Math 504 - Abstract Algebra I - Fall 2022 - Review Problems for Exam 2

1. How many abelian groups are there of order $24,069,811,311$? (You don't need to list them.) Hint: $24,069,811,311=3^{3} \cdot 7^{4} \cdot 13^{5}$.
2. Classify (that is, list one from each isomorphism class) all abelian groups of order $7^{4} \cdot 13^{2}$ up to isomorphism. Give their invariant factors and elementary divisors.
3. Let K be the subgroup of \mathbb{Z}^{n} generated by $\left\{\mathbf{e}_{i}-\mathbf{e}_{i+1}\right\}_{i=1}^{n-1}$ where $\mathbf{e}_{i}=(0, \ldots, \stackrel{i}{1}, \ldots, 0)$ are the standard basis vectors for \mathbb{R}^{n}. Find a product of cyclic groups isomorphic to \mathbb{Z}^{n} / K.
4. Let G and H be finite groups whose orders are relatively prime. Show that $\operatorname{Aut}(G \times H) \cong$ $\operatorname{Aut}(G) \times \operatorname{Aut}(H)$.
5. Let G be a finite group, p a prime number and k a non-negative integer. Prove that the number of subgroups of G of index p^{k} is congruent modulo p to the number of normal subgroups of G of index p^{k}.
Hint: Let G act by conjugation on the set of subgroups of index p^{k}.
6. Let G be a simple group of order 360 . Show that every subgroup of G has index at least 6 .
7. Let $\sigma=(1234)(5678) \in A_{8}$. What is the size of the conjugacy class of σ in A_{8} ?
8. How many conjugacy classes are there in S_{6} consisting of elements of odd order?
9. Let G be a group of order $2907=9 \cdot 17 \cdot 19$. Prove that G cannot be a simple group.
10. Show that every group of order $18785=5 \cdot 13 \cdot 17^{2}$ is abelian.

Hint: First show that the center has to contain large subgroups.
11. Let N and H be any two abelian groups, and $\alpha: H \rightarrow \operatorname{Aut}(N), h \mapsto \alpha_{h}$ be a homomorphism. Show that $Z\left(N \rtimes_{\alpha} H\right)=N^{H} \times(\operatorname{ker} \alpha)$ where $N^{H}=\left\{x \in N \mid \alpha_{h}(x)=x \forall h \in H\right\}$.
12. Let N and H be any groups, and $\alpha: H \rightarrow \operatorname{Aut}(N), h \mapsto \alpha_{h}$ be a homomorphism. Show that the external semidirect product $N \rtimes_{\alpha} H$ is abelian if and only if N and H are abelian, and $\alpha_{h}=\operatorname{Id}_{N}$ for all $h \in H$.
13. Show that for any set X, the group Aut $(F(X))$ contains a subgroup isomorphic to S_{X}.

Hint: Use the universal property of free groups.

