Solution for Math 301 Homework 3

Section 2.1

6. If $a \equiv b \pmod{n}$ and $k \mid n$, is it true that $a \equiv b \pmod{k}$? Justify your answer.

Solution: If $a \equiv b \pmod{n}$ and k|n, then a - b = nr and n = ks for some $r, s \in \mathbb{Z}$. We have

$$(a-b) = ksr \Rightarrow k | (a-b) \Rightarrow a \equiv b \pmod{k}.$$

12. If $p \ge 5$ and p is prime, prove that [p] = [1] or [p] = [5] in \mathbb{Z}_6 . [Hint: Theorem 2.3 and Corollary 2.5.]

Solution: Suppose $p \ge 5$ is prime. Let p = 6k + r, where $k, r \in \mathbb{Z}$ and $0 \le r < 6$. By Corollary 2.5, we have [p] = [r]. Consider the following cases:

1. $r = 0 \Rightarrow 6|p$, a contradiction.

2. $r = 2, 4 \Rightarrow 2|p$, a contradiction.

3. $r = 3 \Rightarrow 3|p$, a contradiction.

Therefore, we have r = 1 or 5. Hence, [p] = [1] or [5] in \mathbb{Z}_6 .

14.

(a) Prove or disprove: If $ab \equiv 0 \pmod{n}$, then $a \equiv 0 \pmod{n}$ or $b \equiv 0 \pmod{n}$

Solution: Let n = 6, a = 2 and b = 3. $ab = 2 \cdot 3 \equiv 0 \pmod{6}$ but $2, 3 \not\equiv 0 \pmod{6}$.

(b) Do part (a) when n is prime.

Solution: Suppose n is prime and $ab \equiv 0 \pmod{n}$. Then, by Theorem 1.5, we have

 $n|ab \Rightarrow n|a \text{ or } n|b \Rightarrow a \equiv 0 \pmod{n} \text{ or } b \equiv 0 \pmod{n}$

16. If [a] = [1] in \mathbb{Z}_n , prove that (a, n) = 1. Show by example that the converse may be false.

Solution: If [a] = [1] in \mathbb{Z}_n , then $n|(a-1) \Rightarrow a-1 = nr$ for some $r \in \mathbb{Z}$. Since 1 = a - nr = a(1) + n(-r) is the smallest positive number that can be expressed in the form au + bv, we have (a, n) = 1.

Alternative explanation: Suppose d = (a, n). Then

$$d|a \text{ and } d|n \Rightarrow d|(a - nr) \Rightarrow d|1.$$

Hence, d = 1.

A counterexample for the converse: Let a = 2, n = 3. Then (2,3) = 1 but $[2] \neq [1]$ in \mathbb{Z}_3 .

(a) Prove or disprove: If $a^2 \equiv b^2 \pmod{n}$, then $a \equiv b \pmod{n}$ or $a \equiv -b \pmod{n}$.

Solution: The statement is not true. For a counterexample, let a = 3, b = 1 and n = 8. Then $a^2 \equiv 9 \equiv 1 \equiv b^2 \pmod{8}$. We have a - b = 2, a - (-b) = a + b = 4. Since $8 \nmid (a - b)$ and $8 \nmid (a - (-b))$, we have $a \not\equiv b \pmod{8}$ and $a \not\equiv -b \pmod{8}$.

(b) Do part (a) when n is prime.

Solution: Suppose n is prime and $a^2 \equiv b^2 \pmod{n}$. Then, by Theorem 1.5, we have

$$n|(a^2 - b^2) \Rightarrow n|(a - b)(a + b) \Rightarrow n|(a - b) \text{ or } n|(a + b).$$

 $n|(a-b) \Rightarrow a \equiv b \pmod{n}$ and $n|(a+b) \Rightarrow n|(a-(-b)) \Rightarrow a \equiv -b \pmod{n}$.

22.

(a) Give an example to show that the following statement is false: If $ab \equiv ac \pmod{n}$ and $a \not\equiv 0 \pmod{n}$, then $b \equiv c \pmod{n}$.

