Chapter 1.

- Well-Ordering Principle
- Division with Remainder
- Divisibility, greatest common divisor, Euclid's algorithm
- Primes and Irreducible integers, Fundamental Theorem of Arithmetic

Chapter 2.

- Congruence classes $[a]_n$, the set $\mathbb{Z}/n\mathbb{Z}$, the operations + and \cdot in $\mathbb{Z}/n\mathbb{Z}$
- $[a]_n$ is invertible (has a multiplicative inverse) iff gcd(a, n) = 1
- $\mathbb{Z}/n\mathbb{Z}$ is an integral domain iff *n* is prime (this includes 0)
- $\mathbb{Z}/n\mathbb{Z}$ is a field iff *n* is irreducible (this excludes 0)
- Fermat's Little Theorem: $a^{p-1} \equiv 1 \pmod{p}$ if p is a prime not dividing a

Chapter 3.

- Definition of a Ring; Examples $\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}[x], M_{2,2}(\mathbb{R})$
 - (a) If R is a ring then the set of 2×2 -matrices $M_{2,2}(R)$ is a ring.
 - (b) If R is a ring then the set of polynomials R[x] is a ring.
- Basic Properties: 0_R , 1_R are unique, additive inverse -a is unique, additive cancellation, $0_R a = 0_R = a 0_R$ for all $a \in R$.
- Definitions of zero-divisors and invertible elements; integral domain and field
- Field \Rightarrow Integral Domain \Rightarrow Commutative \Rightarrow Ring

Sample problems.

- 1. Find all elements in the ring $\mathbb{Z}/18\mathbb{Z}$ that are (a) zero-divisors (b) invertible
- 2. (a) Find $m, n \in \mathbb{Z}$ such that 53m + 4n = 1. (b) Find the inverse of $[4]_{53}$ in $\mathbb{Z}/53\mathbb{Z}$.
- 3. Find all invertible elements of $M_{2,2}(\mathbb{Z}/2\mathbb{Z})$.
- 4. Let n be a positive integer and s the digit sum of n. (For example if n = 5344 then s = 5 + 3 + 4 + 4 = 16.) Prove that $n \equiv s \pmod{9}$.
- 5. An element a of a ring R is *nilpotent* if $a^n = 0$ for some positive integer n. Show that if a is nilpotent then 1-a is invertible. (*Hint:* Think about geometric series.)
- 6. Show that every element of $\mathbb{Z}/n\mathbb{Z}$ is either invertible or a zero-divisor.
- 7. Suppose R is an integral domain. Prove that the following cancellation law holds: If $a, b, c \in R$, $a \neq 0_R$ and ab = ac, then b = c.
- 8. Let $\mathbb{R}_{>0}$ denote the set of positive real numbers. Define two operations \oplus and \odot on $\mathbb{R}_{>0}$ as follows:

$$x \oplus y = xy, \qquad x \odot y = x^y$$

Is $(\mathbb{R}_{>0}, \oplus, \odot)$ a ring? Why/why not?