HW21: Exercise 4.3.2.

Fix a positive integer n. Algebraic Picture. The set of paths T in the branching graph B from 1s, to any vertex in Irr Sn parametrizes the GZ basis $\{v_T\}_T$ for $\bigoplus V$. VElrrsn Ex n=3 1_{S_3} V_2 sgn_{S_3} Four paths: 1_{S_3} J_2 J_3 T_1 T_2 T_3 T_4 1_{S_1} J_3 Correspondingly there are 4 GZ-basis vectors for 1s3 DV2 DS9hs3: $\{\mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}, \mathbf{Y}_{4}\}$ 1_{S3} V₂ sgns3

Since the GZ-basis {VT}T diagonalizes the GZ-subalgebra GEn, we may consider the joint spectrum of the SM elements on () V: VEINSA $Spec(n):=\left\{(\Psi_{T}(X_{1}),\Psi_{T}(X_{2}),...,\Psi_{T}(X_{n}))\right\}_{T} \in \mathbb{K}^{n}$ where $\varphi_{T}(X_{i}) \in \mathbb{R}$ is the eigenvalue of X_{i} acting on v_{T} : $X_i \cdot v_{\mathcal{T}} = \varphi_{\mathcal{T}}(X_i) v_{\mathcal{T}}$ Define an equivalence relation 2 on Spec(n) by $(\Psi_{T}(X_{1}), ..., \Psi_{T}(X_{n})) \approx (\Psi_{T}(X_{1}), ..., \Psi_{T}(X_{n}))$ The paths T and T' end at the same vertex.

 $\frac{E_X}{M} = 3. \begin{cases} X_1 = 0 \\ X_2 = (12) \\ X_3 = (13) + (23) \end{cases}$ Since VT, spans the trivial reply we have $\sigma.V_T = V_T$, $\forall \sigma \in S_3$. Thus: $X_1 \cdot V_1 = 0 \cdot V_1$, $X_2 \cdot V_1 = 1 \cdot V_1$, $X_3 \cdot V_1 = 2 \cdot V_1$ \Rightarrow (0,1,2) \in Spec(3). Similarly, V_{Ty} spans the sign rep of S3, hence we get $(0, -1, -2) \in Spec(3)$ Recall that for the standard rep V2 we have $V_{T_0} = (1, 1, -2), V_{T_2} = (1, -1, 0)$ and Sz acts on V2=1KVT2 @ KVT3 by permuting coordinates. $X_1 V_{T_2} = 0 V_{T_2}, X_2 V_{T_2} = 1 V_{T_2}, X_3 V_{T_2} = (-1) V_{T_3}$ $X_1 v_{T_3} = 0 \cdot v_{T_3}, X_2 v_{T_3} = (-1) v_{T_3}, X_3 v_{T_3} = 1 \cdot v_{T_3}$

This shows that $Spec(3) = \frac{(0,1,2)}{(0,1,2)}, \frac{(0,1,-1)}{(0,-1,-2)}$ with three equivalence classes: $Spec(3) = \left\{ \left\{ (0, 1, 2) \right\} \left\{ (0, 1, -1), (0, -1, 1) \right\} \left\{ (0, -1, -2) \right\} \right\}$ corresponding to the three irreps of Sz. Thus we have the diagram: $T \longrightarrow (\Psi_{T}(X_{i}), \dots, \Psi_{T}(X_{n}))$ $(\Pi) \longrightarrow (\Pi)$ $(\Psi_{T}(X_{i}), \dots, \Psi_{T}(X_{n}))$ $(\Pi) \longrightarrow (\Pi)$ $(\Psi_{T}(X_{i}), \dots, \Psi_{T}(X_{n}))$ $(\Pi) \longrightarrow (\Pi)$ $(\Psi_{T}(X_{i}), \dots, \Psi_{T}(X_{n}))$ $(\Pi) \longrightarrow (\Psi_{T}(X_{i}), \dots, \Psi_{T}(X_{n}))$ Take endpoint Irr Sn Wn

Additional feature of this diagram is that $\left\{T: \mathbf{1}_{S_{1}} \rightarrow \dots \rightarrow W_{n-1} \rightarrow W_{n}\right\} \xrightarrow{\cong} \operatorname{Spec}(n)$ first n-1 components commutes. This is because for $| \leq i \leq n-1 : \qquad \Psi_{T}, (X_i)_{Y} = X_i \cdot V_{T},$ GZ-basis $\{V_T'\}_{T'} \longrightarrow = X_i \cdot V_T$ is a subset of $\{V_T\}_T \cdot = \mathcal{Y}_T(X_i)$ $= \mathcal{Y}_{\mathcal{T}}(X_i) v_{\mathcal{T}}$ $=\varphi_{\mathcal{T}}(X_i)v_{\mathcal{T}}$ for any path T:1s, → ... → Wn.

