Math 301 Homework 12 (due on December 6, 2023)

Section 7.5

3, 4. Express each permutation as a product of disjoint cycles and as a product of transpositions.
(b) $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 5 & 1 & 2 & 4 & 6 & 8 & 9 & 7\end{array}\right)$
(d) $(14)(27)(523)(34)(1472)$
6. Find the order of each permutation.
(b) $(123)(456)$.
(c) $(123)(435)$.
(d) $(1234)(4231)$.
(e) $(1234)(24)(43215)$.

14 Show that $\beta=(1236)(5910)(465)(5678)$ has order 21 in $S_{n}(n \geq 10)$.
21. Find the order of σ^{1000}, where σ is the permutation

$$
\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 7 & 8 & 9 & 4 & 5 & 2 & 1 & 6
\end{array}\right)
$$

22. Show that S_{10} contains elements of orders $10,20,30$. Does it contain an element of order 40?

Section 8.1

6. Let $K=\langle 3\rangle ; G=U_{32}$. List the distinct K cosets of K in G.
7. A group has fewer than 100 elements and subgroups of order 10 and 25 . What is the order of the group?
8. Prove that a group of order 8 must contain an element of order 2 .
9. Let H and K be subgroups of a finite group G such that $K \subseteq H,[G: H]$ is finite, and $[H: K]$ is finite Prove that $[G: K]=[G: H][H: K]$. [Hint: Lagrange.]
10.

(a) If a and b each have order 3 in a group and $a^{2}=b^{2}$, prove that $a=b$. [Hint: What are a^{-1} and b^{-1}.]
(b) If G is a finite group, prove that there is an even number of elements of order 3 in G.

