Math 301 Homework 4 (due on September 20, 2023)

Section 2.2

6. Solve the equation $x^2 \oplus [8] \odot x = [0]$ in \mathbb{Z}_9 .

8. Solve the equation $x^3 \oplus x^2 = [2]$ in \mathbb{Z}_{10} .

12. Prove or disprove: If $[a] \odot [b] = [0]$ in \mathbb{Z}_n , then [a] = [0] or [b] = [0].

14(c). If p is a positive prime, show that the only solutions of $x^2 \oplus x = [0]$ in \mathbb{Z}_p are [0] and [p-1].

16. Find all [a] in \mathbb{Z}_n for which the equation $[a] \odot x = [1]$ has a solution, in the case when

(a) n = 5, (b) n = 4, (c) n = 3, (d) n = 6

Section 2.3

2. Find all zero-divisors in

(a) \mathbb{Z}_7 , (b) \mathbb{Z}_8 , (c) \mathbb{Z}_9 , (d) \mathbb{Z}_{10}

6. If *n* is composite, prove that there is at least one zero-divisor in \mathbb{Z}_n . (See Exercise 2.)

10. Prove that every nonzero element of \mathbb{Z}_n is either a unit or a zero-divisor, but not both. [Hint: Exercise 9 provides the proof of "not both".]

Section 3.1

2. Let $R = \{0, e, b, c\}$ with addition and multiplication defined by the tables below. Assume associativity and distributivity and show that R is a ring with identity. Is R commutative? Is R a field?

+	0	е	b	с	•	0	е	b	с
0	0	е	b	с	0	0	0	0	0
е	e	0	с	b	е	0	е	b	с
b	b	с	0	е	b	0	b	b	0
с	c	b	е	0	с	0	с	0	с

4. Find matrices A and C in $M(\mathbb{R})$ such that $AC = \mathbf{0}$ but $CA \neq \mathbf{0}$, where **0** is the zero matrix. [Hint: Example 6.]