Combinatorial Picture A partition is a sequence $\lambda = (\lambda_1, \lambda_2, \dots)$ of weakly decreasing non-negative. integers with $|\lambda| = \sum \lambda_i < \infty$ (i.e. 2_N =0, N≫0) J= { all partitions } $P_n = \{\lambda \in \mathcal{D} \mid |\lambda| = n\}$ If JEPn we say J is a partion of n, written 2Hn. The λ_i are called the parts of J. A partition can be drawn as a Young diagram $\longrightarrow \lambda = (6, 4, 2, 2, 1)$ λ_i left-adjusted boxes in row i.

The shape of a standard Young tableau T is the underlying Young diagram: Shape $\left(\begin{array}{c}1357\\26\\4\end{array}\right) =$ Note that this corresponds to taking the endpoint of T, when viewed as a path in Y.

To complete the picture we need an analog of Spec(n). Def The contents of TESYT(n) is a vector $c(T)=(c_1,c_2,\ldots,c_n)\in\mathbb{Z}^n$ defined as follows. (Tilt T by 45° clockwise and attach top corner to a coordinate axis: -3-2-10123 $T = \sqrt{\frac{2}{9}} \sqrt{\frac{3}{5}}$ 2) Ci = coordinate of the box containing i: c(T) = (0, -1, 1, -2, 2, 0, 3)We define Cont(n)={c(T) TESYT(n)}

Ex $Cont(3) = \{c(\mathbb{Q}), c(\mathbb{Q}), c(\mathbb{Q})\}$ $= \left\{ (0, 1, 2), (0, 1, -1), (0, -1, 1), (0, -1, -2) \right\}.$ (compare with Spec(3)!) Define an equivalence relation ~ on Cont(n) by $c(T) \sim c(T')$ iff $\sigma.c(T) = c(T')$ for some *T***ESn** Note that $c(T) \sim c(T')$ iff Shape(T) = shape(T').

We have the following commutative diagram

SYT(n-1)
$$\xrightarrow{\simeq} Cont(n-1)$$

 $\widehat{T}_{n:th\ box}$ $\widehat{T}_{first\ n-1\ companents}$
SYT(n) $\xrightarrow{\simeq} Cont(n)$
 \widehat{V}_{n} $\xrightarrow{\simeq} Cont(n)/n$
The Key result is now:
Thm Spec(n) = Cont(n),
and $\approx = \sim$

The proof is based on explicitly describing these sets. See book for details.

Corollary We have a commutative diagram $\left\{ \begin{array}{c} Paths in B \\ 1_{S_{1}} \rightarrow \cdots \rightarrow W_{n-1} \end{array} \right\} \xrightarrow{\simeq} Spec(n-1) = Cont(n-1) \xleftarrow{\simeq} SYT(n-1) \\ \uparrow \\ \uparrow \\ \left\{ \begin{array}{c} Paths in B \\ 1_{S_{1}} \rightarrow \cdots \rightarrow W_{n} \end{array} \right\} \xrightarrow{\simeq} Spec(n) = Cont(n) \xleftarrow{\simeq} SYT(n) \\ \downarrow \\ I_{S_{1}} \rightarrow \cdots \rightarrow W_{n} \end{array} \right\} \xrightarrow{\simeq} Spec(n) = Cont(n) \xleftarrow{\simeq} SYT(n) \\ \downarrow \\ V \\ Irr S_{n} \xrightarrow{\simeq} Spec(n) = Cont(n) \xleftarrow{\simeq} P_{n}$ Corollary (Graph Isomorphism Thm) B = Y. Proof The bottom row gives a bijection vert $\mathcal{Y} \cong \operatorname{vert} \mathcal{B}$, $\lambda \mapsto V^{\lambda}$. There is an arrow $\mu \rightarrow \lambda$ in Y iff] path I->...->/1->/ in Y. By diagram this holds iff $\exists path \\ 1_{S_1} \rightarrow \cdots \rightarrow V^{M_{n-1}} \vee \longleftrightarrow \exists V^{M_{n-1}} \vee in B. \\ QED.$