Section 7.5

3, **4**. Express each permutation as a product of disjoint cycles **and** as a product of transpositions.

(d) (14)(27)(523)(34)(1472)

6. Find the order of each permutation.

- (b) (123)(456).
- (c) (123)(435).
- (d) (1234)(4231).
- (e) (1234)(24)(43215).

14 Show that $\beta = (1236)(5910)(465)(5678)$ has order 21 in S_n $(n \ge 10)$.

21. Find the order of σ^{1000} , where σ is the permutation

22. Show that S_{10} contains elements of orders 10, 20, 30. Does it contain an element of order 40?

Section 8.1

6. Let $K = \langle 3 \rangle$; $G = U_{32}$. List the distinct K cosets of K in G.

20. A group has fewer than 100 elements and subgroups of order 10 and 25. What is the order of the group?

26. Prove that a group of order 8 must contain an element of order 2.

29. Let *H* and *K* be subgroups of a finite group *G* such that $K \subseteq H$, [G : H] is finite, and [H : K] is finite Prove that [G : K] = [G : H][H : K]. [*Hint:* Lagrange.] **33.**

- (a) If a and b each have order 3 in a group and $a^2 = b^2$, prove that a = b. [*Hint:* What are a^{-1} and b^{-1} .]
- (b) If G is a finite group, prove that there is an even number of elements of order 3 in G.