Math 301 Homework 9 (due on November 1, 2023)

Section 5.2

2. Write out the addition and multiplication tables for the congruence-class ring $\mathbb{Z}_3[x]/(x^2+1)$.

6. Determine the rules for addition and multiplication of congruence classes in $\mathbb{Q}[x]/(x^2-2)$.

14. In each part explain why [f(x)] is a unit in $\mathbf{F}[x]/(p(x))$ and find its inverse.

- (a) $[f(x)] = [2x 3] \in \mathbb{Q}[x]/(x^2 2).$
- (b) $[f(x)] = [x^2 + x + 1] \in \mathbb{Z}_3[x]/(x^2 + 1).$

16. Show that $\mathbb{Q}[x]/(x^2-2)$ is a field.

Section 5.3

1. Determine whether the given congruence-class ring is a field. Justify your answer.

(a) $\mathbb{Z}_3[x]/(x^3 + 2x^2 + x + 1)$

(b)
$$\mathbb{Z}_5[x]/(2x^3 - 4x^2 + 2x + 1).$$

2.

- (a) Verify that $\mathbb{Q}(\sqrt{2}) = \{r + s\sqrt{2} \ r, s \in \mathbb{Q}\}$ is a subfield of \mathbb{R} .
- (b) Show that $\mathbb{Q}(\sqrt{2})$ is isomorphic to $\mathbb{Q}[x]/(x^2-2)$.

6. Let p(x) be irreducible in $\mathbf{F}[x]$. If $[f(x)] \neq [0_{\mathbf{F}}]$ in $\mathbf{F}[x]/(p(x))$ and $h(x) \in \mathbf{F}[x]$, prove that there exists $g(x) \in \mathbf{F}[x]$ such that [f(x)][g(x)] = [h(x)] in $\mathbf{F}[x]/(p(x))$. [*Hint*: Theorem 5.10 and Exercise 12 (b) in Section 3.2]

8. If p(x) is an irreducible quadratic polynomial in F[x], show that F[x]/(p(x)) contains all the roots of p(x).