Math 301 Homework 11 (due on November 29, 2023)

Section 7.3

6. Describe $\langle 2 \rangle$ in the multiplicative group of nonzero elements in \mathbb{Z}_{11} .

12. Show that the additive group $\mathbb{Z}_2 \times \mathbb{Z}_4$ is not cyclic but generated by two elements.

14. Let H and K be subgroups of a group G.

- (a) Show by example that $H \cup K$ need not be a subgroup of G.
- (b) Prove that $H \cup K$ is a subgroup of G if and only if $H \subseteq K$ or $K \subseteq H$.

28. Let G be an abelian group and n a fixed positive integer.

- (a) Prove that $H = \{a \in G | a^n = e\}$ is a subgroup of G.
- (b) Show by example that part (a) may be false if G is nonabelian.

Section 7.4

6. Prove that the function $h : \mathbb{Z}_8 \to \mathbb{Z}_8$ defined by h(x) = 2x is a homomorphism that is neither injective nor surjective.

12. Prove that the function $h : \mathbb{R} \to GL(2, \mathbb{R})$ defined by $h(x) = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}$ is a injective homomorphism.

14. Prove that the additive group \mathbb{Z}_6 is isomorphic to the multiplicative group of nonzero elements in \mathbb{Z}_7 .

24. Let G be a multiplicative group. Let G^{op} be the set G equipped with a new operation * defined by a * b = ba.

- (a) Prove that G^{op} is a group.
- (b) Prove that $G \cong G^{op}$. [*Hint:* Corollary 7.6 may be helpful.]