Solution for Math 301 Homework 5
3.1

12. Let Z[i] denote the set {a + bi|a, b€ Z}. Show that Z[i] is a subring of C.

Solution:

(1) For all a + bi, ¢+ di € Z[i], we have (a + bi) + (¢ + di) = (a + ¢) + (b + d)i € Z[i].
Therefore, Z[i] is closed under addition.

(2) For all a + bi, ¢+ di € Z[i], we have (a + bi) - (c + di) = (ac — bd) + (ac + bd)i € Z|1].
Therefore, Z[i] is closed under multiplication.

(3) 0= 0+ 0i e Z[4].
(4) For all a + bi € Z[i], we have (—a) + (—b)i € Z[i] and (a + bi) + ((—a) + (=b)i) = 0.

Therefore, by Theorem 3.2, Z[i] is a subring of C.

22 Define a new addition @ and multiplication ® on Z by
a®b=a+b—1land a®b=a+b— ab,

where the operation on the right-hand side of the equal signs are ordinary addition, sub-
traction, and multiplication. Prove that, with the new operations @ and ®, Z is an integral
domain.

Solution:

Let R denote the set Z equipped with the above operations @ and ©. We have

1. Foralla,be R,a®b=a+b—1€R.

2. For all a,b,c € R,
a®b@c)=a®(b+c—1)=a+(b+c—1)—1=(a+b—1)+c—1=(a®b)Dec.
Foralla,be R,a®b=a+b—-1=b+a—-1=0Da.

Let 0O =1€Z. Forallae R, a®0gr=a+1—1=a=14+a—1=0rPa.
Forallae R,let t =2—a€R. Thena®zr=a+ (2—a)—1=1=0pg.

For all a,be R, we have a ®b=a+b—abe R.

N o e W

For all a,b,c € R, we have

a®bOc)= a®(b+c—bc)

a+ (b+c—bc)—a(b+c—be)
(a+b+c)—ab—ac—bc+ abe
(a+b—ab)+c—(a+b—ab)c
(a+b—ab)Oc

(a®b)Oec.



8. For all a,b,c € R, we have

a®b®c)= a®(b+c—1)
a+b+c—1)—alb+c—1)
(a+b+c)—ab—ac+a—1
(a+b—ab)+ (a+c—ac)—1
(a+b—ab)® (a+c—ac)
(a®b)® (a®c).

(a®b)Oc=
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a+b—1)+c—(a+b—1)c
)+c—ac—bc+c

= (a+c—ac)+(b+c—bc)—1
= (a+c—ac)®(b+c—bc)
a®c)®(bOc).

9. For all a,b e R, we have a ®b =a+b—ab =b+a—ba = b©® a. Therefore, R is
commutative.

10. Let 1 =0€Z. Thenforallae R, a®lg=a4+0—a-0=a=04+a—0-a=150a.
Therefore, 1 is a multiplicative identity of R.

11. Suppose a,b € R satisfy a ©b = 0 = 1. We have

at+b—ab=1=ab—(a+b)+1=0=(a—1)(b—1)=0=(a—1)=0o0r (b—1)=0

We have (a—1) =0=a=1=0gand (b—1) =0= b =1 = 0. Therefore, R is an
integral domain.

30. The addition table and part of the multiplication table for a four-element ring are given
below. Use the distributive laws to complete the multiplication table.

—i—‘w r Yy =z ‘w r Yy =z
wlw T Yy 2z wlw w w
r|lx y z w and x|w y

yly z w x y | w w
zlz w T vy zZ | w woy

Solution:

By the distributive laws, we have
LLaoy=zx(z+z)=xx+rzr=y+y=uw
2. xz=zx(x+y)=zx+ary=y+w=y
Jyr=(r+r)r=sxt+rxr=y+y=w

4oyz=ylr+y) =yr+yy=w+w=w



b.zr=(rx4+yr=zx+ay=y+w=y

Therefore, the complete multiplication table is

N e 8 8

E 88 g8
< s 8|8
g 8 g 8w
< $< 2|

42. A division ring is a (not necessarily commutative) ring R with identity 1x # Og that
satisfies Axiom 11 and 12 (pages 48 and 49). Thus a field is a commutative division ring.

See Exercise 43 for a noncommutative example. Suppose R is a division ring and a, b are
nonzero elements of R.

(a) If bb = b, prove that b = 1. [Hint: Let v be a solution of bx = 1x and note that
bv = b*v.|

Solution:

Let v be a solution of bx = 1. Then bv = 1. So we have

b=0blg=0b(bv) = (bb)v = bv = 1g.

