Discussion G-Crossed product $i) \quad A = \bigoplus_{g \in G} A_g$ graded alg 2) VgEG, Ag contains an element Which is invertible in A. 2) <=>2) Vg Jag E Ag (A such that ag :r = 5g(r)ag VrEAe where 5: G -> Aut/Ae) is a map $a_g a_h = \mathcal{L}(g,h) a_{gh}$ where $\mathcal{L}: G \times G \rightarrow A_e \cap A^{\times}$ K

2) ⇐ 2') Obvious. 2) =>2') Pick any agEAgNAX. $\int a_g a_h r = a_g \sigma_h(r) a_h = \sigma_g(\sigma_h(r)) \frac{a_g a_h}{g_h}$ $\int \mathcal{L}(g,h) a_{gh} r = \mathcal{L}(g,h) \sigma_{gh}(r) a_{gh} =$ $= \alpha(g,h) \sigma_{gh}(r) \alpha(g,h)^{-1} \alpha(g,h) \alpha_{gh},$ $\left(6_{g} \overline{b}_{h}(r) = \chi(g,h) \overline{b}_{gh}(r) \chi(g,h)^{-1} \right)^{-2} \overline{a}_{g} \overline{a}_{h}$

The growth of A (with respect to V) $f(n) = \log_n \left(\dim_{K=0}^{\infty} V^k \right) = \frac{\log_n \left(\dim_{K=0}^{\infty} V^k \right)}{\log_n N}$ is defined to be EX. A = k[x], V = kx $\dim V^n = \dim kx^n = 1$ $\dim \tilde{\Sigma} V^{k} = \dim(|k1 + |kx^{1} + \dots + |kx^{n}))$ $f(n) = \frac{\log (n+1)}{\log n} = \frac{n+1}{\log \log (n+1)}$

EX. A = K(X, y) free alg on 2 gens. V = |kx + |ky|dim $(\sum_{k=0}^{n} V^{k}) = \#$ words in $\{x, y\}$ of length $\leq n =$ $= 1 + 2 + 2^{2} + \dots + 2^{n}$ (2ⁿ⁺¹ exponential function in n $f(n) = \frac{\log(2^{n+1}-1)}{\log n}$

$$E_{\underline{x}} \cdot A = k[x_1, ..., x_k]$$

$$V = kx_1 + kx_2 + ... + kx_k in n$$

$$\dim V^n = \binom{n+k-1}{k-1} = pot. \quad of deg k-1$$

$$z_1 (x_2 / ... / x_k)$$

$$\dim V^0 + V^1 + ... + V^n$$

$$= pot. \quad in n \quad of deg k$$

$$= \sum_{j=0}^{n} \binom{j+k-1}{k-1} = *n^k + ...$$

Next, take kingt as n->20. May not exist, take limsup instead Def The Gelfand-Kirillov dimension of a finitely generated algebra A is defined as $GKdim(A) = limsup\left(log_n dim \sum_{k=0}^{n} V^k\right)$ where V is a choice of finite-dim'e generating subspace.

Lemma 1 Independent of choice of V. $V \subset W^{(m)}$ $W \subset V^{(n)}$ $A = \bigcup_{n=0}^{\infty} \bigvee_{n=0}^{(n)} \bigcup_{n=0}^{\infty} \bigvee_{n=0}^{(n)}$ $\sum_{k=0}^{n} \sqrt{k}$ Del For a not necessarily finitely generated algebra A we défine

GKdim A=Sup (limsup (logn dim V⁽ⁿ⁾)) VCA, dim V<00 EX. GKdim $k(x,y) \approx \lim_{n \to \infty} (\log_n 2^n) =$ = $\lim_{n \to \infty} \frac{n}{\log 2} = \infty$ Teaser: 1) If A is commutative then GKdim A=Krull-Jim(A) sup Ln (] Po CP, C... CPn) in Spec(A)

2) Gdim
$$A \in [0, 1] \cup [2, \infty)$$

 f
 gap proved by
Bergman.
3) Constmetions $-A[x; \sigma, \delta]$
 $-A/I$