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GALOIS THEORY AND GALOIS COHOMOLOGY OF COMMUTATIVE RINGS
il 1,2
S. U. Chase, D. K, Harrison, and Alex Rosenberg’

In [2], M. Auslander and O. Goldman introduced the notion of a Galois
extension of a commtative ring, and used it to generalize to arbitrary com-
mutative rings the theory of crossed products and Galois cohomology for
fields. However, they obtained no corresponding generalization of the Funda-
mental Theorem of Galois Theory. In this paper we exhibit such a generaliza-
tion; in addition, we derive a certain exact sequence of seven terms which
extends the Galois cohomology results of [2]. In particular, it includes
Theorems A,9 and A.15 of that paper, and its existence was first suggested to
us by a careful study of the proofs of these theorems. If the commutative
rings involved are taken to be fields, then the above-mentioned exact se-
quence reduces to the two classical theorems of Galois cohomology of fields:
Hilbert's Theorem 90 and the isomorphism of the Brauer group of the field
with a second cohomology group.

The base rings in our Galois theory are arbitrary commtative rings.
However, the extensions are always separable commtative algebras; i.e., if R
is the base ring the extensions are comtative R-algebras S with S a projec-
tive S®R S-module. A simplification occurs for rings in which O and 1 are
the only idempotents. OSince the usual Galois theory for fields is not as-
sumed, we have, as a by-product, an alternative approach to this theory. Our
methods are quite elementary; all that is needed for the Fundamental Theorem
is a knowledge of the notions of tensor product and projective module, to-
gether with their easier properties.

In 1. we give six equivalent conditions which characterize Galois exten-
sions. One of these is the definition of [2]. In 2. our generalization of
the Fundamental Theorem of Galois theory appears. Section 3 is devoted to

Received by the editors August 5, 1963.

lPresented to the society June 28, 1963 under the title "Galois-theory
of commtative rings" (Abstract 63T-322, Notices Amer. Math. Soc. vol. 10
(1963) p. 515).
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the study of homomorphisms of Galois extensions and includes our generaliza-
tion of the theorem that the Galois group of a field consists of all automor-
phisms that are the identity on the fixed field. In 4. we study the normal
basis theorem in our context. Finally, 5. is devoted to deducing the seven
term exact sequence, already mentioned, from [7]. Section 4. requires a
slight knowledge of localization and the theory of the radical, while 5. needs
Amitsur cohomology and the main result of [7].

Our Galois theory has been used by one of us in [10].

After having obtained our results we learned that Grothendieck has de-
veloped a Galois theory Tor schemes [9, p. 18] which presumably includes ours
in the affine case. This theory, however, Seems not to have been published
yet in any readily available source.

We should like to express our warmest thanks to P. Cartier for many help-
ful comments which enabled us to improve greatly the exposition of our re-
sults. We also thank S. A, Amitsur, O. Villamayor, and D. Zelinsky for many
useful suggestions.

In all that follows all rings have identities, modules are unitary, and
for R a commtative ring the unadorned ® means tensor product over R.

After this paper was accepted for publication, we learned that T. Kan-
zaki, in a paper received by the Osaka Mathematical Journal on May 6, 1964,
has proved the Fundamental Theorem of Galois Theory for the special case of
comutative integral domains.

1. GALOIS EXTENSIONS.

The most interesting rings for the following theory are commtative
rings with no idempotents other than O and 1. These include local rings (not
necessarily Noetherian) and integral domains. We prefer to state some of the
results in a form valid for arbitrary commtative rings, and for this reason
introduce the following
DEFINITION 1.,1. Let f,g: S => T be homomorphisms of commtative rings. f
and g are called strongly distinct if, for every non-zero idempotent e of T,
there is an s in S such that f(s)e # g(s)e.

Clearly, if T has no idempotents other than O and 1, then f and g are
strongly distinct if and only if they are distinct.
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Following Auslander-Goldman (2] we call a commtative R-algebra S sep-
arable if S is a projective S @ S-module. For the case in which R and S are
fields, this condition is equivalent to the condition that S be a finite sep-
arable extension of R in the usual sense [13, Th. 1; 6, IX, 7.10; 12, VII, 5.6].
Commitative separable algebras over Noetherian rings have been studied in (1l

LEIMMA 1,2, Let S be a commutative separable R-algebra, and f£:S —> R be an R-
algebra homomorphism. Then there exists a unique idempotent e in S such that
f(e) =1 and se = f(s)e for all s in S. Furthermore, if f1yeee,f, are pair-
wise strongly distinct R-algebra homomorphisms from S to R, then the corres-
ponding idempotents ey,...,e, are pairwise orthogonal and fi(ej) - bij’ the
latter denoting the Kronecker delta.

