Solution for Math 301 Homework 3
Section 2.1

6. If a =0 (modn) and k|n, is it true that a = b (mod k)7 Justify your answer.

Solution: If a =0 (modn) and k|n, then a — b = nr and n = ks for some r, s € Z. We have

(a —b) = ksr = k|(a —b) = a=b (mod k).

12. If p = 5 and p is prime, prove that [p] = [1] or [p] = [5] in Zg. [Hint:Theorem 2.3 and Corollary
2.5.]

Solution: Suppose p = 5 is prime. Let p = 6k +r, where k,r € Z and 0 < r < 6. By Corollary
2.5, we have [p| = [r]. Consider the following cases:

1. r = 0 = 6[p, a contradiction.
2. r = 2,4 = 2|p, a contradiction.
3. r =3 = 3|p, a contradiction.

Therefore, we have = 1 or 5. Hence, [p] = [1] or [5] in Zg.
14.
(a) Prove or disprove: If ab =0 (modn), then a =0 (modn) or b =0 (modn)
Solution: Letn=6,a=2and b=3. ab=2-3=0 (mod6) but 2,3 # 0 (mod6).
(b) Do part (a) when n is prime.
Solution: Suppose n is prime and ab = 0 (modn). Then, by Theorem 1.5, we have

nlab = nla or n|b=a =0 (modn) or b =0 (modn)

16. If [a] = [1] in Z,, prove that (a,n) = 1. Show by example that the converse may be false.

Solution: If [a] = [1] in Z,, then n|(a — 1) = a — 1 = nr for some r € Z. Since 1 = a — nr =
a(1) + n(—r) is the smallest positive number that can be expressed in the form au + bv, we have
(a,n) = 1.

Alternative explanation: Suppose d = (a,n). Then
d|la and d|n = d|(a — nr) = d|1.
Hence, d = 1.
A counterexample for the converse: Let a = 2, n = 3. Then (2,3) =1 but [2] # [1] in Zs.



20.
(a) Prove or disprove: If a? = b* (modn), then a = b (modn) or a = —b (modn).

Solution: The statement is not true. For a counterexample, let a = 3, b =1 and n = 8. Then
a>=9=1=10* (mod8). We have a —b =2, a — (=b) = a+ b = 4. Since 8 { (a — b) and
81 (a — (—b)), we have a # b (mod 8) and a # —b (mod 8).

(b) Do part (a) when n is prime.
Solution: Suppose n is prime and a® = b? (modn). Then, by Theorem 1.5, we have
n|(a® —b*) = n|(a — b)(a + b) = n|(a — b) or n|(a +b).

n|(a —b) = a=b (modn) and n|(a + b) = n|(a — (=b)) = a = —b (modn).
22.

(a) Give an example to show that the following statement is false: If ab = ac (modn) and a #
0 (modn), then b= ¢ (modn).

Solution: Let a=2,0=3,c=0and n =6. Then

2.-3=0=2-0 (mod6) and 2 # 0 (modn) but 3 # 0 (mod6).
(b) Prove that the statement in part (a) is true whenever (a,n) = 1.

Solution: Suppose (a,n) =1 and ab = ac (modn). Then by Theorem 1.4, we have

n|(ab — ac) = nla(b — ¢) = n|(b —c¢) = b= ¢ (modn).

Appendix C

15. What is wrong with the following “proof” that all roses are the same color. It suffices to prove
the statement: In every set of n roses, all the roses in the set are the same color. If n = 1, the
statement is certainly true. Assume the statement is true for n = k. Let S be a set of k + 1 roses.

Remove one rose (call it rose A) from S; there are k roses remaining, and they must all be the
same color by the induction hypothesis. Replace rose A and remove a different rose (call it rose B).

Once again there are k roses remaining that must all be the same color by the induction hypothesis.
Since the remaining roses include rose A, all the roses in S have the same color. This proves that
the statement is true when n = k£ + 1. Therefore, the statement is true for all n by induction.

Solution: The conclusion “Since the remaining roses include rose A, all the roses in S have
the same color.” does not hold as in the following example.

Let S = {A, B} be a set of two roses with two different colors A and B. Each of S\{A} and
S\{B} is a set contains only one rose. Thus, each of these sets contains roses of the same color but
we cannot conclude that all roses in .S are of the same color.



17. Let z be a real number greater than —1. Prove that for every positive integer n, (1+x)" = 14+nzx.

Solution: Let P(n) be the statement that (1 + )" > 1 + naz.
For n = 1, we have (1 + )" = 1 4+ x = 1 4+ nz. Therefore, P(1) is true.

Suppose P(k) is true for some k > 1. Since z = —1 = (1 4+ z) = 0, we have
I+ ' =0+2)l+2)f =1 +2)1+ke)=1+(k+ Do +kz®> =1+ (k+ 1)z
So P(k+ 1) is also true. Hence, by the Principle of Mathematical Induction, P(n) is true for all
n=1.
Appendix D

11. Let ~ be defined on the set R* of nonzero real numbers by a ~ b if and only if a/b € Q. Prove
that ~ is an equivalence relation.

Solution:
(i) Reflxive: a e R* = a/a=1€Q = a ~ a.
(i) Symmetric: Let a, be R*. a ~b=a/be Q= b/a= (a/b) e Q=1b~ a.
(iii) Transitive: Let a, b, c € R*.
a~bandb~c=a/b, b/ce Q= c/a=(a/b)(b/c)e Q= a~ c.
Therefore, ~ is an equivalence relation on R.

17. Let ~ be a symmetric and transitive relation on a set A. What is wrong with the following
“proof” that ~ is reflexive: a ~ b implies b ~ a by symmetry; then a ~ b and b ~ a implies a ~ a
by transitivity. [Also see Exercise 8(f).]

Solution: The problem is that given a € A, there might not be any b € A such that a ~ b.
For example, let A = {a, b} and ~ is defined on A with only b ~ b. Then ~ is a symmetric and
transitive relation on A but ~ is not reflexive because a # a.



