
Solution for Math 301 Homework 3

Section 2.1

6. If a � b pmodnq and k|n, is it true that a � b pmod kq? Justify your answer.

Solution: If a � b pmodnq and k|n, then a� b � nr and n � ks for some r, s P Z. We have

pa� bq � ksr ñ k|pa� bq ñ a � b pmod kq.

12. If p ¥ 5 and p is prime, prove that rps � r1s or rps � r5s in Z6. [Hint:Theorem 2.3 and Corollary

2.5.]

Solution: Suppose p ¥ 5 is prime. Let p � 6k� r, where k, r P Z and 0 ¤ r   6. By Corollary

2.5, we have rps � rrs. Consider the following cases:

1. r � 0 ñ 6|p, a contradiction.

2. r � 2, 4 ñ 2|p, a contradiction.

3. r � 3 ñ 3|p, a contradiction.

Therefore, we have r � 1 or 5. Hence, rps � r1s or r5s in Z6.

14.

(a) Prove or disprove: If ab � 0 pmodnq, then a � 0 pmodnq or b � 0 pmodnq

Solution: Let n � 6, a � 2 and b � 3. ab � 2 � 3 � 0 pmod 6q but 2, 3 � 0 pmod 6q.

(b) Do part (a) when n is prime.

Solution: Suppose n is prime and ab � 0 pmodnq. Then, by Theorem 1.5, we have

n|ab ñ n|a or n|b ñ a � 0 pmodnq or b � 0 pmodnq

16. If ras � r1s in Zn, prove that pa, nq � 1. Show by example that the converse may be false.

Solution: If ras � r1s in Zn, then n|pa� 1q ñ a� 1 � nr for some r P Z. Since 1 � a� nr �

ap1q � np�rq is the smallest positive number that can be expressed in the form au � bv, we have

pa, nq � 1.

Alternative explanation: Suppose d � pa, nq. Then

d|a and d|n ñ d|pa� nrq ñ d|1.

Hence, d � 1.

A counterexample for the converse: Let a � 2, n � 3. Then p2, 3q � 1 but r2s � r1s in Z3.
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20.

(a) Prove or disprove: If a2 � b2 pmodnq, then a � b pmodnq or a � �b pmodnq.

Solution: The statement is not true. For a counterexample, let a � 3, b � 1 and n � 8. Then

a2 � 9 � 1 � b2 pmod 8q. We have a � b � 2, a � p�bq � a � b � 4. Since 8 - pa � bq and

8 - pa� p�bqq, we have a � b pmod 8q and a � �b pmod 8q.

(b) Do part (a) when n is prime.

Solution: Suppose n is prime and a2 � b2 pmodnq. Then, by Theorem 1.5, we have

n|pa2 � b2q ñ n|pa� bqpa� bq ñ n|pa� bq or n|pa� bq.

n|pa� bq ñ a � b pmodnq and n|pa� bq ñ n|pa� p�bqq ñ a � �b pmodnq.

22.

(a) Give an example to show that the following statement is false: If ab � ac pmodnq and a �

0 pmodnq, then b � c pmodnq.

Solution: Let a � 2, b � 3, c � 0 and n � 6. Then

2 � 3 � 0 � 2 � 0 pmod 6q and 2 � 0 pmodnq but 3 � 0 pmod 6q.

(b) Prove that the statement in part (a) is true whenever pa, nq � 1.

Solution: Suppose pa, nq � 1 and ab � ac pmodnq. Then by Theorem 1.4, we have

n|pab� acq ñ n|apb� cq ñ n|pb� cq ñ b � c pmodnq.

Appendix C

15. What is wrong with the following “proof” that all roses are the same color. It suffices to prove
the statement: In every set of n roses, all the roses in the set are the same color. If n � 1, the
statement is certainly true. Assume the statement is true for n � k. Let S be a set of k � 1 roses.

Remove one rose (call it rose A) from S; there are k roses remaining, and they must all be the

same color by the induction hypothesis. Replace rose A and remove a different rose (call it rose B).

Once again there are k roses remaining that must all be the same color by the induction hypothesis.
Since the remaining roses include rose A, all the roses in S have the same color. This proves that
the statement is true when n � k � 1. Therefore, the statement is true for all n by induction.

Solution: The conclusion “Since the remaining roses include rose A, all the roses in S have
the same color.” does not hold as in the following example.

Let S � tA, Bu be a set of two roses with two different colors A and B. Each of SztAu and

SztBu is a set contains only one rose. Thus, each of these sets contains roses of the same color but

we cannot conclude that all roses in S are of the same color.
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17. Let x be a real number greater than �1. Prove that for every positive integer n, p1�xqn ¥ 1�nx.

Solution: Let P pnq be the statement that p1 � xqn ¥ 1 � nx.

For n � 1, we have p1 � xqn � 1 � x � 1 � nx. Therefore, P p1q is true.

Suppose P pkq is true for some k ¥ 1. Since x ¥ �1 ñ p1 � xq ¥ 0, we have

p1 � xqk�1 � p1 � xqp1 � xqk ¥ p1 � xqp1 � kxq � 1 � pk � 1qx� kx2 ¥ 1 � pk � 1qx.

So P pk� 1q is also true. Hence, by the Principle of Mathematical Induction, P pnq is true for all
n ¥ 1.

Appendix D

11. Let � be defined on the set R� of nonzero real numbers by a � b if and only if a{b P Q. Prove

that � is an equivalence relation.

Solution:

(i) Reflxive: a P R� ñ a{a � 1 P Q ñ a � a.

(ii) Symmetric: Let a, b P R�. a � b ñ a{b P Q ñ b{a � pa{bq�1 P Q ñ b � a.

(iii) Transitive: Let a, b, c P R�.

a � b and b � c ñ a{b, b{c P Q ñ c{a � pa{bqpb{cq P Q ñ a � c.

Therefore, � is an equivalence relation on R.

17. Let � be a symmetric and transitive relation on a set A. What is wrong with the following
“proof” that � is reflexive: a � b implies b � a by symmetry; then a � b and b � a implies a � a

by transitivity. [Also see Exercise 8(f).]

Solution: The problem is that given a P A, there might not be any b P A such that a � b.

For example, let A � ta, bu and � is defined on A with only b � b. Then � is a symmetric and

transitive relation on A but � is not reflexive because a � a.
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