Proof. By an easy argument, cf. [6, IX, 7.7; 12, VII, 5.1}, the separa-
bility of S is equivalent to the existence of elements x;, y; of S (i =
ly..0ym) such that (a) 2;11 X;¥; = 1, and (b) 2;21 SX;®@Y; = ziﬁl X;®y;8 in
S®S for any s in S, Now let e = Zigi f(xi)yi. (a) then guarantees that
f(e) = 1, whereas applying f ® 1 to (b) yields f(s)e = se for s in S. Setting
s = e in the latter equation shows that e?=e. If e is another idempotent
of S satisfying the same pair of conditions, then e' = f(e)e' = e'e = f(e')e
= e, so that the first statement of the lemma is prowved.

As for the second statement, note that fj(ej) is an idempotent of R, and
fi(S)fi(ej) = fi(sej) = fi(fj(s)ej) = fj(s)fi(ej) for any s in S. Since fj
and fj are strongly distinet for i # j, it follows that fi(ej) = aij‘ Final-
ly, eje5 = fj(ei)ej = sijej’ so that eq,...,e, are indeed pairwise orthogonal.
This completes the proof.

In the body of this paper we shall be primarily concermed with the fol-
loving situation: S is a commtative ring, G is a finite group of ring auto-
morphisms of S, and R = SG, the subring of S consisting of all elements of S
left fixed by every element of G. Auslander and Goldman have called S a
Galois extension of R if a certain condition is satisfied [2, p. 396]. We
shall show that this definition admits many equivalent forms. In order to do
this we first introduce two auxiliary R-algebras.

Let D = D(S,G) denote the trivial crossed product of S with G. This
means that D is a free S-module with generators uy (0 in G), with R-algebra
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structure defined by the formula
(su)(tu;) = so(t)uy  (s,t in S5 oyv in G).

The identity of D is uy, and we shall denote it by the symbol 1. There is an
R-algebra homomorphism j:D —> Homg(S,S) defined by j(suy)(x) = so(x) for s,x
in S and ¢ in G, j is also a left S-module homomorphism, where the S-module
structure on Homg(S,S) arises from the S-module structure of the covariant
argument.

Let E be the S-algebra of all functions from G to S under pointwise ad-
dition and multiplication. If vy is the function defined by vg4(t) = 85, it
is clear that E = I ; @ @ Svy and that the vy are pairwise orthogonal idem-
potents of E whose sum is 1. Regarding S ® S as an S-algebra via the first
factor, we have an S-algebra homomorphism h:S ® S => E defined by h(s®1t) (o)
= 80(t).

In the following results we place brackets around those hypotheses which
may be omitted if O and 1 are the only idempotents of S.

THEOREM 1.3. Let S be a commtative ring, G a finite group of automorphisms
of S, and R = sC, Then the following statements are equivalent:

(a) S is a separable R-algebra [and the elements of G are pairwise strong-
ly distinct].

(b) There exist elements Xjy..eyXpj Y1seses¥p Of S such that zi‘;l x36 (y)
= 8 g for all ¢ in G.

(¢) S is a finitely generated projective R-module and j is an isomorphism.

(d) Let M be a left D-module, which we may also view as a left G-module
with o(m) = ug(m). Then the mapping w:S @ M¥ = M defined by w(s®m) = sm
is an S-module isomorphism.

(e) h:S® S = E is an S-algebra isomorphism.

(f) Given 0 #1in G and a maximal ideal p of S, there exists s = s(p,0) in S
with s -0(s) not in p.

Proof. (a) = (b): Since S is a separable R-algebra, S ® S is a separable
S ® l-algebra [12, VII, 5.3] (or an easy direct argument). Define £,:S®S =S
for ¢ in G by f5(s ® t) = so(t). The f; are S-algebra homomorphisms, and are
strongly distinct because the elements of G are. By Lemma 1.2 there is an
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n
idempotent e in S ® S with f;(e) = 8; ; for all . If e =Z;-) x; ® y;, then
X1geee9XyyY1geeeyYy are the desired elements of S.

(b) = (c): As usual, we define the trace of an element s of S by the
formls tr(s) = Z; ;.  o(s). Then tr(s) is in S% = R. Hence the functions
P1se-+3Py on S defined by @;(s) = tr(sy;) lie in Homy(S,R). But then it fol-
lows easily from (b) that

(14) s = Zy0 94 (8)x,

for all s in S, and hence we may apply [6,VII, 3.1] to obtain that S is a
finitely generated projective R-module. Now let u be in Honh(S,S). Then a
routine computation using (1.4) shows that j(rbzi;’l u(x;)0(y;)ug) = u, and so
j is onto. Furthermore, if v = 2_ s u; in D, then Edzigl{j(v)(xi)}d(yi)ud =
54T, sct(x;)o(ys)ug = v, since by (b) Z;2 'c(xl)d(yi) 85 T Hence j is a
monomorphism, and (c) holds.

