Math 504 - Abstract Algebra I - Fall 2022 Selected Solutions to Review Problems for Exam 2

5. Let G be a finite group, p a prime number and k a non-negative integer. Prove that the number of subgroups of G of index p^{k} is congruent modulo p to the number of normal subgroups of G of index p^{k}.
Hint: Let G act by conjugation on the set of subgroups of index p^{k}.
Solution: Let X be the set of all subgroups of G of index p^{k}. Let G act on X by conjugation. Let X^{G} be the union of the singleton orbits. That is, $X^{G}=\left\{H \in X \mid g H g^{-1}=H \forall g \in G\right\}=$ $\{H \in X \mid H \unlhd G\}$. So X^{G} is the set of all normal subgroups of G of index p^{k}. Let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{r}$ be the non-singleton orbits. By the Orbit Decomposition Theorem, we have

$$
|X|=\left|X^{G}\right|+\sum_{i=1}^{r}\left|\mathcal{O}_{i}\right|
$$

We are done if we can show that p divides $\left|\mathcal{O}_{i}\right|$ for each i since then $|X| \equiv\left|X^{G}\right|(\bmod p)$. By the Orbit-Stabilizer Theorem, $\left|\mathcal{O}_{i}\right|=\left|G: \operatorname{Stab}_{G}\left(H_{i}\right)\right|=\left|G: N_{G}\left(H_{i}\right)\right|$ for any choice of $H_{i} \in \mathcal{O}_{i}$. Since \mathcal{O}_{i} is a non-singleton orbit, $\left|G: N_{G}\left(H_{i}\right)\right|>1$. On the other hand $H_{i} \leq N_{G}\left(H_{i}\right)$ so that $\left|G: N_{G}\left(H_{i}\right)\right|=\frac{|G: H|}{\left|N_{G}\left(H_{i}\right): H\right|}$ which is a power of p, since H has index p^{k}. Thus p divides $\left|G: N_{G}\left(H_{i}\right)\right|$ for each i.
6. Let G be a simple group of order 360 . Show that every nontrivial subgroup of G has index at least 6 .
Solution: Let H be a nontrivial subgroup of G. Let $k=|G: H|$. Seeking a contradiction, assume that $k \leq 5$. Let G act by left multiplication on G / H. That is, $g \cdot\left(g^{\prime} H\right)=\left(g g^{\prime}\right) H$ for all $g \in G$ and $g^{\prime} H \in G / H$. The permutation representation afforded by this action is a homomorphism $\pi: G \rightarrow S_{G / H} \cong S_{k}$. Since G is simple, ker π is either 1 or G. For $g \in G$, $g \notin H$, we have $g \cdot H=g H \neq H$ so the action is not trivial, therefore $\operatorname{ker} \pi \neq G$. So ker $\pi=1$. But that means π is injective from a set with 360 elements to a set with $k!\leq 5!=120$ elements which is a contradiction.
8. How many conjugacy classes are there in S_{6} consisting of elements of odd order?

Solution: Conjugacy classes in S_{6} correspond to partitions of 6 via cycle types. The order of an element is the lcm of its cycle lengths. So the question becomes: How many partitions are there of 6 into a sum of odd parts? The only possibilities are $5+1,3+3,3+1+1+1,1+1+1+1+1+1$. The corresponding conjugacy classes have representatives (12345), (123)(456), (123), (1). The answer is 4 .
13. Show that for any set X, the group Aut $(F(X))$ contains a subgroup isomorphic to S_{X}.

Hint: Use the universal property of free groups.
Solution: Let $\sigma \in S_{X}$ and define a function $f_{\sigma}: X \rightarrow F(X)$ by $f_{\sigma}(x)=\sigma(x)$ for all $x \in X$. By the universal property of free groups, f_{σ} extends uniquely to a group homomorphism $\varphi_{\sigma}: F(X) \rightarrow F(X)$. If $\sigma, \tau \in S_{X}$ then for all $x \in X$ we have $\left(\varphi_{\sigma} \circ \varphi_{\tau}\right)(x)=\varphi_{\sigma}\left(\varphi_{\tau}(x)\right)=$ $\varphi_{\sigma}(\tau(x))=\sigma(\tau(x))=(\sigma \tau)(x)$. But also, $\varphi_{\sigma \tau}(x)=(\sigma \tau)(x)$ for all $x \in X$. So by the uniqueness part of the universal property of free groups,

$$
\begin{equation*}
\varphi_{\sigma \tau}=\varphi_{\sigma} \circ \varphi_{\tau}, \quad \forall \sigma, \tau \in S_{X} \tag{0.1}
\end{equation*}
$$

Taking $\tau=\sigma^{-1}$ and using that $\varphi_{\operatorname{Id}_{X}}=\operatorname{Id}_{F(X)}$ we obtain that $\varphi_{\sigma^{-1}} \circ \varphi_{\sigma}=\operatorname{Id}_{F(X)}$. Changing σ to $\sigma^{-1}, \varphi_{\sigma} \circ \varphi_{\sigma^{-1}}=\operatorname{Id}_{F(X)}$. Thus φ_{σ} is invertible. So $\varphi_{\sigma} \in \operatorname{Aut}(F(X))$. This defines a function

$$
\psi: S_{X} \rightarrow \operatorname{Aut}(F(X)), \quad \psi(\sigma)=\varphi_{\sigma}
$$

Equation 0.1 shows ψ is a homomorphism. We claim ψ is injective. Suppose $\psi(\sigma)=\psi(\tau)$. That is, $\varphi_{\sigma}=\varphi_{\tau}$. Applying both sides to an arbitrary $x \in X$ we get $\sigma(x)=\tau(x)$. Since x was arbitrary, $\sigma=\tau$. Therefore $S_{X} \cong \psi\left(S_{X}\right) \leq \operatorname{Aut}(F(X))$.

