Recall: 1 group. A 1-crossed product is a 1-graded algebra A: $A = \bigoplus_{x \in \Gamma} A_x \quad (as \ v. spaces)$ & $A_{\alpha}A_{y} \subseteq A_{\infty y}$, $1_{A} \in A_{1}$ such that $\forall x \in \Gamma$: A_x contains an invertible element (unit) of A. Note: If ux EAx are units txEP, $\forall a \in A_x : a = a(u_x)^{-1} u_x \in A_1 \cdot u_x$ $\in A_{x}A_{x-1}\subset A_{1}$ Let B = Bx be a M-crossed product, put A=B1 Q: Relationship between A-modules and 13-modules?

(M. Lorenz, "A Tour of RepTh."

CLIFFORD THEORY

§ 3.6.4)

Ex. a group, N=G normal sulgrp Let $\Gamma = G/N$. Then: $kG = \bigoplus kg = \bigoplus k \overline{x}N$ $geG \qquad xer$ where $f_{\overline{x}}|_{x\in\Gamma}f_{CG}$ is a set of representatives for the cosets. B=KG, A=KN (identity component) Twisting. If B= Bx is a P-crossed product, and A=B, and W an A-module, then We define ${}^{2}W = B_{x} \otimes W \forall x \in !$ and define Q define $\Gamma_W = \{x \in \Gamma \mid x_W \cong W\} \text{ "Stabilizer of W"}$ Lemma: [w < [, and wy w iff $x \Gamma_W = y \Gamma_W$.

<u>Definition</u>. Let V be an A-module of finite length: I seq of t-submods $O = V_0 \subset V_1 \subset \cdots \subset V_p = V$ such that Vi/V_{i-1} then for a simple is simple ti A-module S, ls := #{i | Vi/Vi-, = S} is the multiplicity of Sin V. Furthermore, if V is semisimple: V = + S^{Pls}

[S] — Sum over all isoclasses of simple A-modules.

Then $V(S) := S^{\oplus l}S \subset V$ is the S-homogeneous component of S in V.

Thm (Clifford's Thm) Suppose []< 0. B r-crossed product, A=B1. For any simple B-module V, the restriction ResaV is semisimple and of finite length. More precisely for any simple A-submodule'S of Resk V we have: $V = \bigoplus (xS)^{\oplus \ell_S}$

Lastly, putting $B_S = \bigoplus_{x \in \Gamma_S} B_x \subseteq B_s$ $V(S) \subseteq Res_{BS}^B V$ and $V \cong Ind_{BS}^B V(S)$. $B \otimes V(S)$

 $\mathcal{B}_{S} \qquad \mathcal{B}_{S} \qquad \mathcal{B}_{S}$

$$B = C[x] \times S_2 \qquad \sigma.x = -x$$

$$\int dx = -x6 \text{ in } B \qquad = 76(p(x)) = p(-x)$$

$$\int 6^2 = 1$$

$$B = C[x] + C[x] G$$

$$= A \cong C[x]$$

$$|Socialises of simple A-module are in bijection with C :
$$C \ni \lambda \longrightarrow C_{\lambda} = C \cdot 1_{\lambda} \qquad x \cdot 1_{\lambda} = \lambda 1_{\lambda}$$

$$(\Rightarrow p(x) + p(x) 1_{\lambda})$$

$$(\Rightarrow p(x) + p(x) 1_{\lambda}$$

$$(\Rightarrow p(x) + p(x) 1_{\lambda})$$

$$(\Rightarrow p(x) + p(x) 1_{\lambda}$$

$$(\Rightarrow p(x) + p(x) 1_{\lambda})$$

$$(\Rightarrow p(x) + p(x) 1_{\lambda}$$

$$(\Rightarrow p(x) + p(x) 1_{\lambda})$$

$$(\Rightarrow p(x) + p(x) 1_{\lambda}$$

$$(\Rightarrow p(x) + p(x) 1_$$$$

 $EX \Gamma = S_2$, put $\{ \sigma = (12) \}$

Put
$$\Gamma_{\lambda} = \Gamma_{C_{\lambda}}$$
. Then
$$\Gamma_{\lambda} = \begin{cases} 1, & \lambda \neq 0 \\ \Gamma = S_{2}, & \lambda = 0 \end{cases}$$
and $B_{\lambda} := B_{C_{\lambda}} = \begin{cases} A = C[x], & \lambda \neq 0 \\ B, & \lambda = 0 \end{cases}$
Suppose $\lambda \neq 0$. If V is a simple module over $B = C[x] \neq S_{2}$. Here

module over $B = \mathbb{C}[x] \times S_2$ then $V \cong ({}^{1}S)^{\oplus l}S \oplus ({}^{g}S)^{\oplus l}S$ for any simple $\mathbb{C}[x]$ -submodule of B.

and $V \cong Ind_{\mathbb{C}[x]}^{\mathbb{B}}$ V(S). $\cong \mathbb{C}^{l}$ $\times \mapsto \lambda Id_{exe}$