Math 301 Homework 7 (due on October 18, 2023)

Section 4.3

6. Show that $x^{2}+1$ is irreducible in $\mathbb{Q}[x]$.
7. Express $x^{4}-4$ as a product of irreducibles in $\mathbb{Q}[x], \mathbb{R}[x]$, and in $\mathbb{C}[x]$.
8. Show that $x^{2}+x$ can be factored in two ways in $\mathbb{Z}_{6}[x]$ as the product of non-constant polynomials that are not units and not associates of x or $x+1$.
9.

(a) Show that $x^{3}+a$ is reducible in $\mathbb{Z}_{3}[x]$ for each $a \in \mathbb{Z}_{5}$.
(b) Show that $x^{5}+a$ is reducible in $\mathbb{Z}_{5}[x]$ for each $a \in \mathbb{Z}_{5}$.

Section 4.4

2. Find the remainder when $f(x)$ is divided by $g(x)$:
(a) $f(x)=x^{10}+x^{8}$ and $g(x)=x-1$ in $\mathbb{Q}[x]$.
(d) (Typo corrected on Oct 16, 11am) $f(x)=2 x^{5}-3 x^{4}+x^{3}+\mathbf{2 x}+3$ and $g(x)=$ $x-3$ in $\mathbb{Z}_{5}[x]$.
3. Determine if the given polynomial is irreducible.
(c) $x^{2}+7$ in $\mathbb{C}[x]$.
(d) $2 x^{3}+x^{2}+2 x+2$ in $\mathbb{Z}_{5}[x]$.
(e) $x^{3}-9$ in $\mathbb{Z}_{11}[x]$.
(f) $x^{4}+x^{2}+1$ in $\mathbb{Z}_{3}[x]$.
4. Find a prime $p>5$ such that $x^{2}+1$ is reducible in $\mathbb{Z}_{p}[x]$.
5. Let $f(x), g(x) \in F[x]$ have degree $\leq n$ and let c_{0}, \ldots, c_{n} be distinct elements of F. If $f\left(c_{i}\right)=g\left(c_{i}\right)$ for $i=0, \ldots, n$, prove that $f(x)=g(x)$ in $F[x]$.
