Worksheet 1: Ring quotients and operations

- 1. Consider the subset $2\mathbb{Z} + 1$ of \mathbb{Z} consisting of all odd integers. Define a relation on \mathbb{Z} by $a \sim b$ iff $a b \in 2\mathbb{Z} + 1$.
 - (a) Is \sim an equivalence relation on \mathbb{Z} ? Prove it or find a counter-example. If yes, continue on to (b), otherwise skip to the next problem.
 - (b) Let $\mathbb{Z}/(2\mathbb{Z}+1)$ denote the set of equivalence classes [a] for $a \in \mathbb{Z}$. Trying to define [a] + [b] = [a+b], do we get a well-defined operation?
 - (c) Trying to define $[a] \cdot [b] = [ab]$, do we get a well-defined operation?
- 2. Consider the subset $\mathbb{Z} \subset \mathbb{Q}$. Define a relation \sim on \mathbb{Q} by $a \sim b$ iff $a-b \in \mathbb{Z}$.
 - (a) Is \sim an equivalence relation on \mathbb{Q} ? Prove it or find a counter-example. If yes, continue on to (b), otherwise skip to the next problem.
 - (b) Let \mathbb{Q}/\mathbb{Z} denote the set of equivalence classes [a]. Trying to define [a] + [b] = [a + b], do we get a well-defined operation?
 - (c) Trying to define $[a] \cdot [b] = [ab]$, do we get a well-defined operation?
- 3. Repeat the above steps for the following subsets J of a ring R:
 - (i) $R = \mathbb{Q} \times \mathbb{Q}$ and $J = \mathbb{Q} \times \{0\}$
 - (ii) $R = \mathbb{Q} \times \mathbb{Q}$ and $J = \Delta = \{(p,q) \mid p,q \in \mathbb{Q}\}$
 - (iii) $R=\mathbb{Z}/6\mathbb{Z}=\{0,1,2,3,4,5\}$ and $J=\{0,2,4\}$
 - (iv) $R = \mathbb{Q}[x]$ and $J = \{a_2x^2 + a_4x^4 + \dots + a_{2k}x^{2k} \mid a_i \in \mathbb{Q}, k \in \mathbb{Z}_{\geq 0}\}$