Math 504 — Abstract Algebra I — Fall 2022 — Review Problems for Exam 2

- 1. How many abelian groups are there of order 24,069,811,311? (You don't need to list them.) *Hint:* 24,069,811,311 = $3^3 \cdot 7^4 \cdot 13^5$.
- 2. Classify (that is, list one from each isomorphism class) all abelian groups of order $7^4 \cdot 13^2$ up to isomorphism. Give their invariant factors and elementary divisors.
- 3. Let K be the subgroup of \mathbb{Z}^n generated by $\{\mathbf{e}_i \mathbf{e}_{i+1}\}_{i=1}^{n-1}$ where $\mathbf{e}_i = (0, \dots, \overset{i}{1}, \dots, 0)$ are the standard basis vectors for \mathbb{R}^n . Find a product of cyclic groups isomorphic to \mathbb{Z}^n/K .
- 4. Let G and H be finite groups whose orders are relatively prime. Show that $\operatorname{Aut}(G \times H) \cong \operatorname{Aut}(G) \times \operatorname{Aut}(H)$.
- 5. Let G be a finite group, p a prime number and k a non-negative integer. Prove that the number of subgroups of G of index p^k is congruent modulo p to the number of normal subgroups of G of index p^k . *Hint: Let G act by conjugation on the set of subgroups of index* p^k .
- 6. Let G be a simple group of order 360. Show that every subgroup of G has index at least 6.
- 7. Let $\sigma = (1\ 2\ 3\ 4)(5\ 6\ 7\ 8) \in A_8$. What is the size of the conjugacy class of σ in A_8 ?
- 8. How many conjugacy classes are there in S_6 consisting of elements of odd order?
- 9. Let G be a group of order $2907 = 9 \cdot 17 \cdot 19$. Prove that G cannot be a simple group.
- 10. Show that every group of order $18785 = 5 \cdot 13 \cdot 17^2$ is abelian. Hint: First show that the center has to contain large subgroups.
- 11. Let N and H be any two abelian groups, and $\alpha : H \to \operatorname{Aut}(N), h \mapsto \alpha_h$ be a homomorphism. Show that $Z(N \rtimes_{\alpha} H) = N^H \times (\ker \alpha)$ where $N^H = \{x \in N \mid \alpha_h(x) = x \forall h \in H\}.$
- 12. Let N and H be any groups, and $\alpha : H \to \operatorname{Aut}(N)$, $h \mapsto \alpha_h$ be a homomorphism. Show that the external semidirect product $N \rtimes_{\alpha} H$ is abelian if and only if N and H are abelian, and $\alpha_h = \operatorname{Id}_N$ for all $h \in H$.
- 13. Show that for any set X, the group $\operatorname{Aut}(F(X))$ contains a subgroup isomorphic to S_X . Hint: Use the universal property of free groups.