4. Let $G=\left\langle x, y, z \mid x^{2}=y^{3}=z, z^{2}=1, z x=x z, z y=y z\right\rangle$. Show there is an isomorphism $G \rightarrow \mathrm{SL}(2, \mathbb{Z})$. (Hint: Consider the matrices $X=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right], Y=\left[\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right], Z=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.) Solution: Define $\phi:\{x, y, z\} \rightarrow \mathrm{SL}(2, \mathbb{Z})$ by $\phi(x)=X, \phi(y)=Y, \phi(z)=Z$. By the universal property of free groups, f extends to a group homomorphism $\Phi: F(x, y, z) \rightarrow \mathrm{SL}(2, \mathbb{Z})$ such that $\Phi(x)=X, \Phi(y)=Y, \Phi(z)=Z$. By definition, $G=F(x, y, z) / N$ where N is the normal subgroup of $F(x, y, z)$ generated by the five elements $x^{2} z^{-1}, y^{3} z^{-1}, z^{2}, z x z^{-1} x^{-1}, z y z^{-1} z^{-1}$. One checks that each of these is contained in the kernel of Φ. For example,

$$
\Phi\left(x^{2} z^{-1}\right)=\Phi(x)^{2} \Phi(z)^{-1}=X^{2} Z^{-1}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=I .
$$

Therefore, Φ induces a well-defined group homomorphism

$$
\varphi: G \rightarrow \mathrm{SL}(2, \mathbb{Z})
$$

satisfying $\varphi(x)=X, \varphi(x)=Y, \varphi(z)=Z$.
Next, we show that φ is surjective. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \operatorname{SL}(2, \mathbb{Z})$. We need to show $A \in \varphi(G)$, meaning A can be written as a product of the matrices X, Y, Z in some order. We proceed by induction on $N=\min \{|a|,|c|\}$. For the base case, suppose $N=0$. Then, since $X A=$ $\left[\begin{array}{cc}-c & -d \\ a & b\end{array}\right]$, we may without loss of generality assume that $|c|=N=0$. Since $a d-b c=1$, we get $(a, d) \in\{(1,1),(-1,-1)\}$. After multiplying by Z we may assume $(a, d)=(1,1)$. Then $A=(X Y Z)^{b}$, since $X Y Z=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. For the induction step, suppose $N>0$. Then $X A=\left[\begin{array}{cc}-c & -d \\ a & b\end{array}\right]$ shows we may assume $a c>0$. By multiplying by Z we may assume $a>0$ and $c>0$. If $a>c$, note that

$$
Y^{2} X Z\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
a-c & b-d \\
c & d
\end{array}\right] \in \varphi(G)
$$

by the induction hypothesis, thus $A \in \varphi(G)$. Similarly, if $a<c$, then we get

$$
Y X Z\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
c-a & d-b
\end{array}\right] \in \varphi(G)
$$

by induction, hence $A \in \varphi(G)$. This proves the induction step. Therefore $A \in \varphi(G)$.
Lastly, we only sketch the proof of injectivity of φ. First observe that by the relations in G, any element of G can be written uniquely in the form

$$
x^{b} z^{c}, \quad \text { or } \quad x^{a}\left(y^{1+j_{1}} x z\right)\left(y^{1+j_{2}} x z\right) \cdots\left(y^{1+j_{k-1}} x z\right) y^{1+j_{k}} x^{b} z^{c}
$$

where $k \in \mathbb{Z}_{\geq 1}, j_{i} \in\{0,1\}, a, b, c \in\{0,1\}$. Then prove that each of those expressions map to different matrices in SL($2, \mathbb{Z}$).
5. Let $G=\left\langle u, v, w \mid u v=v u, v w=w v, w u=u w,(u v w)^{4}=1, u^{4} v^{6} w^{8}=1\right\rangle$. Describe the torsion subgroup of G.
Solution: Since G is generated by u, v, w and those generators pairwise commute, G is abelian. By the universal property of free abelian groups, there is a group homomorphism $\Phi: \mathbb{Z}^{3} \rightarrow$ G sending $e_{1} \mapsto u, e_{2} \mapsto v, e_{3} \mapsto w$. Since u, v, w generate G, the homomorphism Φ is surjective. Due to the relations in G, the kernel of Φ is generated by $4\left(e_{1}+e_{2}+e_{3}\right)=\left[\begin{array}{l}4 \\ 4 \\ 4\end{array}\right]$ and $4 e_{1}+6 e_{2}+8 e_{3}=\left[\begin{array}{l}4 \\ 6 \\ 8\end{array}\right]$. Bringing $A=\left[\begin{array}{ll}4 & 4 \\ 4 & 6 \\ 4 & 8\end{array}\right]$ to its Smith normal form we get $\left[\begin{array}{ll}2 & 0 \\ 0 & 4 \\ 0 & 0\end{array}\right]$.
We may append a column of zeroes to make it have as many columns as there are generators in \mathbb{Z}^{3}. Thus

$$
G \cong \mathbb{Z}^{3} / K \cong \mathbb{Z}^{3} /(2 \mathbb{Z} \times 4 \mathbb{Z} \times 0 \mathbb{Z}) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}
$$

The torsion subgroup of this is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}^{4}$.
9. Use semidirect products to construct a nonabelian group of order $p^{2}\left(p^{2}-p\right) / 4$ for each prime p congruent to $1 \bmod 4$.
Solution: It suffices to construct a nonabelian group G of order $\left(p^{2}-p\right) / 4$ as then $\mathbb{Z}_{p^{2}} \times G$ is nonabelian of order $p^{2}\left(p^{2}-p\right) / 4$. For primes p we know that $\operatorname{Aut}\left(\mathbb{Z}_{p}\right)$ is cyclic of order $p-1$. Let $g \in \operatorname{Aut}\left(\mathbb{Z}_{p}\right)$ be a generator. By assumption, 4 divides $p-1$. Let $h=g^{4}$. Then h has order $d:=(p-1) / 4$ which gives a group homomorphism $\alpha: \mathbb{Z}_{d} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{p}\right)$ determined by sending [1] $]_{d}$ to g. Then the semidirect product $G=\mathbb{Z}_{p} \rtimes_{\alpha} \mathbb{Z}_{d}$ is a nonabelian group of order $p d=\left(p^{2}-p\right) / 4$.

