Math 301 Homework 2 (due on September 6, 2023)

Section 1.2

1. Find the greatest common divisor using Euclid's algorithm.
d) $(143,231)$
h) $(12378,3054)$
2.

a) If $a \mid b$ and $a \mid c$, prove that $a \mid(b+c)$.
b) If $a \mid b$ and $a \mid c$, prove that $a \mid(b r+c t)$ for any $r, t \in \mathbb{Z}$.
22. If $(a, c)=1$ and $(b, c)=1$, prove that $(a b, c)=1$.
24. Let $a, b, c \in \mathbb{Z}$. Prove that the equation $a x+b y=c$ has integer solutions if and only if $(a, b) \mid c$.

Section 1.3

14. Let p be an integer other than $0, \pm 1$ with this property: Whenever b and c are integers such that $p \mid b c$, then $p \mid b$ or $p \mid c$. Prove that p is prime.
Hint: If d is a divisor of p, say $p=d t$, then $p \mid d$ or $p \mid t$. Show that this implies $d= \pm p$ or $d= \pm 1$.
15. Let $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{n}^{r_{n}}$ where p_{i} are distinct primes and each $r_{i}>0$. Prove that n is a perfect square if and only if each r_{i} is even.
16.

a) Prove that there are no nonzero integers a, b such that $a^{2}=2 b^{2}$.

Hint: Use the Fundamental Theorem of Arithmetic.
b) Prove that $\sqrt{2}$ is irrational.

Hint: Use proof by contradiction (Appendix A). Assume that $\sqrt{2}=a / b$ (with $a, b \in \mathbb{Z}$) and use part (a) to reach a contradiction.
34. Prove or disprove: If n is an integer and $n>2$, then there exists a prime p such that $n<p<n$!.
36. Let p, q be primes with $p \geq 5, q \geq 5$. Prove that $24 \mid\left(p^{2}-q^{2}\right)$.

