## Math 301 Homework 5 (due on September 27, 2023)

## Section 3.1

12. Let $\mathbb{Z}[i]$ denote the set $\{a+b i \mid a, b \in \mathbb{Z}\}$. Show that $\mathbb{Z}[i]$ is a subring of $\mathbb{C}$.
13. Define a new addition $\oplus$ and multiplication $\odot$ on $\mathbb{Z}$ by

$$
a \oplus b=a+b-1 \text { and } a \odot b=a+b-a b,
$$

where the operation on the right-hand side of the equal signs are ordinary addition, subtraction, and multiplication. Prove that, with the new operations $\oplus$ and $\odot, \mathbb{Z}$ is an integral domain.
30. The addition table and part of the multiplication table for a four-element ring are given below. Use the distributive laws to complete the multiplication table.

$$
\begin{array}{c|cccccc|cccc}
+ & w & x & y & z & & \cdot & w & x & y & z \\
\hline w & w & x & y & z & & w & w & w & w & w \\
x & x & y & z & w & \text { and } & x & w & y & & \\
y & y & z & w & x & & y & w & & w & \\
z & z & w & x & y & & z & w & & w & y
\end{array}
$$

42. A division ring is a (not necessarily commutative) ring $R$ with identity $1_{R} \neq$ $0_{R}$ that satisfies Axiom 11 and 12 (pages 48 and 49). Thus a field is a commutative division ring. See Exercise 43 for a noncommutative example. Suppose $R$ is a division ring and $a, b$ are nonzero elements of $R$.
(a) If $b b=b$, prove that $b=1_{R}$. [Hint: Let $v$ be a solution of $b x=1_{R}$ and note that $b v=b^{2} v$.]
(b) If $u$ is a solution of the equation $a x=1_{R}$, prove that $u$ is also a solution of the equation $x a=1_{R}$. (Remember that $R$ may not be commutative.) [Hint: Use part (a) with $b=u a$.]

## Section 3.2

12. Let $a, b$ be elements of a ring $R$.
(a) Prove that the equation $a+x=b$ has a unique solution in $R$. (You must prove that there is a solution and that this solution is the only one.)
(b) If $R$ is a ring with identity and $a$ is a unit, prove that the equation $a x=b$ has a unique solution in $R$.
13. Let $a$ be a nonzero element of a ring with identity. If the equation $a x=1_{R}$ has a solution $u$ and the equation $y a=1_{R}$ has a solution $v$, prove that $u=v$.
14. 

(a) If $a b$ is a zero divisor in a ring $R$, prove that $a$ or $b$ is a zero divisor.
(b) If $a$ or $b$ is a zero divisor in a commutative ring $R$ and $a b \neq 0$, prove that $a b$ is a zero divisor.
33. Let $R$ be a ring with identity. If $a b$ and $a$ are units in $R$. Prove that $b$ is a unit.
40. An element $a$ of a ring is nilpotent if $a^{n}=0_{R}$ for some positive integer $n$. Prove that $R$ has no nonzero nilpotent elements if and only if $0_{R}$ is the unique solution of the equation $x^{2}=0_{R}$.