Solution: Let a = 2, b = 3, c = 0 and n = 6. Then

 $2 \cdot 3 \equiv 0 \equiv 2 \cdot 0 \pmod{6}$ and $2 \not\equiv 0 \pmod{n}$ but $3 \not\equiv 0 \pmod{6}$.

(b) Prove that the statement in part (a) is true whenever (a, n) = 1.

Solution: Suppose (a, n) = 1 and $ab \equiv ac \pmod{n}$. Then by Theorem 1.4, we have

$$n|(ab - ac) \Rightarrow n|a(b - c) \Rightarrow n|(b - c) \Rightarrow b \equiv c \pmod{n}.$$

Appendix C

15. What is wrong with the following "proof" that all roses are the same color. It suffices to prove the statement: In every set of n roses, all the roses in the set are the same color. If n = 1, the statement is certainly true. Assume the statement is true for n = k. Let S be a set of k + 1 roses. Remove one rose (call it rose A) from S; there are k roses remaining, and they must all be the same color by the induction hypothesis. Replace rose A and remove a different rose (call it rose B). Once again there are k roses remaining that must all be the same color by the induction hypothesis. Since the remaining roses include rose A, all the roses in S have the same color. This proves that the statement is true when n = k + 1. Therefore, the statement is true for all n by induction.

Solution: The conclusion "Since the remaining roses include rose A, all the roses in S have the same color." does not hold as in the following example.

Let $S = \{A, B\}$ be a set of two roses with two different colors A and B. Each of $S \setminus \{A\}$ and $S \setminus \{B\}$ is a set contains only one rose. Thus, each of these sets contains roses of the same color but we cannot conclude that all roses in S are of the same color.

17. Let x be a real number greater than -1. Prove that for every positive integer $n, (1+x)^n \ge 1+nx$.

Solution: Let P(n) be the statement that $(1 + x)^n \ge 1 + nx$. For n = 1, we have $(1 + x)^n = 1 + x = 1 + nx$. Therefore, P(1) is true.

Suppose P(k) is true for some $k \ge 1$. Since $x \ge -1 \Rightarrow (1+x) \ge 0$, we have

 $(1+x)^{k+1} = (1+x)(1+x)^k \ge (1+x)(1+kx) = 1 + (k+1)x + kx^2 \ge 1 + (k+1)x.$

So P(k+1) is also true. Hence, by the Principle of Mathematical Induction, P(n) is true for all $n \ge 1$.

Appendix D

11. Let \sim be defined on the set \mathbb{R}^* of nonzero real numbers by $a \sim b$ if and only if $a/b \in \mathbb{Q}$. Prove that \sim is an equivalence relation.

Solution:

- (i) **Reflxive:** $a \in \mathbb{R}^* \Rightarrow a/a = 1 \in \mathbb{Q} \Rightarrow a \sim a$.
- (ii) Symmetric: Let $a, b \in \mathbb{R}^*$. $a \sim b \Rightarrow a/b \in \mathbb{Q} \Rightarrow b/a = (a/b)^{-1} \in \mathbb{Q} \Rightarrow b \sim a$.
- (iii) **Transitive:** Let $a, b, c \in \mathbb{R}^*$.

$$a \sim b$$
 and $b \sim c \Rightarrow a/b, \ b/c \in \mathbb{Q} \Rightarrow c/a = (a/b)(b/c) \in \mathbb{Q} \Rightarrow a \sim c.$

Therefore, \sim is an equivalence relation on \mathbb{R} .

17. Let \sim be a symmetric and transitive relation on a set A. What is wrong with the following "proof" that \sim is reflexive: $a \sim b$ implies $b \sim a$ by symmetry; then $a \sim b$ and $b \sim a$ implies $a \sim a$ by transitivity. [Also see Exercise 8(f).]

Solution: The problem is that given $a \in A$, there might not be any $b \in A$ such that $a \sim b$. For example, let $A = \{a, b\}$ and \sim is defined on A with only $b \sim b$. Then \sim is a symmetric and transitive relation on A but \sim is not reflexive because $a \neq a$.