Math 301 Homework 3 (due on September 13, 2023)

Section 2.1

6. If $a \equiv b(\bmod n)$ and $k \mid n$, is it true that $a \equiv b(\bmod k)$? Justify your answer.
7. If $p \geq 5$ and p is prime, prove that $[p]=[1]$ or $[p]=[5]$ in \mathbb{Z}_{6}. [Hint:Theorem 2.3 and Corollary 2.5.]

14.

(a) Prove or disprove: If $a b \equiv 0(\bmod n)$, then $a \equiv 0(\bmod n)$ or $b \equiv 0(\bmod n)$
(b) Do part (a) when n is prime.
16. If $[a]=[1]$ in \mathbb{Z}_{n}, prove that $(a, n)=1$. Show by example that the converse may be false.
20.
(a) Prove or disprove: If $a^{2} \equiv b^{2}(\bmod n)$, then $a \equiv b(\bmod n)$ or $a \equiv-b(\bmod n)$.
(b) Do part (a) when n is prime.

22.

(a) Give an example to show that the following statement is false: If $a b \equiv$ $a c(\bmod n)$ and $a \not \equiv 0(\bmod n)$, then $b \equiv c(\bmod n)$.
(b) Prove that the statement in part (a) is true whenever $(a, n)=1$.

Appendix C

15. What is wrong with the following "proof" that all roses are the same color?

It suffices to prove the statement: In every set of n roses, all the roses in the set are the same color. If $n=1$, the statement is certainly true. Assume the statement is true for $n=k$. Let S be a set of $k+1$ roses. Remove one rose (call it rose A) from S; there are k roses remaining, and they must all be the same color by the induction hypothesis. Replace rose A and remove a different rose (call it rose B). Once again there are k roses remaining that must all be the same color by the induction hypothesis. Since the remaining roses include rose A, all the roses in S have the same color. This proves that the statement is true when $n=k+1$. Therefore, the statement is true for all n by induction.
17. Let x be a real number greater than -1 . Prove that for every positive integer $n,(1+x)^{n} \geq 1+n x$.

Appendix D

11. Let \sim be defined on the set \mathbb{R}^{*} of nonzero real numbers by $a \sim b$ if and only if $a / b \in \mathbb{Q}$. Prove that \sim is an equivalence relation.
12. Let \sim be a symmetric and transitive relation on a set A. What is wrong with the following "proof" that \sim is reflexive: $a \sim b$ implies $b \sim a$ by symmetry; then $a \sim b$ and $b \sim a$ implies $a \sim a$ by transitivity. [Also see Exercise 8(f).]
