Math 504 - Abstract Algebra I — Fall 2022 - Review Problems for Final Exam

By "ring" we mean "ring with 1 ". Ring homomorphisms and subrings are assumed to be unital. The dihedral group of order n is denoted D_{n}.

1. Find the group of units of $\mathbb{Z}[(1+\sqrt{-3}) / 2]$.
2. Describe all group homomorphisms $D_{16} \rightarrow Q_{8}$.
3. Find the smallest positive integer n such that the alternating group A_{n} contains an element σ of order 42. Then find the order of the centralizer of σ in A_{n}.
4. (Hard!) Let $G=\left\langle x, y, z \mid x^{2}=y^{3}=z, z^{2}=1, z x=x z, z y=y z\right\rangle$. Show there is an isomorphism $G \rightarrow \mathrm{SL}(2, \mathbb{Z})$. (Hint: Consider the matrices $X=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], Y=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right]$, $\left.Z=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right].\right)$
5. Let $G=\left\langle u, v, w \mid u v=v u, v w=w v, w u=u w,(u v w)^{4}=1, u^{4} v^{6} w^{8}=1\right\rangle$. Describe the torsion subgroup of G.
6. A Christmas decoration in the shape of an (irregular) octahedron with vertices $(\pm 1,0,0)$, $(0, \pm 1,0),(0,0, \pm 3)$ is to be painted using three colors (red, green, gold). How many possibilities are there? (The decoration can be turned up-side-down. Each side has one color and not all colors need to be used.)
7. Let G be a group of order 315 having a normal Sylow 3 -subgroup. Prove that $Z(G)$ contains a Sylow 3-subgroup and deduce that G is abelian.
8. (a) Show that no group of order $3^{4} \cdot 5 \cdot 11$ is simple.
(b) Show that no group of order 768 is simple.
9. Use semidirect products to construct a nonabelian group of order $p^{2}\left(p^{2}-p\right) / 4$ for each prime p congruent to $1 \bmod 4$.
10. Let R be a (not necessarily commutative) ring. Let P be an ideal of R. Prove that the following two statements are equivalent.
(a) If $P \supseteq I J$ for some ideals I, J of R, then $P \supseteq I$ or $P \supseteq J$.
(b) If $a R b \subseteq P$ for some elements $a, b \in R$, then $a \in P$ or $b \in P$.
11. Let R be the ring $\left[\begin{array}{ll}\mathbb{Z} & \mathbb{Z} \\ 0 & \mathbb{Z}\end{array}\right]$. Show that every maximal ideal is of the form $\left[\begin{array}{cc}p \mathbb{Z} & \mathbb{Z} \\ 0 & \mathbb{Z}\end{array}\right]$ or $\left[\begin{array}{cc}\mathbb{Z} & \mathbb{Z} \\ 0 & p \mathbb{Z}\end{array}\right]$ where p is a prime in \mathbb{Z}. (Note: R is not commutative!) (Hint: First prove that any maximal ideal must contain $\left[\begin{array}{ll}0 & \mathbb{Z} \\ 0 & 0\end{array}\right]$. Then use the second isomorphism theorem and lattice isomorphism theorem for rings.)
12. Let R be a commutative ring of characteristic zero, and let P be a prime ideal of R. Prove that if P is finite then R / P has characteristic zero. Does the converse hold?
13. Let \mathbb{F} be a field and let $f(x) \in \mathbb{F}[x]$ be a nonzero polynomial. Let $R=\mathbb{F}[x, y] /(f(x))$. Prove that R is an integral domain if and only if R is a Euclidean domain.
14. Which of the following statements are true?
(i) Every integral domain is isomorphic to a subring of a Euclidean domain.
(ii) If R is a PID then $R[x]$ is a PID.
(iii) Every commutative ring is isomorphic to a subring of a field.
(iv) If R is a Euclidean domain then $R[x]$ is a Euclidean domain.
(v) If R is a UFD then R / P is a PID for every prime ideal P of R.
(vi) Every ring of characteristic zero is commutative.
15. Find all solutions to the system of congruence equations in $\mathbb{Z}[i]$:

$$
\left\{\begin{array}{l}
x \equiv 1+i(\bmod 2+5 i) \\
x \equiv 2-i(\bmod 3-2 i)
\end{array}\right.
$$

16. Let $\mathbb{F}_{4}=\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)$. Find all irreducible polynomials $f(y)$ of degree at most three in $\mathbb{F}_{4}[y]$.
