Math 301 Homework 1 (due on August 30, 2023)

Appendix B

9. Let $A = \{1, 2, 3, 4\}$. Exhibit functions f and g from A to A such that $f \circ g \neq g \circ f$.

11. Is the subset B closed under the given operation?

- (b) B = odd integers; operation: addition in \mathbb{Z} .
- (d) B = odd integers; operation * on \mathbb{Z} , where a * b is defined to be the number ab (a + b) + 2.

12. Find the image of the function f when

(b)
$$f : \mathbb{Z} \to \mathbb{Q}; f(x) = x - 1.$$

(c)
$$f : \mathbb{R} \to \mathbb{R}; f(x) = -x^2 + 1.$$

24. Determine whether the given operation on \mathbb{R} is commutative (that is, a * b = b * a for all a, b) or associative (that is, a * (b * c) = (a * b) * c for all a, b, c).

(a) $a * b = 2^{ab}$.

(b)
$$a * b = ab^2$$
.

(d)
$$a * b = (a + b)/2.$$

(f)
$$a * b = b$$
.

25. Prove that the given function is injective.

(b)
$$f : \mathbb{R} \to \mathbb{R}; f(x) = x^3$$
.

(d)
$$f : \mathbb{R} \to \mathbb{R}; f(x) = -3x + 5.$$

26. Prove that the given function is surjective.

(c)
$$f : \mathbb{R} \to \mathbb{R}; f(x) = -3x + 5.$$

(d)
$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}; f(a, b) = a/b$$
 when $b \neq 0$ and 0 when $b = 0$.

28.

(a) Let $f: B \to C$ and $g \to C \to D$ be functions such that $g \circ f$ is injective. Prove that f is injective. (b) Give an example of the situation in part (a) in which g is not injective.

Section 1.1

2. Find the quotient q and remainder r when a is divided by b, without using technology. Check your answers.

- (a) a = -51; b = 6.
- (b) a = 302; b = 19.

9. Prove that the cube of any integer *a* has to be exactly one of these forms: 9k or 9k + 1 or 9k + 8 for some integer *k*. [*Hint:* By the Division Algorithm, *a* must be of the form 3q or 3q + 1 or 3q + 2.]