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Exercise 2.4.1

Give the order of each of the zeros of f(z) =
sin z

z
.

Solution. If z = 0, then f is undefined. Suppose that z ̸= 0. Then f(z) = 0 if and only if
sin z = 0. By the definition of sin z,

eiz − e−iz

2i
= 0

e2iz = 1

2iz = 2kπi for nonzero integers k. (See p.44.)

Hence the zeroes of f are z = kπ for all k ∈ Z \ {0}. For any nonzero even integer k,

f ′(kπ) =
z cos z − sin z

z2
=

cos kπ

kπ
=

1

kπ
̸= 0.

Similarly, if k is an odd integer, then

f ′(kπ) = − 1

kπ
̸= 0.

The order of each of the zeros is 1.

Exercise 2.4.2

Give the order of each of the zeros of f(z) = (ez − 1)2.

Solution. Since
(ez − 1)2 = 0 ⇐⇒ ez = 1,

the zeros of f are z = 2kπi for any k ∈ Z. Also, we have

f ′(2kπi) = 2(ez − 1)ez
∣∣
z=2kπi

= 0, and

f ′′(2kπi) = 4e2z − 2ez
∣∣
z=2kπi

= 2 ̸= 0

for any integer k. Therefore each of the zeros has order 2.
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Exercise 2.4.3

Give the order of each of the zeros of f(z) = (z2 + z − 2)3.

Solution. A simple factorization shows that

f(z) = (z2 + z − 2)3 = (z + 2)3(z − 1)3.

The zeros are z = 1 and z = −2. Because the multiple of each root is 3, both zeros have order 3.

Exercise 2.4.6

Give the order of each of the zeros of f(z) = Log(1− z) where |z| < 1.

Solution. Let f(z) = 0. By the definition of Log,

1− z = e0 = 1

Therefore z = 0 is the only zero. Note that the function f is analytic in the disc |z| < 1 (see
Example 10 of Section 2.1), and

d

dz
Log(1− z)

∣∣∣∣
z=0

= − 1

1− z

∣∣∣∣
z=0

= −1 ̸= 0.

The order of z = 0 is 1.

Another solution.
Set z = x+ iy where x, y ∈ R. Then

Log(1− z) = ln |1− z|+ iArg(1− z) = 0.

In other words, Arg(1− z) = 0 implies that y = 0 and 1− x > 0. Plugging in y = 0, we get

ln |1− z| = ln (1− x) = 0

x = 0.

Therefore z = x+ iy = 0.
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Exercise 2.4.9

Find the power series expansion about the origin for f(z) = z(ez − 1) and the largest disk in
which the series is valid.

Solution. Recall that

ez = 1 +

∞∑
k=1

zk

k!
.

Thus

f(z) = z(ez − 1) = z

∞∑
k=1

zk

k!
=

∞∑
k=1

zk+1

k!
.

Because g(z) = z and h(z) = ez − 1 are entire functions, f is entire. The series is valid on the
whole complex plane.

Exercise 2.4.10

Find the power series expansion about z0 = πi for f(z) = ez and the largest disk in which
the series is valid.

Solution. Note that

ez =

∞∑
k=0

zk

k!
.

Substituting z with z − πi, we get

ez−πi =

∞∑
k=0

(z − πi)k

k!
. (1)

Now we obtain the series as follows:

f(z) = ez = ez−πieπi

= ez−πi · (−1) since eπi = −1

= −
∞∑
k=0

(z − πi)k

k!
by (1).

Since f is an entire function, the series is valid everywhere.
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Exercise 2.4.11

Find the power series expansion about z0 = 1 for f(z) = z3 + 6z2 − 4z − 3 and the largest
disk in which the series is valid.

Solution. By polynomial long division,

1 1 6 − 4 − 3
1 7 3

1 1 7 3 0
1 8

1 1 8 11
1

1 9

we have

f(z) = (z − 1)(z2 + 7z + 3)

= (z − 1)
{
(z − 1)(z − 1 + 9) + 11

}
= (z − 1)3 + 9(z − 1)2 + 11(z − 1).

Since every polynomial is an entire function, the series is valid everywhere.

Exercise 2.4.13

Find the power series expansion about z0 = −1 for f(z) =
z + 2

z + 3
and the largest disk in

which the series is valid.

Solution.

z + 2

z + 3
= 1− 1

z + 3

= 1− 1

2 + (z + 1)

= 1− 1

2
· 1

1−
(
z + 1

−2

)
= 1− 1

2

∞∑
k=0

(
z + 1

−2

)k

if

∣∣∣∣z + 1

−2

∣∣∣∣ < 1

= 1 +

∞∑
k=0

(−2)−k−1(z + 1)k

Note that the above series converges only when∣∣∣∣z + 1

−2

∣∣∣∣ < 1,

that is, |z + 1| < 2.
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