2.2

6. Solve the equation $x^2 \oplus [8] \odot x = [0]$ in \mathbb{Z}_9 .

In \mathbb{Z}_9 , we have

x	0	1	2	3	4	5	6	7	8
x^2	0	1	4	0	7	7	0	4	1
8x	0	8	7	6	5	4	3	2	1
$x^2 + 8x$	0	0	2	6	3	2	3	6	2

Therefore, the solutions for $x^2 \oplus [8] \odot x = [0]$ in \mathbb{Z}_9 are x = [0] and x = [1].

8. Solve the equation $x^3 \oplus x^2 = [2]$ in \mathbb{Z}_{10} .

In \mathbb{Z}_{10} , we have

x	0	1	2	3	4	5	6	7	8	9
x^2	0	1	4	9	6	5	6	9	4	1
x^3	0	1	8	7	4	5	6	3	2	9
$x^3 + x^2$	0	2	2	6	0	0	2	2	6	0

Therefore, the solutions for $x^3 \oplus x^2 = [2]$ in \mathbb{Z}_{10} are x = [1], [2], [6], [7].

12. Prove or disprove: If $[a] \odot [b] = [0]$ in \mathbb{Z}_n , then [a] = [0] or [b] = [0].

The statement is not true. Let a = 2, b = 3, n = 6. In \mathbb{Z}_6 , we have $[2] \odot [3] = [6] = [0]$ but $[2], [3] \neq [0]$.

14 c). If p is a positive prime, show that the only solutions of $x^2 \oplus x = [0]$ in \mathbb{Z}_p are [0] and [p-1].

Suppose p is prime and $x^2 \oplus x = [0]$ in \mathbb{Z}_p for x = [a]. We have

$$p|(a^2 + a) \Rightarrow p|a(a + 1) \Rightarrow p|a \text{ or } p|(a + 1).$$

Therefore, we have [a] = [0] or [a + 1] = [0].

$$[a+1] = [0] \Rightarrow [a] = [-1] = [p-1].$$

Therefore, x = [0] or x = [p - 1].

16. Find all [a] in \mathbb{Z}_n for which the equation $[a] \odot x = [1]$ has a solution, in the case when

(a) n = 5, (b) n = 4, (c) n = 3, (d) n = 6

For $[a] \odot x = [1]$ to have a solution, we must have $[a] \neq [0]$.

- (a) In \mathbb{Z}_5 , $[1] \odot [1] = [1]$, $[2] \odot [3] = [1]$, $[3] \odot [2] = [1]$, $[4] \odot [4] = [1]$. Therefore, $[a] \odot x = [1]$ has a solution for [a] = [1], [2], [3], [4].
- (b) In \mathbb{Z}_4 , $[1] \odot [1] = [1]$, $[3] \odot [3] = [1]$ and $[2] \odot x \neq [1]$ for all $[x] \in \mathbb{Z}_4$. Therefore, $[a] \odot x = [1]$ has a solution for [a] = [1], [3].
- (c) In \mathbb{Z}_3 , $[1] \odot [1] = [1]$, $[2] \odot [2] = [1]$. Therefore, $[a] \odot x = [1]$ has a solution for [a] = [1], [2].
- (d) In \mathbb{Z}_6 , $[1] \odot [1] = [1]$, $[5] \odot [5] = [1]$. For [a] = [2], [3], [4], $[a] \odot x \neq [1]$ for all $[x] \in \mathbb{Z}_6$. Therefore, $[a] \odot x = [1]$ has a solution for [a] = [1], [5].

