Math 301 Homework 5 (due on September 27, 2023)

Section 3.1

12. Let $\mathbb{Z}[i]$ denote the set $\{a + bi | a, b \in \mathbb{Z}\}$. Show that $\mathbb{Z}[i]$ is a subring of \mathbb{C} .

22. Define a new addition \oplus and multiplication \odot on \mathbb{Z} by

$$a \oplus b = a + b - 1$$
 and $a \odot b = a + b - ab$,

where the operation on the right-hand side of the equal signs are ordinary addition, subtraction, and multiplication. Prove that, with the new operations \oplus and \odot , \mathbb{Z} is an integral domain.

30. The addition table and part of the multiplication table for a four-element ring are given below. Use the distributive laws to complete the multiplication table.

+	w	x	y	z		•	w	x	y	z
		x				w			w	w
x	x	y	z	w	and	x	w	y		
		z				-	w			
z	z	w	x	y		z	w		w	y

42. A division ring is a (not necessarily commutative) ring R with identity $1_R \neq 0_R$ that satisfies Axiom 11 and 12 (pages 48 and 49). Thus a field is a commutative division ring. See Exercise 43 for a noncommutative example. Suppose R is a division ring and a, b are nonzero elements of R.

- (a) If bb = b, prove that $b = 1_R$. [*Hint:* Let v be a solution of $bx = 1_R$ and note that $bv = b^2 v$.]
- (b) If u is a solution of the equation $ax = 1_R$, prove that u is also a solution of the equation $xa = 1_R$. (Remember that R may not be commutative.) [*Hint:* Use part (a) with b = ua.]

Section 3.2

- **12.** Let a, b be elements of a ring R.
- (a) Prove that the equation a + x = b has a unique solution in R. (You must prove that there is a solution and that this solution is the only one.)
- (b) If R is a ring with identity and a is a unit, prove that the equation ax = b has a unique solution in R.

18. Let a be a nonzero element of a ring with identity. If the equation $ax = 1_R$ has a solution u and the equation $ya = 1_R$ has a solution v, prove that u = v. 22.

- (a) If ab is a zero divisor in a ring R, prove that a or b is a zero divisor.
- (b) If a or b is a zero divisor in a commutative ring R and $ab \neq 0$, prove that ab is a zero divisor.

33. Let R be a ring with identity. If ab and a are units in R. Prove that b is a unit.

40. An element a of a ring is **nilpotent** if $a^n = 0_R$ for some positive integer n. Prove that R has no nonzero nilpotent elements if and only if 0_R is the unique solution of the equation $x^2 = 0_R$.