Homework 1 - MATH 3010 Fall 2024

- 1. Exercise 1.2 from the book¹
- 2. Exercise 1.3 from the book
- 3. Let $f:A\to X$ be any function. Define a relation \sim on A by $a\sim b\Leftrightarrow f(a)=f(b)$. Prove that \sim is an equivalence relation on A.
- 4. Describe the equivalence classes in the previous problem.
- 5. Find the image of the function f when
 - (a) $f: \mathbb{Z} \to \mathbb{Q}$; f(x) = x 1.
 - (b) $f: \mathbb{R} \to \mathbb{R}; \ f(x) = -x^2 + 1.$
- 6. Let $A = \{1, 2, 3, 4\}$. Exhibit functions f and g from A to A such that $f \circ g \neq g \circ f$.
- 7. Prove that the given function is injective.
 - (a) $f: \mathbb{R} \to \mathbb{R}$; $f(x) = x^3$.
 - (b) $f: \mathbb{R} \to \mathbb{R}$; f(x) = -3x + 5.
- 8. Prove that the given function is surjective.
 - (a) $f: \mathbb{R} \to \mathbb{R}$; f(x) = -3x + 5.
 - (b) $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}$; f(a, b) = a/b when $b \neq 0$ and 0 when b = 0.
- 9. (a) Let $f: B \to C$ and $g: C \to D$ be functions such that $g \circ f$ is injective. Prove that f is injective.
 - (b) Give an example of the situation in part (a) in which g is not injective.
- 10. Let $2\mathbb{Z}$ denote the set of even integers. Let \sim be a relation on \mathbb{Q} defined by $x \sim y \Leftrightarrow x y \in 2\mathbb{Z}$. Prove that \sim is an equivalence relation on \mathbb{Q} .

 $^{^{1}\}mathrm{By}$ "the book" we mean the course textbook Algebra: Notes from the underground by Aluffi.