2.3

2. Find all zero-divisors in

(a)
$$\mathbb{Z}_7$$
, (b) \mathbb{Z}_8 , (c) \mathbb{Z}_9 , (d) \mathbb{Z}_{10}

- (a) In \mathbb{Z}_7 , $[a] \odot [c] = [0] \Rightarrow 7 | ac \Rightarrow 7 | a \text{ or } 7 | c \Rightarrow [a] \text{ or } [c] = [0]$. Therefore, \mathbb{Z}_7 has no zero divisor.
- (b) In \mathbb{Z}_8 , $[2] \odot [4] = [4] \odot [6] = [0]$. Therefore, [2], [4], [6] are zero divisors in \mathbb{Z}_8 .
- (c) In \mathbb{Z}_9 , $[3] \odot [6] = [0]$. Therefore, [3], [6] are zero divisors in \mathbb{Z}_9 .
- (d) In \mathbb{Z}_{10} , $[2] \odot [5] = [4] \odot [5] = [6] \odot [5] = [8] \odot [5] = [0]$. Therefore, [2], [4], [5], [6], [8] are zero divisors in \mathbb{Z}_{10} .

6. If n is composite, prove that there is at least one zero-divisor in \mathbb{Z}_n . (See Exercise 2.)

Suppose n > 1 is composite. Then n = ab, where 1 < a, b < n. Therefore, $[a], [b] \neq [0]$ in \mathbb{Z}_n and $[a] \odot [b] = [0]$. Hence, [a] and [b] are zero divisors in \mathbb{Z}_n .

10. Prove that every nonzero element of \mathbb{Z}_n is either a unit or a zero-divisor, but not both. [Hint: Exercise 9 provides the proof of "not both".]

Suppose $x \neq [0]$ in \mathbb{Z}_n . Then x = [a] for some $1 \leq a < n$. Let d = (a, n). If d = 1, then by Theorem 2.10, x = [a] is a unit in \mathbb{Z}_n .

If d > 1, let $a = a_1 d$ and $n = n_1 d$ for some $a_1, n_1 \in \mathbb{Z}$. Then $1 < n_1 < n$. We have $[a], [n_1] \neq [0]$ and $[a] \odot [n_1] = [a_1 dn_1] = [a_1 n] = [0]$. Therefore, x = [a] is a zero divisor in \mathbb{Z}_n .

To show that x cannot be both a unit and zero-divisor, suppose x is a unit in \mathbb{Z}_n . Then there exists $u \in \mathbb{Z}_n$ such that ux = [1]. We are going to show that x cannot be a zero-divisor. Let $y \neq [0]$ in Z_n , we have

$$u(xy) = (ux)y = [1]y = y \neq [0] \Rightarrow xy \neq [0]$$

Therefore, x cannot be a zero-divisor.

3.1

2. Let $R = \{0, e, b, c\}$ with addition and multiplication defined by the tables below. Assume associativity and distributivity and show that R is a ring with identity. Is R commutative? Is R a field?

+	0	е	b	с	•	0	е	b	с
0	0	е	b	с	0	0	0	0	0
е	е	0	с	b	е	0	е	b	с
b	b	с	0	е	b	0	b	b	0
с	с	b	е	0	с	0	с	0	с

(1) Closure for addition follows from the addition table.

(2) Under the assumption, addition is associative.

- (3) Addition is commutative because the addition table is symmetric about the diagonal.
- (4) From the tables, we have a + 0 = a = 0 + a for every $a \in R \Rightarrow 0$ is the additive identity.
- (5) a + x = 0 is solvable for every $a \in R$ because 0 appears in every row in the additive table.
- (6) Closure for multiplication follows from the multiplication table.
- (7) Under the assumption, multiplication is associative.
- (8) Distributive laws hold under assumption.
- (9) Multiplication are commutative because the multiplication table is symmetric about the diagonal.
- (10) $a \cdot e = a = e \cdot a$ for every $a \in R \Rightarrow e$ is the multiplicative identity. It follows from (1)-(10) that R is a commutative ring with identity.
- (12) $b \neq 0$ but the row of b in the multiplication table does not contain e. Therefore, the equation $b \cdot x = e$ does not have a solution. Hence, R is not a field.

4. Find matrices A and C in $M(\mathbb{R})$ such that $AC = \mathbf{0}$ but $CA \neq \mathbf{0}$, where **0** is the zero matrix. [Hint: Example 6.]

Let
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Then

$$AC = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ but } CA = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$