Math 301 Homework 2 (due on September 6, 2023)

Section 1.2

- 1. Find the greatest common divisor using Euclid's algorithm.
 - d) (143, 231)
 - h) (12378, 3054)

4.

- a) If a|b and a|c, prove that a|(b+c).
- b) If a|b and a|c, prove that a|(br + ct) for any $r, t \in \mathbb{Z}$.

22. If (a, c) = 1 and (b, c) = 1, prove that (ab, c) = 1.

24. Let $a, b, c \in \mathbb{Z}$. Prove that the equation ax + by = c has integer solutions if and only if (a, b)|c.

Section 1.3

14. Let p be an integer other than $0, \pm 1$ with this property: Whenever b and c are integers such that p|bc, then p|b or p|c. Prove that p is prime.

Hint: If d is a divisor of p, say p = dt, then p|d or p|t. Show that this implies $d = \pm p$ or $d = \pm 1$.

22. Let $n = p_1^{r_1} p_2^{r_2} \cdots p_n^{r_n}$ where p_i are distinct primes and each $r_i > 0$. Prove that n is a perfect square if and only if each r_i is even.

30.

- a) Prove that there are no nonzero integers a, b such that $a^2 = 2b^2$. Hint: Use the Fundamental Theorem of Arithmetic.
- b) Prove that $\sqrt{2}$ is irrational. *Hint: Use proof by contradiction (Appendix A). Assume that* $\sqrt{2} = a/b$ (with $a, b \in \mathbb{Z}$) and use part (a) to reach a contradiction.

34. Prove or disprove: If n is an integer and n > 2, then there exists a prime p such that n .

36. Let p, q be primes with $p \ge 5$, $q \ge 5$. Prove that $24|(p^2 - q^2)$.