MATH 618 LECTURE 22 READ §4.3.5, §4.3.6 HW22: Exercise 4.6.1(a)

Hook-length formula The hook at location x in a Young diagram à is the set of boxes to the night of x, directly below x, and x itself The hook length at X is h(x)=hz(x)=#{boxes in the hook atx} EX. If $\lambda = \frac{1}{\lambda} + \frac{1$

The For any 2+n, dim V^{λ} (= $\# \{ S Y^T s \text{ of shape } \lambda \}$) = <u>n!</u> TT hy(x) where x runs over all boxes in the Young diagram of λ .

EX The standard rep Vn-1 of Sⁿ is equivalent to V^{λ} , $\lambda = (n-1, 1)$ whose Young diagram is

Murnaghan-Nakayama Rule Gives the character table for the symmetric group Sn. We need some notation: I) If $\lambda, \mu \in P$ we write $\mu \prec \lambda$ if the Young diagram of μ is contained in that of λ : Formally, < defines a partial order on P and μ×λ ⇐> μi≤λi Vi>I where $\lambda = (\lambda_1 = \lambda_2 = \dots)$ µ=(µ, ≈µ2 ≈ ···)

The height of a skew shape: $h(\lambda/\mu) = \#\{\text{rows occupied by } \lambda/\mu\} - 1$ EX: $h(\Box) = 1$

3) A skew hook is a skew shape λ/μ of "thickness" 1

Murnaghan-Nakayama Rule: $\lambda, \chi \vdash n, \quad \chi = (\chi, \chi, \chi, \chi, \chi)$ Let $\chi^{\lambda} = \chi_{\gamma\lambda}$ and χ^{λ}_{χ} be the value of χ^{λ} at an element $\sigma \in S_n$ of cycle type χ . Then: $\chi^{\lambda}_{\alpha} = \sum_{\Lambda} (-1)^{h(\Lambda)}$ where Λ runs over all sequences $\Lambda = (\emptyset = \chi^2 \prec \lambda^2 = \chi)$ of partitions 2° such that λⁱ/λⁱ⁻¹ is a skew hook of height α_i for Isisl, and $h(\Lambda) = \sum_{i=1}^{i} h(\lambda^{i}/\lambda^{i-i})$.

$$EX S_{3} (1) (12) (123)$$

$$f = 1 (1) (12)$$

$$S_{3}^{n} = -1 (1)$$

$$Y_{2} 2 = 0 = 1$$

$$Take \lambda = (2,1) = \Box \text{ and } x = (3)$$

$$\Lambda = (\emptyset = \lambda^{\circ} \prec \lambda' = \lambda)$$
is the only sequence possible.
$$h(\lambda'/\lambda^{\circ}) = h(\Box) = 2 - 1 = 1$$

$$= \lambda^{2} \chi^{\lambda} = (-1)' = -1 \quad ok$$

See Examples 4.23, 4.24 in the book for more examples.

Beyond finite groups. Infinite groups too hard to study.

Def A topological group is a group G which is also a topslogical space, such that mult G×G→G, (g,h)+gh & inverse G-7G, g1->g⁻¹ are continuous.

Ex p-adic integen Z(p) consists of all sequences $\alpha = (\alpha_1, \alpha_2, \dots) \in \mathbb{Z}_{(p)} \times \mathbb{Z}_{(p)$ such that ant, can Ynzi. $a_n = \alpha_n + (p)^n \quad K_n \in \mathbb{Z}$ $\alpha_{n+1} + (p)^{n+1} \subset \alpha_n + (p)^n$ <=> dn+1 = an mod pⁿ

 $\pi_{h} \widehat{\mathbb{Z}}_{(\Gamma)} \xrightarrow{\longrightarrow} \mathbb{Z}_{(\rho)}^{n}, a \mapsto a_{n}$

Requiring there are ontinuous with discrete top on $\mathbb{Z}/(p)^n$ given $\pi_n^{-1}(\{0\})$ open

In general a group hon $\Psi: \widehat{Z}_{(p)} \longrightarrow H$ (H discrete top) is continuous iff y factors through some a/ (psn Thus "Rep Z(p) = URep Z/p," $|rreps \ \partial \widehat{\mathbb{Z}}_{(p)} \leftrightarrow \{\xi \in C \mid \xi \mid for some \}$ $\widehat{Z}_{(p)}$ are special cases of profinite groups, defined as projective limits of finile gnoups.