(b) If u is a solution of the equation ax = 1g, prove that u is also a solution of the equation
za = 1g. (Remember that R may not be commutative.) [Hint: Use part (a) with
b = ua.]

Solution:

Let u be a solution of the equation ax = 1z. Then au = 1g. Let b = ua. We have

b* = (ua)(ua) = u(au)a = ulga = ua = b.
By the result in part (a), we have b = 1.
3.2

12. Let a, b be elements of a ring R.

(a) Prove that the equation a + x = b has a unique solution in R. (You must prove that
there is a solution and that this solution is the only one.)

Solution:

Let © = (—a) +b. Thena+2x =a+ ((—a)+b

=(a+(-a))+b=0g+b=>5. So
x = (—a) + b is a solution of the equation a + = = b.

Suppose y € R satisfies a + y = b. Then

y=0pty=((-a)+a)+y=(-a)+(a+y)=(-a)+b=a



(b)

18.

Therefore, the equation a + = = b has a unique solution x = (—a) + b.

If R is a ring with identity and a is a unit, prove that the equation ax = b has a unique
solution in R.

Solution:

Suppose a is a unit in R. Then there exists u € R such that au = 1z = ua. Let x = ub.
Then

ax = a(ub) = (au)b = 1gb = b.
Suppose y € R such that ay = b. Then we have

y = 1gy = (ua)y = u(ay) = ub
Therefore, the equation ax = b has a unique solution x = ub.

Let a be a nonzero element of a ring with identity. If the equation ax = 1 has a

solution u and the equation ya = 1 has a solution v, prove that u = v.

Suppose au = 1z = va. Then

22.

(a)

u=1gu = (va)u = v(au) =vlg=v

If ab is a zero divisor in a ring R, prove that a or b is a zero divisor.
Solution:

Suppose ab is a zero divisor in a ring R. Then ab # 0 = a # 0 and b # 0. Also, there
exists a nonzero ¢ € R such that either (1) (ab)e = 0 or (2) c¢(ab) = 0. Consider

(1) (ab)e = 0 : If be = 0, then b is a zero divisor. If be # 0, then a(bc) = (ab)c = 0, then
a is a zero divisor.

(2) c(ab) = 0 : If ca = 0, then a is a zero divisor. If ca # 0, then (ca)b = c(ab) = 0,
then b is a zero divisor.

Thus, in either case, we have a or b is a zero divisor.

If a or b is a zero divisor in a commutative ring R and ab # 0, prove that ab is a zero
divisor.

Solution:

Suppose a or b is a zero divisor in a commutative ring R and ab # 0.

First consider the case when a is a zero divisor. Then there exists a nonzero ¢ € R such
that ac = 0 = ca. Therefore, c¢(ab) = (ca)b = 0b = 0 and (ab) is a zero divisor.

Since R is commutative, the case when b is a zero divisor is similar.



33. Let R be a ring with identity. If ab and a are units in R. Prove that b is a unit.
Solution:

Suppose ab and a are units in R. Then there exist v and v in R such that

(ab)u = 1g = u(ab) and av = 1x = va.

So we have (ua)b = u(ab) = 1 and

b(ua) = 1grb(ua) = (va)b(ua) = v(abu)a = vlga = va = 1g
Therefore, b is a unit.

40. An element a of a ring is nilpotent if a" = Oy for some positive integer n. Prove that
R has no nonzero nilpotent elements if and only if Og is the unique solution of equation

.IQ = OR.
Solution:

Suppose R has no nonzero nilpotent elements. Clearly O satisfies the equation 22 = 0.
Suppose a?> = 0p. Then a is nilpotent. Thus, x = 0z. Hence, Oy is the unique solution of
equation 2 = Op.

Conversely, suppose 0 is the unique solution of the equation 2> = 0z. We are going to
prove that R has no nonzero nilpotent elements.

Assume the contrary that there exists a nonzero nilpotent element a in R. Then a™ = Og
for some n > 0. Let S = {njn > 0 and a™ = Or} # J. By the Well Ordering Axiom, S has

a smallest element m. Since a # O and a® # Og, we have m > 2. Then we have a™ = Oy
and m — 2 > 0. We have

—1\2 _ _ _
(am 1) :a2m 2:amam 2:0Ram QZOR.

1

Thus a™ ! is a solution of the equation 22 = 0. Therefore, a™ ! = 0 = m — 1€ S. Since

m — 1 < m, we have a contradiction.

Hence, R has no nonzero nilpotent elements.