(¢) = (d): Since S is a finitely generated projective R-module, it
again follows from [6,VII, 3,1] that there are elements x; in S, @4 in
Homp (S,R) (i = 1,...4n) such that (1.4) holds for all s in S. Since j is an
isomorphism there are elements dyye.eydy in D with j(d;) = ;. Also, since
j(z2 =1 xidi)(s) = 3. 1 x;9;(s) = s for s in S, (c) again shows that Ei‘l x;d;

=u; =1 in D. Moreover, j(uodi)(s) = d((pi(s)) = q)i(S) = j(di)(s), and so (c)
implies that uyd; = d;. Thus dim is in M® for all m in M. Since SCD we
may view M as an S-module, and another computation then shows that d(sm ) =
{j(d)(s)}m for s in S, d in D, and m_ in M. Now define a map y:M = SQMC'
by v(m) = 3,2 = , X;® d;mj then wy is the identity map of M. On the other hand,
if s and m_ are in S and MG, respectively, then m(s@mo) = Zi=1 4 ® di(smo) =
2121 3 ® CPi(S)mo " Zirél xicpi(s)w m, = s®m,; hence yw is the identity map of
S@MC'. We may then conclude that w is an isomorphism.

(d) = (e): As usual, we let G act on E by setting (ov)(t) = o(v(c™ 7))
for G4t in G and v in E. Then o(sv) = 6(s)o(v) for s in S, and so E may be
viewed as a D-module via the formula (suy)(v) = so(v). Now, EC is easily seen
to be the G-homomorphisms of G to S and thus the map ©:5 —> E¢ defined by
8(s)(c) = 6(s) is an R-module isomorphism, and hence by (d) the composition
w(1® 0):S®S = E is an S-module isomorphism which is simply h.
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(e) => (a): The E-module Ev; = Sv; is E-projective. Viewing E as an
S @ S-module via the isomorphism h:S® S —> E, we then have that Svq is
S ® S-projective. Moreover, the equation h(s®1)vy = h(1®s)v; shows that
Svy* S as S @ S-modules, and so we may conclude that S is S® S-projective
and therefore a separable R-algebra. Setting h™>(vy) = I;0; x;®y;, ve have
that X1yeee9Xy¥ye-3¥y Satisly (b). Now suppose e is an idempotent of S
such that d(s)e = T(s)e for some distinct 0,7 in G and all s in S; then e =
2121 X;yse = zi:l )Li'c-ld (y4)e = 0. Hence the elements of G are pairwise
strongly distinct, and (a) holds.

(b) = (£): If, for some ¢ # 1 in G and some maximal ideal p of S,
(1-0)S < p, then we would have from (b) that 1 = 2,2 x,(y;-o(y;)) is in p,
a contradiction.

(£) = (b): Let ¢ # 1 be an element of G. By hypothesis the ideal of S
generated by the elements s - 0(s) is not contained in any maximal ideal of
S, and is thus S itself. Hence there are elements aj,ee048py Dyyeceyb, in S
(depending upon ©) such that E-ﬁl aj(bj-d(bj)) =1, Let apsy =

J

E, R . =1; I o p, = Il o g(b.) =
Zim a.Jo(bJ) and byyq = 15 then Z;577 asby = 1 but T8 aJO(bJ) 0. To

obtain the desired elements x;,y; of (b), it is then necessary only to mul-
tiply together the a; and b; constructed above for each non-trivial element
of G. This establishes (b) and completes the proof of the theorem.

DEFINITICON l.4. If G is a finite group of automorphisms of a commutative
G then S will be called a Galois extension of R with Galois
group G if any (and hence all) of the conditions of Theorem 1.3 hold.

REMARKS 1,5. (a) If S is a field, then condition (f) of Theorem 1.3 clearly
holds, and so in this case our definition coincides with the usual one. More-
over, (a) and (c) then show that a Galois field extension is a finite separa-
ble extension of its fixed field of dimension equel to the order of the Galois
group.

(b) In [2, p. 396], condition (c) is used as the definition of a Galois
extension. That (c) implies (e) and the first statement of (a) is proved
there, but by methods other than ours.

(c) Conditions (b) and (c) express the fact that the rings D and R, to-

ring S and R = S



