Math 504 — Abstract Algebra I — Fall 2022 — Review Problems for Exam 1

- 1. What is the order of the group $(\mathbb{Z}/1000\mathbb{Z})^{\times}$? Is there a positive integer *n* such that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ has order 55? What about 56?
- 2. Let $D_{2\infty} = \mathbb{Z} \times (\mathbb{Z}/2\mathbb{Z})$. We introduce a binary operation * on $D_{2\infty}$ by

$$(a,\bar{b})*(c,\bar{d}) = \left(a + (-1)^b c, \,\bar{b} + \bar{d}\right), \qquad \forall a,b \in \mathbb{Z}$$

where $\bar{a} = [a]_2$ denotes the congruence class of a modulo 2. Show that the operation is well-defined and that $(D_{2\infty}, *)$ is a group and that it is nonabelian.

- 3. Find the group of invertible elements in the monoid \mathbb{Z}^n under multiplication.
- 4. Find the cycle decomposition and order of $\sigma\tau$ and $\tau\sigma$ if

$$\sigma = (5\ 2\ 6\ 8\ 4)(3\ 5\ 7)(1\ 5\ 2), \qquad \tau = (3\ 7\ 1\ 6\ 2)(7\ 2\ 5\ 6)$$

- 5. Show that the set of complex $n \times n$ -matrices whose determinant has absolute value 1 is a normal subgroup of $GL(n, \mathbb{C})$.
- 6. Suppose that G acts on a set X. Fix $x \in X$ and let $H = \operatorname{Stab}_G(x)$. Show that $\varphi: G/H \to X$, $\varphi(gH) = g.x$ is a well-defined and injective function.
- 7. Let G be a group acting on a set X. Show that G acts on X^X (the set of all functions from X to X) by

$$(g.\varphi)(x) = g.(\varphi(g^{-1}.x)) \qquad \forall g \in G, \varphi \in X^X, x \in X.$$

- 8. Let G and H be two groups. Prove that $Z(G \times H) = Z(G) \times Z(H)$.
- 9. (a) State the definition of the centralizer C_G(a) of an element a in a group G.
 (b) Find the centralizer of s in the dihedral group of order 16.
- 10. Show that $\operatorname{SL}_{p-1}(\mathbb{Z}/p\mathbb{Z})$ has non-trivial center for any prime p.
- 11. Prove the following non-isomorphisms of groups:
 - (a) $S_8 \not\simeq Q_8$.
 - (b) $\mathbb{Z} \not\simeq \mathbb{Z} \times \mathbb{Z}$
 - (c) $Q_8 \times Q_8 \not\simeq D_{16}$.
- 12. If $A, B \subseteq G$ and AB = BA, show that $\langle A \rangle \langle B \rangle = \langle B \rangle \langle A \rangle$.
- 13. Let G be a group and $g, h \in G$. Prove that h and ghg^{-1} have the same order.
- 14. List all elements of A_4 of even order.
- 15. Prove that any quotient group of a cyclic group is cyclic.
- 16. Suppose $\varphi: G_1 \to G_2$ is a surjective homomorphism between finite groups. Show that $|G_2|$ divides $|G_1|$.

17. Show that if $N_1 \trianglelefteq G_1$ and $N_2 \trianglelefteq G_2$ then

$$(G_1 \times G_2)/(N_1 \times N_2) \simeq (G_1/N_1) \times (G_2/N_2).$$

18. (a) State the Second Isomorphism Theorem.

(b) Suppose that $H \leq G, N \trianglelefteq G$ and gcd(|H|, |N|) = 1. Prove that $HN/N \simeq H$.