Math 301 Homework 10 (due on November 15, 2023)

Section 7.1

4. Determine whether the set G is a group under the operation $*$.
(a) $G=\{2,4,6,8\}$ in $\mathbb{Z}_{10} ; a * b=a b$
(b) $G=\mathbb{Z} ; a * b=a-b$
(c) $G=\{n \in \mathbb{Z} \mid n$ is odd $\} ; a * b=a+b$
(d) $G=\left\{2^{x} \mid x \in \mathbb{Q}\right\} ; a * b=a b$
5. Use Theorem 2.10 to list the elements of each of these groups: U_{4}, U_{6}, U_{10}, U_{20}, U_{30}.
6. Show that $G=\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right.$, not both 0$\}$ is an abelian group under matrix multiplication.
7. Prove that the set of nonzero real numbers is a group under the operation $*$ defined by

$$
a * b= \begin{cases}a b & \text { if } a>0 \\ a / b & \text { if } a<0\end{cases}
$$

30. A partial operation table for a group $G=\{e, a, b, c, d, f\}$ is shown below. Complete the table.

	e	a	b	c	d	f
e	e	a	b	c	d	f
a	a	b	e	d		
b	b					
c	c	f				a
d	d					
f	f					

Section 7.2

7. Find the order of the given element.
(b) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 3 & 7 & 5 & 1 & 4 & 6\end{array}\right)$ in S_{7}.
(d) $\left(\begin{array}{rr}-\frac{1}{2} & \frac{1}{2} \\ -\frac{3}{2} & -\frac{1}{2}\end{array}\right)$ in $G L(2, \mathbb{R})$.
8. If $a, b \in G$ and n is any integer. Show that $\left(a b a^{-1}\right)^{n}=a b^{n} a^{-1}$.
9.

(a) Show that $a=\left(\begin{array}{rr}0 & 1 \\ -1 & -1\end{array}\right)$ has order 3 in $G L(2, \mathbb{R})$ and $b=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ has order 4.
(b) Show that $a b$ has infinite order.
24. If $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$, prove that G is abelian.
34. Suppose G has order 4, but no element of order 4.
(a) Prove that no element of G has order 3. [Hint: If $|g|=3$, then G consists of four distinct elements $g, g^{2}, g^{3}=e, d$ Now $g d$ must be one of these four elements. SHow that each possibility leads to contradiction.]
(b) Explain why every nonidentity element of G has order 2 .
(c) Denote the elements of G by e, a, b, c and write out the operation table for G.

