Math 301 Homework 8 (due on October 25, 2023)

Section 4.5

4. Show that each polynomial is irreducible in $\mathbb{Q}[x]$, as in Example 3.
(a) $f(x)=x^{4}+2 x^{3}+x+1$.
(b) $f(x)=x^{4}-2 x^{2}+8 x+1$
5. Give an example of a polynomial $f(x) \in \mathbb{Z}[x]$ and a prime p such that $f(x)$ is reducible in $\mathbb{Q}[x]$ but $\bar{f}(x)$ is irreducible in $\mathbb{Z}_{p}[x]$. Does this contradict Theorem 4.25 ?
6. Which of these polynomials are irreducible in $\mathbb{Q}[x]$?
(a) $f(x)=x^{4}-x^{2}+1$.
(b) $f(x)=x^{4}+x+1$.

19(b). Write the polynomial $x^{7}-2 x^{6}-6 x^{4}-15 x^{2}-33 x-9$ as a product of irreducible polynomials in $\mathbb{Q}[x]$.

Section 4.6

1 (b). Find all roots in \mathbb{C} of $f(x)=x^{4}-2 x^{3}-x^{2}+6 x-6$; given $1+i$ is a root.
4. Factor $x^{2}+x+1+i$ in $\mathbb{C}[x]$.

Section 5.1

4. Show that, under congruence modulo $x^{3}+2 x+1$ in $\mathbb{Z}_{3}[x]$, there are exactly 27 distinct congruence classes.
5. Prove or disprove: If $p(x)$ is relatively prime to $k(x)$ and $f(x) k(x) \equiv g(x) k(x)(\bmod p(x))$, then $f(x) \equiv g(x)(\bmod p(x))$.
6. Prove or disprove: If $p(x)$ is irreducible in $\mathbf{F}[x]$ and $f(x) g(x) \equiv 0_{\mathbf{F}}(\bmod p(x))$, then $f(x) \equiv 0_{\mathbf{F}}(\bmod p(x))$ or $g(x) \equiv 0_{\mathbf{F}}(\bmod p(x))$.
7. If $f(x)$ is relatively prime to $p(x)$, prove that there is a polynomial $g(x) \in \mathbf{F}[x]$ such that $f(x) g(x) \equiv 1_{\mathbf{F}}(\bmod p(x))$.
