Math 504 - Abstract Algebra I - Fall 2022 - Review Problems for Exam 1

1. What is the order of the group $(\mathbb{Z} / 1000 \mathbb{Z})^{\times}$? Is there a positive integer n such that $(\mathbb{Z} / n \mathbb{Z})^{\times}$ has order 55 ? What about 56 ?
2. Let $D_{2 \infty}=\mathbb{Z} \times(\mathbb{Z} / 2 \mathbb{Z})$. We introduce a binary operation $*$ on $D_{2 \infty}$ by

$$
(a, \bar{b}) *(c, \bar{d})=\left(a+(-1)^{b} c, \bar{b}+\bar{d}\right), \quad \forall a, b \in \mathbb{Z}
$$

where $\bar{a}=[a]_{2}$ denotes the congruence class of a modulo 2 . Show that the operation is well-defined and that $\left(D_{2 \infty}, *\right)$ is a group and that it is nonabelian.
3. Find the group of invertible elements in the monoid \mathbb{Z}^{n} under multiplication.
4. Find the cycle decomposition and order of $\sigma \tau$ and $\tau \sigma$ if

$$
\sigma=(52684)(357)(152), \quad \tau=(37162)(7256)
$$

5. Show that the set of complex $n \times n$-matrices whose determinant has absolute value 1 is a normal subgroup of $\operatorname{GL}(n, \mathbb{C})$.
6. Suppose that G acts on a set X. Fix $x \in X$ and let $H=\operatorname{Stab}_{G}(x)$. Show that $\varphi: G / H \rightarrow X$, $\varphi(g H)=g \cdot x$ is a well-defined and injective function.
7. Let G be a group acting on a set X. Show that G acts on X^{X} (the set of all functions from X to X) by

$$
(g \cdot \varphi)(x)=g \cdot\left(\varphi\left(g^{-1} \cdot x\right)\right) \quad \forall g \in G, \varphi \in X^{X}, x \in X
$$

8. Let G and H be two groups. Prove that $Z(G \times H)=Z(G) \times Z(H)$.
9. (a) State the definition of the centralizer $C_{G}(a)$ of an element a in a group G.
(b) Find the centralizer of s in the dihedral group of order 16.
10. Show that $\mathrm{SL}_{p-1}(\mathbb{Z} / p \mathbb{Z})$ has non-trivial center for any prime p.
11. Prove the following non-isomorphisms of groups:
(a) $S_{8} \not \nsim Q_{8}$.
(b) $\mathbb{Z} \not 千 \mathbb{Z} \times \mathbb{Z}$
(c) $Q_{8} \times Q_{8} \not 千 D_{16}$.
12. If $A, B \subseteq G$ and $A B=B A$, show that $\langle A\rangle\langle B\rangle=\langle B\rangle\langle A\rangle$.
13. Let G be a group and $g, h \in G$. Prove that h and $g h g^{-1}$ have the same order.
14. List all elements of A_{4} of even order.
15. Prove that any quotient group of a cyclic group is cyclic.
16. Suppose $\varphi: G_{1} \rightarrow G_{2}$ is a surjective homomorphism between finite groups. Show that $\left|G_{2}\right|$ divides $\left|G_{1}\right|$.
17. Show that if $N_{1} \unlhd G_{1}$ and $N_{2} \unlhd G_{2}$ then

$$
\left(G_{1} \times G_{2}\right) /\left(N_{1} \times N_{2}\right) \simeq\left(G_{1} / N_{1}\right) \times\left(G_{2} / N_{2}\right)
$$

18. (a) State the Second Isomorphism Theorem.
(b) Suppose that $H \leq G, N \unlhd G$ and $\operatorname{gcd}(|H|,|N|)=1$. Prove that $H N / N \simeq H$.
