Math 301 Homework 9 (due on November 1, 2023)

Section 5.2

2. Write out the addition and multiplication tables for the congruence-class ring $\mathbb{Z}_{3}[x] /\left(x^{2}+1\right)$.
3. Determine the rules for addition and multiplication of congruence classes in $\mathbb{Q}[x] /\left(x^{2}-2\right)$.
4. In each part explain why $[f(x)]$ is a unit in $\mathbf{F}[x] /(p(x))$ and find its inverse.
(a) $[f(x)]=[2 x-3] \in \mathbb{Q}[x] /\left(x^{2}-2\right)$.
(b) $[f(x)]=\left[x^{2}+x+1\right] \in \mathbb{Z}_{3}[x] /\left(x^{2}+1\right)$.
5. Show that $\mathbb{Q}[x] /\left(x^{2}-2\right)$ is a field.

Section 5.3

1. Determine whether the given congruence-class ring is a field. Justify your answer.
(a) $\mathbb{Z}_{3}[x] /\left(x^{3}+2 x^{2}+x+1\right)$
(b) $\mathbb{Z}_{5}[x] /\left(2 x^{3}-4 x^{2}+2 x+1\right)$.

2.

(a) Verify that $\mathbb{Q}(\sqrt{2})=\{r+s \sqrt{2} r, s \in \mathbb{Q}\}$ is a subfield of \mathbb{R}.
(b) Show that $\mathbb{Q}(\sqrt{2})$ is isomorphic to $\mathbb{Q}[x] /\left(x^{2}-2\right)$.
6. Let $p(x)$ be irreducible in $\mathbf{F}[x]$. If $[f(x)] \neq\left[0_{\mathbf{F}}\right]$ in $\mathbf{F}[x] /(p(x))$ and $h(x) \in \mathbf{F}[x]$, prove that there exists $g(x) \in \mathbf{F}[x]$ such that $[f(x)][g(x)]=[h(x)]$ in $\mathbf{F}[x] /(p(x))$. [Hint: Theorem 5.10 and Exercise 12 (b) in Section 3.2]
8. If $p(x)$ is an irreducible quadratic polynomial in $F[x]$, show that $F[x] /(p(x))$ contains all the roots of $p(x)$.

