Section 2.2

6. Solve the equation $x^{2} \oplus[8] \odot x=[0]$ in \mathbb{Z}_{9}.
7. Solve the equation $x^{3} \oplus x^{2}=[2]$ in \mathbb{Z}_{10}.
8. Prove or disprove: If $[a] \odot[b]=[0]$ in \mathbb{Z}_{n}, then $[a]=[0]$ or $[b]=[0]$.
$\mathbf{1 4 (c)}$. If p is a positive prime, show that the only solutions of $x^{2} \oplus x=[0]$ in \mathbb{Z}_{p} are $[0]$ and $[p-1]$.
9. Find all $[a]$ in \mathbb{Z}_{n} for which the equation $[a] \odot x=[1]$ has a solution, in the case when
(a) $n=5$,
(b) $n=4$,
(c) $n=3$,
(d) $n=6$

Section 2.3

2. Find all zero-divisors in
(a) \mathbb{Z}_{7},
(b) \mathbb{Z}_{8},
(c) \mathbb{Z}_{9},
(d) \mathbb{Z}_{10}
3. If n is composite, prove that there is at least one zero-divisor in \mathbb{Z}_{n}. (See Exercise 2.)
4. Prove that every nonzero element of \mathbb{Z}_{n} is either a unit or a zero-divisor, but not both. [Hint: Exercise 9 provides the proof of "not both".]

Section 3.1

2. Let $R=\{0, e, b, c\}$ with addition and multiplication defined by the tables below. Assume associativity and distributivity and show that R is a ring with identity. Is R commutative? Is R a field?

$$
\begin{array}{c|ccccc|cccc}
+ & 0 & \mathrm{e} & \mathrm{~b} & \mathrm{c} & \cdot & 0 & \mathrm{e} & \mathrm{~b} & \mathrm{c} \\
\hline 0 & 0 & \mathrm{e} & \mathrm{~b} & \mathrm{c} & 0 & 0 & 0 & 0 & 0 \\
\mathrm{e} & \mathrm{e} & 0 & \mathrm{c} & \mathrm{~b} & \mathrm{e} & 0 & \mathrm{e} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~b} & \mathrm{~b} & \mathrm{c} & 0 & \mathrm{e} & \mathrm{~b} & 0 & \mathrm{~b} & \mathrm{~b} & 0 \\
\mathrm{c} & \mathrm{c} & \mathrm{~b} & \mathrm{e} & 0 & \mathrm{c} & 0 & \mathrm{c} & 0 & \mathrm{c}
\end{array}
$$

4. Find matrices A and C in $M(\mathbb{R})$ such that $A C=\mathbf{0}$ but $C A \neq \mathbf{0}$, where $\mathbf{0}$ is the zero matrix. [Hint: Example 6.]
