply connected?

4. Consider the power series

$$
f(z)=\sum_{n=0}^{\infty} e^{2 \pi i n / 3} \frac{z^{3 n}}{(3 n)!}
$$

(a) Find the radius of convergence of $f(z)$.
(b) Show that $f^{\prime \prime \prime}(z)=e^{2 \pi i / 3} f(z)$.
5. Find the value w of $\log (1+i \sqrt{3})$ satisfying $\pi<\operatorname{Im} w \leq 3 \pi$.
6. Show that if ξ is any value of

$$
\frac{i}{2} \log \left(\frac{1-i w}{1+i w}\right)
$$

then $\tan \xi=w$. (It might be helpful to put $z=\frac{1-i w}{1+i w}$ for part of this calculation.)
7. Compute the line integral

$$
\int_{\gamma}\left(z+\frac{1}{1+z}\right) d z
$$

where γ is the line segment from 0 to $1+i$.
8. Let $f=u+i v$ be an analytic function with $u=e^{x}(x \cos y-y \sin y), f(0)=0$. Find v.
9. Find the power series at the origin for $f^{\prime}(z)$ if $f(z)=z^{2} \cos (z)$.
10. Find the power series expansion of $f(z)=\frac{1-2 i z}{1+2 i z}$ at $z=0$ and determine its radius of convergence.
11. Compute

$$
\int_{|z|=2} \frac{z^{2}}{e^{z}(z+3 i)^{2}(z+1)} d z
$$

12. Suppose that $f(z)$ has an isolated singularity at the origin and satisfies the equation $f(z) f(-z)=1$ when $z \neq 0$. Show that $f(z)$ cannot have a pole at $z=0$.
13. Compute $\operatorname{Res}(f ; 1)$ where $f(z)=\frac{\sin (z-1)}{(z-1)^{3}}$.
14. Find the Laurent series expansion of $g(z)=\frac{e^{3 z}+e^{-3 z}}{z^{3}}$ at $z=0$. What is $\operatorname{Res}(g ; 0)$?
15. Compute:
(a) $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+6 x+10}$
(b) $\int_{-\infty}^{\infty} \frac{\cos (x)}{(x+1)^{2}+4} d x$
(c) $\frac{1}{2 \pi i} \int_{|z|=4} \cot (z) d z$.
16. Find a fractional linear transformation $f(z)=\frac{a z+b}{c z+d}$ such that $f(0)=1, f(1)=\infty$ and $f(\infty)=0$.
17. Let a, b, c, d be real numbers with $a d-b c>0$. Show that in this case, the fractional linear transformation $f(z)=\frac{a z+b}{c z+d}$ maps the upper half plane $U=\{z: \operatorname{Im} z>0\}$ to itself.
18. Let V be the vertical strip

$$
V=\{z:|\operatorname{Re} z|<1\}
$$

and let D be the complex plane with the negative imaginary axis deleted:

$$
D=\{z: \text { if } \operatorname{Re} z=0 \text { then } \operatorname{Im} z>0\} .
$$

(a) Find a conformal mapping which maps V onto D.
(b) Use part (a) to write down the equations for the streamlines for the flow of an ideal fluid in the region D.
19. The Euler-Mascheroni constant γ can be defined as $\gamma=-\Gamma^{\prime}(1)$.
(a) Show that $\Gamma^{\prime}(2)=1-\gamma$ (Hint: differentiate the relation $\Gamma(z+1)=z \Gamma(z)$.)
(b) Show that $\Gamma^{\prime}(3)=3-2 \gamma$.
(c) Find a closed formula for $\Gamma^{\prime}(n)$, in terms of γ, valid for any positive integer n.
20. Show that

$$
\lim _{n \rightarrow \infty} \int_{|z-1 / 2|=n} \Gamma(z) d z=2 \pi i e^{-1}
$$

Hint: Use that $\operatorname{Res}(\Gamma(z) ;-n)=(-1)^{n} / n$! for $n \geq 0$.

