Math 301 Homework 7 (due on October 18, 2023)

Section 4.3

6. Show that $x^2 + 1$ is irreducible in $\mathbb{Q}[x]$.

12. Express $x^4 - 4$ as a product of irreducibles in $\mathbb{Q}[x]$, $\mathbb{R}[x]$, and in $\mathbb{C}[x]$.

14. Show that $x^2 + x$ can be factored in two ways in $\mathbb{Z}_6[x]$ as the product of non-constant polynomials that are not units and not associates of x or x + 1.

22.

- (a) Show that $x^3 + a$ is reducible in $\mathbb{Z}_3[x]$ for each $a \in \mathbb{Z}_5$.
- (b) Show that $x^5 + a$ is reducible in $\mathbb{Z}_5[x]$ for each $a \in \mathbb{Z}_5$.

Section 4.4

- **2.** Find the remainder when f(x) is divided by g(x):
- (a) $f(x) = x^{10} + x^8$ and g(x) = x 1 in $\mathbb{Q}[x]$.
- (d) (Typo corrected on Oct 16, 11am) $f(x) = 2x^5 3x^4 + x^3 + 2x + 3$ and g(x) = x 3 in $\mathbb{Z}_5[x]$.
- 8. Determine if the given polynomial is irreducible.

10. Find a prime p > 5 such that $x^2 + 1$ is reducible in $\mathbb{Z}_p[x]$.

16. Let $f(x), g(x) \in F[x]$ have degree $\leq n$ and let c_0, \ldots, c_n be distinct elements of F. If $f(c_i) = g(c_i)$ for $i = 0, \ldots, n$, prove that f(x) = g(x) in F[x].